Richard B. Frankel. Magnetotactic bacteria at cal poly

MAGNETOTACTIC  BACTERIA  AT  CAL  POLY

Richard B. Frankel


Department of Physics, Cal Poly State University, San Luis Obispo, CA 93407
E – mail:
rfrankel@calpoly.edu

 

Magnetotactic bacterium strain MV-1 Magnetotactic behavior in bacteria was discovered over 20 years ago [1]. The discovery was based on the fact that microscopic examination of a drop of water and sediment from a pond, lake or marsh on a microscope slide in a magnetic field of a few gauss (comparable in strength to the geomagnetic field) can reveal bacteria migrating persistently along magnetic field lines in the field direction, corresponding to Northward migration along geomagnetic field lines [3]. The migration speed of individual bacteria along the magnetic field lines depends on the field strength, but can be 90% or more of the forward swimming speed (up to 150 microns per second) of the cell. If the direction of the local magnetic field is reversed, the magnetotactic bacteria execute "U-turns" and continue migrating in the same direction relative to the local magnetic field. The migration direction of bacteria in the magnetic field can be reversed by subjecting the cells to a strong (several hundred gauss) magnetic field pulse oriented opposite to the field in which they are migrating [4]. Magnetotactic bacteria that spontaneously migrate Southward along geomagnetic field lines are found in aquatic sediments and waters from the Southern Hemisphere [5]. Reviews of recent research on magnetotactic bacteria may be found in reference [6].

 

Magnetosome mineral particles

 

All magnetotactic bacteria contain magnetosomes [7], which are magnetic mineral particles enclosed in membranes. In most cases the magnetosomes are arranged in a chain or chains [2], apparently fixed within the cell. In many magnetotactic bacterial types, the magnetosome mineral particles are magnetite, Fe3O4 [8-12], and are characterized by a narrow size distribution, and uniform, species-specific, crystal habits [13, 14]. The particle sizes range from ca. 40 to 100 nm, which are within the permanent single-magnetic-domain size range for magnetite.

In magnetotactic bacteria from marine, sulfidic environments, the magnetosome particles are the iron-sufide mineral greigite, Fe3S4, [15-18], which is isostructural with magnetite and is also ferrimagnetically ordered at ambient temperature. The greigite particles are also characterized by a narrow size distribution and species-specific crystal habits. However, whereas the magnetite particles in a magnetosome chain are usually oriented so that a [111] crystallographic axis of each particle lies along the chain direction, the greigite particles in a magnetosome chain are usually oriented so that a [100] crystallographic axis of each particle is oriented along the chain direction [17].

 

Cellular magnetic dipole

 

Whether the mineral particles are magnetite or greigite, the chain of magnetosome particles constitutes a permanent magnetic dipole fixed within the bacterium [3]. The magnetic dipole moment is generally sufficiently large so that it, and consequently the bacterium, is oriented in the geomagnetic field so that <cosØ> 0.9, where Ø is the instantaneous angle between the magnetic dipole moment and the field direction. Magnetotaxis is a passive process in which the orientation of the magnetic dipole in the ambient magnetic field as the organism swims causes it to migrate along the magnetic field lines.

Magnetotactic bacteria have two possible magnetic polarities, depending on the orientation of the magnetic dipole within the cell. The polarity can be reversed by a magnetic pulse which is greater than the coercive force of the chain of particles. As noted above, bacteria with reversed polarity migrate along magnetic field lines in the direction opposite to that of bacteria with the original polarity. In natural habitats, the predominant polarity type in the population of a given bacterial species is determined by the sign of the inclination of the geomagnetic field [5].

 

Chemically stratified sites

 

It has recently been reported that high concentrations of bacteria occur in a horizontal "plate" at the oxic-anoxic transition zone (OATZ) in stratified marine environments [19]. In these environments, downward oxygen diffusion from the surface and upward sulfide diffusion, resulting from bacterial sulfate reduction in the anaerobic sediment, create a double vertical chemical concentration gradient system, with a concomitent redox gradient. In the Pettaquamscutt Estuary in Narragansett Bay, Rhode Island, the OATZ occurs at about 4.5 meters in a 20 meter water column, and the bacterial concentration in the plate is greater than 106 cells per cc. At least seven morphologically-distinct, magnetotactic-bacterial types occur at the OATZ [20-21], some containing Fe3O4 particles, and some containing Fe3O4 particles [21]. The magnetite-containing cells tend to be more abundant at the top of the plate, in the relatively oxygen-rich portion of the OATZ, while the greigite-containing cells tend to be more abundant at the bottom of the plate, in the relatively sulfide-rich portion of the OATZ.

 

Back to Home
Papers on magnetotatic bacteria by Richard B. Frankel
Additional papers on magnetotatic bacteria

 

References

 

1.      R. P. Blakemore, Science 190, (1975) 377.

2.      R.P. Blakemore, N.A. Blakemore, D.A. Bazylinski, and T.T Moench, in: Bergey's Manual of Systematic Bacterioloqy Vol. 3, eds. M. P. Bryant, N. Pfennig, and J. T. Staley, (Williams and Wilkins, Baltimore, 1989) 1882.

3.      R. B. Frankel, Ann. Rev. Biophys. Bioeng. 13, (1984) 85.

4.      A. J. Kalmijn and R. P. Blakemore, in: Animal Migration and Homing, eds. K. Schmidt-Koenig and W. T. Keeton (Springer Verlag, New York, 1978) 344.

5.      R. P. Blakemore, R. B. Frankel and A. J. Kalmijn, Nature 286, (1980) 384.

6.      R. B. Frankel and R. P. Blakemore, Eds. Iron Biominerals (Plenum Press, New York, 1990).

7.      D. L. Balkwill, D. Maratea, and R. P. Blakemore, J. Bacteriol. 141, (1980) 1399.

8.      R. B. Frankel, R. P. Blakemore, and R. S. Wolfe, Science 203, (1979) 1355.

9.      K. M. Towe, and T. T. Moench, Earth Planet. Sci. Lett. 52, (1981) 213.

10.  T. Matsuda, J. Endo, N. Osakabe, A. Tonomura, A. and T. Arii, Nature 343, (1983) 258.

11.  S. Mann, N. H. C. Sparks, and R. P. Blakemore, Proc. Roy. Soc. Lond. B 231, (1987) 469.

12.  D. A. Bazylinski, R. B. Frankel, R.B. and H. W. Jannasch, H.W. Nature 334, (1988) 518.

13.  F. C. Meldrum, B. R. Heywood, S. Mann, R. B. Frankel, and D. A. Bazylinski, Proc. Roy. Soc. Lond. B 251, (1993) 231; Proc. Roy. Soc. Lond. B 251, (1993) 237.

14.  S. Mann, and R. B. Frankel, in: Biomineralization: Chemical and Biological Perspectives, eds. S. Mann, J. Webb, and R. J. P. Williams (Springer Verlag, Berlin, 1990) pp. 389-426.

15.  S. Mann, N. H. C. Sparks, R. B. Frankel, D. A. Bazylinski, and H. W. Jannasch, Nature 343, (1990) 258.

16.  B. R. Heywood, D. A. Bazylinski, A. J. Garratt-Reed, S. Mann, and R. B. Frankel, Naturwissenschaften 77, (1991) 536.

17.  B. R. Heywood, S. Mann, and R. B. Frankel, in: Materials Synthesis Based on Biological Processes, eds. M. Alpert, et al. (Materials Research Society, Pittsburgh, PA, 1990) 93.

18.  M. Farina, D. M. S. Esquivel, and H. G. P. Lins de Barros, Nature 334, (1990) 256.

19.  P. L. Donaghay, H. M. Rines, and J. McN. Sieburth, Arch. Hydrobiol. Beih. Ergebn. Limnol. 36, (1992) 96.

20.  Stolz, J.F. in Biomineralization Processes of Iron and Manqanese-Modern and Ancient Environments, eds. H. W. C. Skinner, and R. W. Fitzpatrick (Catena Verlag, Cremlingen-Destedt, 1992) 133.

21.  D. A. Bazylinski, R. B. Frankel, B. R. Heywood, S. Mann, J. King, P.L. Donaghay, and A.K. Hanson, Appl. Environ. Microbiol. 61, (1995) 3232.

 

Publications on Magnetotatic Bacteria by Richard B. Frankel and Collaborators

 

(A=abstract; R=review)

 

1.      R.B. Frankel, R.P. Blakemore, and R.S. Wolfe: Magnetite in Freshwater Magnetic Bacteria. Science 203, 1355-1357 (1979).

2.      C.R. Denham, R.P. Blakemore, and R.B. Frankel: Bulk Magnetic Properties of Magnetotactic Bacteria. IEEE Trans. Magn. MAG-16, 1006-1007 (1980).

3.      R.B. Frankel and R.P. Blakemore: Navigational Compass in Magnetic Bacteria. J. Magn. and Magn. Mater. 15-18, 1562-1564 (1980).

4.      R.P. Blakemore, R.B. Frankel and Ad.J. Kalmijn: South-seeking Magnetotactic Bacteria in the Southern Hemisphere. Nature (London) 236, 384-385 (1980).

5.      R.B. Frankel: Bacterial Magnetotaxis vs Geotaxis. Trans. Am. Geophys. Soc. (EOS) 62, 850 (1981). A

6.      R.B. Frankel, R.P. Blakemore, F.F. Torres de Araujo, D.M.S.Esquivel, and J. Danon: Magnetotactic Bacteria at the Geomagnetic Equator.Science 212, 1269-1270 (1981).

7.      R. P. Blakemore and R. B. Frankel: Magnetic Navigation in Bacteria.
Scientific American 245, Vol. 6, 58-65 (1981). R

8.      C. Rosenblatt, F. F. Torres de Araujo, and R.B. Frankel: Birefringence Determination of Magnetic Moments of Magnetotactic Bacteria. Biophys. J. 40, 83-85 (1982).

9.      C. Rosenblatt, F.F. Torres de Araujo, and R.B. Frankel: Light Scattering Determination of Magnetic Moments of Magnetotactic Bacteria. J. Appl. Phys. 53, 2727-2729 (1982).

10.  R.B. Frankel: Magnetotactic Bacteria. Comments Mol. Cell. Biophys. 1, 293-310 (1982). R

11.  R.B. Frankel, G.G. Papaefthymiou, R.P. Blakemore, and W. O'Brien:
Fe3O4 Precipitation in Magnetotactic Bacteria. Biochim. Biophys. Acta 763, 147-159 (1983).

12.  R.B. Frankel and G.C. Papaefthymiou: Biomineralization of Fe3O4 in Bacteria.
Chemical Mössbauer Spectroscopy, Ed: R.H. Herber, (Plenum Press, NY, 1984), pp. 113-132. R

13.  R.B. Frankel: Magnetic Guidance of Organisms. Ann. Rev. Biophys. Bioengr. 13, 85-103 (1984). R

14.  S. Ofer, I. Nowik, E.R. Bauminger, G.C. Papaefthymiou, R.B. Frankel and R.P. Blakemore:
Magnetosome Dynamics in Magnetotactic Bacteria. Biophys. J. 46, 57-64 (1984).

15.  R.B. Frankel and R.P. Blakemore: Precipitation of Fe3O4 in Magnetotactic Bacteria.
Trans. Roy. Soc. Lond. B304, 567-574 (1984). R

16.  S. Mann, R.B. Frankel, and R.P. Blakemore: Structure, Morphology, and Crystal Growth of Bacterial Magnetite. Nature 310, 405-407 (1984).

17.  C. Rosenblatt, R.B. Frankel, and R.P. Blakemore: A Birefringence Relaxation Determination of Rotational Diffusion of Magnetotactic Bacteria. Biophys. J. 47, 323-325 (1985).

18.  R.P. Blakemore, R.A. Short, C. Bazylinski, C. Rosenblatt, and R.B. Frankel: Microaerobic Conditions are Required for Magnetite Formation Within Aquaspirillum Magnetotacticum. Geomicrobiology J. 4, 53-71 (1985).

19.  R.B. Frankel, G.C. Papaefthymiou, and R.P. Blakemore: Mössbauer Spectroscipy of Iron Biomineralization Products in Magnetotactic Bacteria. in: Magnetite Biomineralization and
Magnetoreception in Organisms, J.L. Kirschvink, D.S. Jones, and B.J. MacFadden, Editors.
(Plenum, NY, 1985), pp. 269-287 R

20.  F.F. Torres de Araujo, M.A. Pires, R.B. Frankel, and C.E.M. Bicudo: Magnetite and Magnetotaxis in Algae. Biophys. J. 50, 375-378 (1986).

21.  R.B. Frankel: Magnetite and Magnetotaxis in Bacteria and Algae. Biophysical Effects of Steady Magnetic Fields, edited by G. Maret (Springer-Verlag, Berlin, 1986) pp. 173-179. R

22.  R.P. Blakemore, N.A. Blakemore, and R.B. Frankel: Bacterial Biomagnetism and Geomagnetic Field Detection by Organisms. Modern Bioelectrcity, edited by A.A. Marino,
(Dekker, NY, 1988), pp. 19-29. R

23.  B.M. Moskowitz, R.B. Frankel, P. Flanders, R.P. Blakemore and B.B. Schwartz:
Magnetic Properties of Magnetotactic Bacteria. J. Magn. and Magn. Mater. 73, 273-288 (1988).

24.  R.B. Frankel and R.P. Blakemore: Magnetite and Magnetotaxis in Microorganisms.
Biotechnological Applications of Lipid Microstructures, Editors: B. Gaber, J. Schnur and D Chapman. (Plenum Press, New York, 1988) pp.321-330. R

25.  D.A. Bazylinski, R.B. Frankel, and H.W. Jannasch: Anaerobic Magnetite Production by a Marine, Magnetotactic Bacterium. Nature 334, 518-519 (1988).

26.  S. Mann and R.B. Frankel: Magnetite Biomineralization in Unicellular Organisms.
Biomineralization: Chemical and Biochemical Perspectives, Editors:S. Mann, J. Webb and
R.J.P. Williams.(CVH Press, Mannheim, FRG, 1989) pp.389-426. R

27.  D. Guell, H. Brenner, R.B. Frankel, and H. Hartman: Hydrodynamic Forces and Band Formation in Swimming Magnetotactic Bacteria. J. Theor. Biol. 135, 525-542 (1989).

28.  R.B. Frankel and R.P. Blakemore: Magnetite and Magnetotaxis in Bacteria. Bioelectromagnetics 10, 223-237 (1989). R

29.  R.P. Blakemore and R.B. Frankel: Biomineralization by Magnetogenic Bacteria. Metal-Microbe Interactions, Edited by R.K.Poole and G.M.Gadd (IRL Press, Oxford, UK, 1989) pp.85-98. R

30.  B.M. Moskowitz, R.B. Frankel, D.A. Bazylinski, and D.R. Lovley: Comparison of Magnetic Properties of Magnetite Produced by Anaerobic Magnetotactic and Dissimilatory Iron Reducing Bacteria. Geophys. Res. Letters 16, 665-668 (1989).

31.  N.H.C. Sparks, S. Mann, D. Bazylinski, D.R. Lovley, H.W. Jannasch and R.B. Frankel:
Structure and Morphology of Magnetite Anaerobically-Produced by a Marine Magnetotactic Bacterium and a Dissimilatory Iron-reducing Bacterium. Earth & Planet. Sci. Lett. 98, 14-22 (1990).

32.  F.F. Torres de Araujo, N.A. Germano, L.L. Goncalves, M.A. Pires and R.B. Frankel:
Magnetic Polarity Fractions in Magnetotactic Bacterial Populations Near the Geomagnetic Equator. Biophys. J. 58, 549 (1990).

33.  S. Mann, N.H.C. Sparks, R.B. Frankel, D.A. Bazylinski and H.W. Jannasch:
Biomineralization of Ferrimagnetic Greigite (Fe3S4) and Iron Pyrite (FeS2) in a Magnetotactic Bacterium. Nature 343, 258-261 (1990).

34.  F.G. Rodgers, R.P. Blakemore, N. Blakemore, R.B. Frankel, D.A. Bazylinski, D. Maratea, C. Rodgers: Intercellular Connections in a Many-Celled Magnetotactic
Prokaryote. Arch. Microbiol. 154, 18-22 (1990).

35.  B.R. Heywood, D.A. Bazylinski, A.J. Garratt-Reed, S. Mann, and R.B. Frankel: Controlled Biosynthesis of Greigite in Magnetotactic Bacteria. Naturwissenschaften 77, 536-538 (1990).

36.  R.B. Frankel and R.P. Blakemore, Editors: Iron Biominerals, Plenum Press, New York, 1991, 435 pages.

37.  R. B. Frankel: Iron Biominerals: An Overview. In: Iron Biominerals, edited by R.B. Frankel and R.P. Blakemore  (Plenum Press, N.Y., 1991) pp.1-6. R

38.  D.A. Bazylinski, R.B. Frankel, A. Garratt-Reed, and S. Mann: Biomineralization of Iron Sulfides in Magnetotactic Bacteria from Sulfidic Environments. In: Iron Biominerals, edited by R.B.Frankel and R.P. Blakemore (Plenum Press, N.Y., 1991) pp.239-255. R

39.  R.B. Frankel: Inorganic Particles Produced by Microorganisms. In: Materials Syntheses Based on Biological Processes, Vol. 218, edited by M. Alpert et al. (Materials Research Society, Pittsburgh, PA, 1991) pp.77-79. R

40.  B.R. Heywood, S. Mann, and R.B. Frankel:Structure, Morphology and Growth of Biogenic Greigite (Fe3S4). In: Materials Syntheses Based on Biological Processes, Vol. 218, edited by M. Alpert et al. (Materials Research Society, Pittsburgh, PA, 1991) pp.93-108.

41.  D.P.E. Dickson and R.B. Frankel: Magnetic Fine Particles in Biological Systems. In: Studies of Magnetic Properties of Fine Particles and Their Relevance to Materials Science, edited by J.L.Dormann and D. Fiorani, (Elsevier, Amsterdam, 1992) pp. 393-402. R

42.  E.F. DeLong, R.B. Frankel, and D.A. Bazylinski: Multiple Evolutionary Origins of Magnetotaxis in Bacteria. Science 259, 803-806 (1993).

43.  D.A. Bazylinski and R.B. Frankel: Production of Iron Sulfide Minerals by Magnetotactic Bacteria in Sulfidic Environments. In: Biological and Mineralogical Processes of Fe and Mn
Precipitation in Contemporary Environments, edited by R. Fitzpatrick and H.C.W. Skinner
(Catena Press, 1993) p.147-159. R

44.  F.C. Meldrum, S. Mann, B.R. Heywood, R.B. Frankel, and D.A. Bazylinski: Electron Microscope Study of Magnetosomes in a Cultured Coccoid Magnetotactic Bacterium.
Proc. Roy. Soc. B 251, 231-236 (1993).

45.  F.C. Meldrum, S. Mann, B.R. Heywood, R.B. Frankel, and D.A. Bazylinski: Electron Microscope Study of Magnetosomes in Two Cultured Vibrioid Magnetotactic Bacteria.
Proc. Roy. Soc. B 251, 237-242 (1993).

46.  D.A. Bazylinski, A.J. Garratt-Reed, A. Abedi and R.B. Frankel: Copper Association with Iron-Sulfide Magnetosomes in a Magnetotactic Bacterium. Arch. Microbiol., 160, 35-42 (1993).

47.  D.A. Bazylinski, B.R. Heywood, S. Mann and R.B. Frankel: Fe3O4 and Fe3S4 in a Bacterium. Nature 366, 218 (1993).

48.  B.M. Moskowitz, R.B. Frankel, and D.A. Bazylinski: Rock Magnetic Criteria for the Detection of Biogenic Magnetite. Earth Planet. Sci. Lett. 120, 283-300 (1993).

49.  D.A. Bazylinski, A.J. Garratt-Reed, and R.B. Frankel: Electron Microscope Studies of Magnetosomes in Magnetotactic Bacteria. Microsc. Res. Tech. 27, 389-401 (1994).

50.  R.B. Frankel and D.A. Bazylinski: Magnetotaxis and Magnetic Particles in Bacteria.
Hyperfine Interactions 90, 135-142 (1994).

51.  R.B. Frankel and D.A. Bazylinski: Structure and Function of Magnetosomes in Magnetotactic Bacteria. In: Design and Processing of Materials by Biomimetics, edited by M. Sarikaya and I. Aksay (AIP Press, New York, 1995) pp. 199-216. R

52.  R.B. Proksch, B.M. Moskowitz, E.D. Dahlberg, T. Schaeffer, D.A. Bazylinski, and R.B. Frankel:
Magnetic Force Microscopy of the Submicron Magnetic Assembly in a Magnetotactic Bacterium. Applied Phys. Lett. 66, 2582-2584 (1995).

53.  E.D. Dahlberg, R.B. Proksch, B.M. Moskowitz, D.A. Bazylinski,and R.B. Frankel:Microbes, Magnetism and Microscopy. J. Magn. Magn. Mater. 140-144, 1459-1461 (1995).

54.  D.A. Bazylinski, R.B. Frankel, B.R. Heywood, S. Mann, J.W. King, P.L. Donaghay, and A.K. Hanson: Controlled Biomineralization of Magnetite (Fe3O4) and Greigite (Fe3S4) in a Magnetotactic Bacterium. Applied Environ. Microbiol. 61, 3232-3239 (1995).

55.  Penninga, H. de Waard, B. Moskowitz, D.A. Bazylinski,and R.B. Frankel:Remanence Measurements on Individual Magnetotactic BacteriaUsing Pulsed Magnetic Fields. J. Magn. Magn. Mater. 149, 279-286 (1995).

56.  R.B. Frankel, D.A. Bazylinski, M. Johnson and B.L. Taylor:Magneto-aerotaxis in Marine, Coccoid, Bacteria. Biophys. J. 73, 994-1000 (1997).

57.  M. Posfai, P.R. Buseck, D.A. Bazylinski, and R.B. Frankel: Reaction Sequence of Iron Sulfide Minerals in Bacteria and Their Use as Biomarkers. Science 280, 880-883 (1998).

58.  M. Posfai, P.R. Buseck, D. A. Bazylinski, and R.B. Frankel: Iron Sulfides from Magnetotactic Bacteria: Structure, Composition, and Phase Transitions.: American Mineralogist 83, 1469-1482 (1998).

59.  B. Devouard, M. Posfai, X. Hua, D.A. Bazylinski, R.B. Frankel, and P.R. Buseck:
Magnetite from Magnetotactic Bacteria: Size Distributions and Twinning. American Mineralogist 83, 1387-1399 (1998).

60.  R.B. Frankel, J-P. Zhang, and D.A. Bazylinski: Single Magnetic Domains in Magnetotactic Bacteria. Journal of Geophysical Research (Solid Earth) 103, 30601-30604 (1998).

61.  R.B. Frankel, D.A. Bazylinski and D. Schueler:  Biomineralization of Magnetic Iron Minerals in Bacteria. Supramolecular Science 5, 383-390 (1998).

62.  R.E. Dunin-Borkowski, M.R. McCartney, R.B. Frankel, D.A. Bazylinski, M. Posfai and P.R. Buseck: Magnetic Microstructure of Magnetotactic Bacteria by Electron Holography. Science 282, 1868-1870 (1998).

63.  D. Schueler, R. B. Frankel, Bacterial magnetosomes: microbiology, biomineralization and biotechnological applications. Applied Microbiology and Biotechnology 52, 464-473 (1999). R

 

Other Publications on Magnetotactic Bacteria:

 

(Note: not a complete list. See also publications by R.B. Frankel)

 

1975-1980:

 

1.      R. P. Blakemore, Magnetotactic Bacteria. Science 190, 377-379 (1975).

2.      T.T. Moench and W.A. Konetzka, A Novel Method for the Isolation and Study of a Magnetotactic Bacterium. Arch. Microbiol. 119, 203-212 (1978).

3.      J. Kalmijn and R. P. Blakemore, The Behavior of Mud Bacteria. in: «Animal Migration and
Homing», eds. K. Schmidt-Koenig, W. T. Keeton  (Springer Verlag, New York, 1978) 344-345.

4.      R.P. Blakemore, D. Maratea and R.S. Wolfe, Isolation and Pure Culture of a Freshwater Magnetic Spirillum in Chemically Defined Medium. J. Bacteriol. 140, 720-729 (1979).

5.      L. Balkwill, D. Maratea, and R. P. Blakemore, Ultrastructure of a Magnetotactic Spirillum,
J. Bacteriol. 141, 1399-1408 (1980).

6.      J.L. Kirschvink, South-Seeking Magnetic Bacteria. J. Exp. Biol. 86, 345-347 (1980).

 

1981-1985:

 

1.      K. M. Towe, and T. T. Moench, Electron-Optical Characterization of Bacterial Magnetite.
Earth Planet. Sci. Lett. 52, 213-220 (1981)

2.      A.J. Kalmijn, Biophysics of Geomagnetic Field Detection. IEEE Trans. Magn. MAG-17, 1113-1124 (1981)

3.      R.P. Blakemore, Magnetotactic Bacteria. Ann. Rev. Microbiol. 36, 217-238 (1982).

4.      T. Matsuda, J. Endo, N. Osakabe, A. Tonomura, A. and T. Arii, Morphology and Structure of Biogenic Magnetite. Nature 303, 411-412 (1983).

5.      M. Farina, H. Lins de Barros, D. Esquivel, and J. Danon, Ultrastructure of a Magnetotactic Bacterium. Biol. Cell 48, 85-88 (1983).

6.      A. Spormann and R.S. Wolfe, Chemotactic, Magnetotactic, and Tactile Behavior in a Magnetic Spirillum, FEMS Microbiol. Lett. 22, 171-177 (1984).

7.      J.L. Kirschvink, D.S. Jones, B.J. MacFadden (eds), «Magnetite Biomineralization and Magnetoreception in Organisms: a New Biomagnetism», (Plenum Press, New York, 1985) 682 pp.

 

1986-1990:

 

1.      N. Petersen, T. Von Dobeneck, and H. Vali, Fossil Bacterial Magnetite in Deep-Sea Sediments from the South Atlantic. Nature 320, 611-615 (1986).

2.      J.F. Stoltz, B.R. Chang, and J.L. Kirschvink, Magnetotactic Bacteria and Single Domain Magnetite in Hemiplagaic Sediments. Nature 321, 849-851 (1986).

3.      S. Mann, N. H. C. Sparks, and R. P. Blakemore, Ultrastructure and Characterization of Anisotropic Inclusions in Magnetotactic Bacteria. Proc. Roy. Soc. Lond. B 231, 469-476 (1987).

4.      Y.A. Gorby, T.J. Beveridge, and R.P. Blakemore, Characterization of the Bacterial Magnetosome Membrane. J. Bacteriol. 170, 834-841 (1987).

5.      R.P. Blakemore, N.A. Blakemore, D.A. Bazylinski, and T.T Moench, Magnetotactic Bacteria. in: «Bergey's Manual of Systematic Bacteriology Vol. 3» eds. M. P. Bryant, N. Pfennig, and
J. T. Staley, (Williams and Wilkins, Baltimore, 1989) pp. 1882-1888.

6.      A.E. Berson, D. Hudson and N.S. Waleh, Cloning and Characterization of the recA gene
of Aquaspirillum magnetotacticum. Arch. Microbiol. 152, 567-571 (1989).

7.      M. Farina, D. M. S. Esquivel, and H. G. P. Lins de Barros, Magnetic Iron-Sulfur Crystals from a Magnetotactic Microorganism. Nature 334, 256-258 (1990).

8.      J.W.E. Fassbinder, H. Stanjek and H. Vali, Occurrence of Magnetic Bacteria in Soil.
Nature 343, 161-163 (1990).

9.      T. Matsunaga, F. Tadokoro, and N. Nakamura, Mass Culture of Magnetic Bacteria and Their Application to Flow Type Immunoassays. IEEE Trans. Magnet. 26, 1557-1559 (1990).

 

1991-1995:

 

1.      V.W. Adamkiewicz, A. Authier, S. Dumont, S. Garzon, S. Leduc, D.Morency,N. Nakhostin and H. Strykowski, A Simple Procedure for Enriching and Cultivating Magnetic Bacteria
in Low Agar Medium. J. Microbiol. Methods 13, 255-258 (1991).

2.      H. Vali and J.L. Kirschvink, Observations of Magnetosome Organization, Surface Structure, and
Iron Biomineralization of Undescribed Magnetic Bacteria: Evolutionary Speculations. in: «Iron Biominerals» , eds. R.B. Frankel and R.P. Blakemore, (Plenum Press, New York, 1991) pp. 97-115.

3.      K.H. Schleifer, D. Schuler, S. Spring, M. Weizenegger, R. Amann, W. Ludwig and M. Kohler,
The Genus Magnetospirillum gen. nov. Description of Magnetospillum gryphiswaldense and Transfer of Aquaspirillum magnetotacticum to Magnetospirillum magnetotacticum comb.nov.
System. Appl. Microbiol. 14, 379-385 (1991).

4.      T. Matsunaga, Applications of Bacterial Magnets. TIBTECH 9, 91-95 (1991).

5.      T. Matsunaga, C. Nakamura, J.G. Burgess, and S. Sode, Gene Transfer in Magnetic Bacteria: Transposon Mutagenesis and Cloning of Genomic DNA Fragments Required for Magnetosome
Synthesis. J. Bacteriol. 174, 2748-2753 (1992).

6.      W.F.Guerin and R.P. Blakemore, Redox Cycling of Iron Supports Growth and Magnetite Synthesis of Aquaspirillum magnetotacticum. Ann. Rev. Microbiol. 58, 1102-1109 (1992).

7.      S. Spring, R. Amann, W. Ludwig, K.H. Schleifer, and N. Petersen, Phlogenetic Diversity and identification of Nonculturable Magnetotactic Bacteria. System. Appl. Microbiol. 15, 116-122 (1992).

8.      T. Sakaguchi, J.G. Burgess and T. Matsunaga, Magnetite Formation by a Sulfate-Reducing Bacterium. Nature 365, 47-49 (1993).

9.      J.G Burgess, R. Kawaguchi, T. Sakaguchi, R.H. Thornhill and T. Matsunaga, Evolutionary Relationships Among Magnetospirillum Strains Inferred from Phylogenetic Analysis of 16S-rRNA Sequnces. J. Bacteriol. 175, 6689-6694 (1993).

10.  S. Spring, R. Amann, W. Ludwig, K.L. Schleifer, H. van Gemerden, and N.Petersen, Dominating Role of an Unusual Magnetotactic Bacterium in the Microaerobic Zone of a Freshwater Sediment. Appl. Environ. Microbiol. 59, 2397-2403 (1993).

11.  J.F. Stoltz, Magnetosomes. J. Gen. Microbiol. 139, 1663-1670 (1993).

12.  H. Sakaguchi, H.Hagiwara, Y. Fukimori, Y. Tamaura, M. Funaki, and S.Hirose, Oxygen Dependent Induction of a 140 kDa Protein in the Magnetic Bacterium Magnetospirillum magnetotacticum. FEMS Lett. 107, 169-173 (1993).

13.  B. Steinberger, N. Petersen, H. Petermann, and D.G. Weiss, Movement of Magnetic Bacteria in Time-Varying Fields. J. Fluid. Mech. 273, 189-211 (1994).

14.  R. Kawaguchi, J. G. Burgess, T. Sakaguchi, H. Takeyama, R.H. Thornhill, and T. Matsunaga,
Phylogenetic Analysis of a Novel Sulfate-reducing Magnetic Bacterium, RS-1, Demonstrates its Membership of the d-Proteobacteria. FEMS Microbiol. Lett. 126, 277-282 (1995).

15.  D.A. Bazylinski, Structure and Function of the Bacterial Magnetosome. ASM News 61, 337-343 (1995).

16.  B.M. Moskowitz, Biomineralization of Magnetic Minerals. Rev. Geophys. Suppl., July, 123-128 (1995).

17.  S. Spring and K.L. Scheifer, Diversity of Magnetotactic Bacteria. System. Appl. Microbiol. 18, 147-153 (1995).

18.  D. Schueler, R. Uhl and E. Baeuerlein, A Simple Light Scattering Method to Assay Magnetism in Magnetospirillum gryphiswaldense. FEMS Microbiol. Lett. 132, 139-145 (1995).

19.  C. Nakamura, J.G. Burgess, K. Sode, and T. Matsunaga, An Iron Regulated Gene, magA, Encoding an Iron Transport Protein of Magnetospirillum sp. Strain AMB-1. J. Biol. Chem. 270, 28392-28396 (1995).

20.  F. S. Nogueira and H.G.P. Lins de Barros, Study of the Motion of Magnetotactic Bacteria,
Eur. Biophys. J. 24, 13-21 (1995).

21.  N.G. van Kampen, The Turning of Magnetotactic Bacteria, J. Stat. Phys. 80, 23-33 (1995).

 

1996-2000:

 

1.      Y. Okuda, K. Denda and Y. Fukumori, Cloning and Seqencing of a Gene Encoding a New Member of the Tetratricopeptide Protein Family from Magnetosomes of Magnetospirillum magnetotacticum. Gene 171, 99-102 (1996).

2.      D. Schueler and E. Baeuerlein, Iron-limited Growth and Kinetics of Iron Uptake in Magnetospirillum gryphiswaldense. Arch. Microbiol. 166, 301-307 (1996).

3.      T. Sakaguchi, N. Tsujimura and T. Matsunaga, A Novel Method for Isolation of Magnetic Bacteria Without Magnetic Collection Using Magnetotaxis, J. Microbiol. Methods 26, 139-145 (1996).

4.      M. Hanzlik, M. Winklhofer and N. Petersen, Spatial Arrangement of Magnetosomes in Magnetotactic Bacteria, Earth Planet. Sci. Lett. 145. 125-134 (1996).

5.      Iida and J. Akai, TEM Study on Magnetotactic Bacteria and Contained Magnetite Grains
as Biogenic Minerals, Mainly from Hokuriku-Niigata Region, Japan, Sci. Rep. Niigata Univ., Ser.E (Geology) 11, 43-66 (1996).

6.      T. Matsunaga, N. Tsujirmura and S. Kamiya, Enhancement of Magnetic Particle Production by Nitrate and Succinate Fed-Batch Culture of Magnetospirillum Sp. AMB-1, Biotechnol. Techniques 10, 495-500 (1996).

7.      D.A. Bazylinski and B.M. Moskowitz, Microbial Biomineralization of Magnetic Minerals: Microbiology, Magnetism and Environmental Significance, In: Geomicrobiology: Interactions Between Microbes and Minerals, edited by J.F. Banfield and K.H. Nealson, Reviews in Mineralogy 35, 181-223 (1997).

8.      Y. Fukumori, H. Oynagi, K. Yoshimatsu, Y. Noguchi, T. Fujiwara, Enzymatic Iron Oxidation and Reduction in Magnetite Synthesizing Magnetospirillum gryphiswaldense. J. Phys. IV 7, 659-662 (1997).

9.      L. E. Bertani, J.S. Huang, B.A. Weir and J.L. Kirschvink, Evidence for Two Types of Subunits in the Bacterioferritin of Magnetospirillum magnetotacticum, Gene 201, 31-36 (1997).

10.  V. P. Shcherbakov, M. Winklhofer, M. Hanzlik and N. Petersen, Elastic Stability of Chains of Mangetosomes in Magnetotactic Bacteria, Eur. Biophys. J. 26, 319-326 (1997).

11.  M. Vainstein, N. Suzina and V. Sorokin, A New Type of Magnet-Sensitive Inclusions in Cells of Photosynthetic Bacteria, System, Appl. Microbiol. 20, 182-186 (1997).

12.  T. Matsunaga, Genetic Analysis of Magnetic Bacteria, Mater. Sci. Eng. C 4, 287-289 (1997).

13.  K.O. Konhauser, Diversity of Bacterial Iron Mineralization, Earth-Science Reviews 43, 91-121 (1998).

14.  S. Spring, U. Lins, R. Amann, K-H Schleifer, L.C.S. Ferreira, D.M.S. Esquivel and M. Farina, Phylogenetic Affiliation and Ultrastructure of Uncultured Magnetic Bacteria with Unusually Large Magnetosomes, Arch. Microbiol. 169, 136-147 (1998).

15.  H. Suzuki, T. Tanaka, T. Sasaki, N. Nakamura, T. Matsunaga and S. Mashiko, High-resolution Magnetic Force Microscope Images of a Magnetic Particle Chain Extracted from Magnetic Bacteria AMB-1, Jpn. J. Appl. Phys. 37, L1343-L1345 (1998)

16.  Y. Noguchi, T. Fujiwara, K. Yoshimatsu and Y. Fukumori, Iron Reductase for Magnetite Synthesis in the Magnetotactic Bacterium Magnetospirillum magnetotacticum. J. Bacteriol. 181, 2142-2147 (1999).

17.  A.J. Dean & D.A. Bazylinski, Genome Analysis of Several Marine, Magnetotactic Bacterial Strains by Pulsed-Field Gel Electrophoresis. Curr. Microbiol. 39219-225 (1999).

18.  K. W. Mandernack, D.A. Bazylinski, W.C. Shanks III, & T.D. Bullen, Oxygen and Iron Isotope Studies of Magnetite Produced by Magnetotactic Bacteria. Science 285, 1892-1896 (1999).

19.  Y.R. Chemla, H.L. Grossman, T.S. Lee, J. Clarke, M. Adamkiewicz, B.B. Buchanan,
A new study of bacterial motion: superconducting quantum interference device microscopy of magnetotactic bacteria. Biophys. J., 76, 3323-3330, (1999).

20.  U. Lins, B. Kachar, M. Farina, Imaging faces of shadowed magnetite (Fe3O4) crystals from
magnetotactic bacteria with energy-filtering transmission electron microscopy.
Microsc. Res. Tech., 46, 319-324, (1999).

21.  Schueler, D., Formation of magnetosomes in magnetotactic bacteria. J. Mol. Microbiol. Biotechnol., 1, 79-86 (1999).

22.  Thomas-Keprta, K. L., Bazylinski, D.A., Kirschvink, J.L., Clemett, S.J., McKay, D.S.,
Wentworth, S.J., Vali, H., Gibson. E.K., and Romanek, C.S., Elongated prismatic magnetite crystals in ALH84001 carbonate globules: Potential Martian magnetofossils. Geochimica et Cosmochimica Acta, 64, 4049-4081 (2000).

23.  Spring, S., and Bazylinski, D.A., Magnetotactic bacteria. In: The Prokaryotes, published on the web at http://www.springer-ny.com/, Springer-Verlag New York, Inc., New York, NY, 2000.