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Surface waves in ferrofluids under vertical magnetic field
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Abstract. We present here new experimental results about the waves at the horizontal free surface of a
magnetic fluid submitted to a normal magnetic field. The waves are generated by a small modulation at
frequency ω of the vertical field He. Using a shadowgraph method, we are able to measure the wavevector
k of the 2D waves for a given value of ω and He. The dispersion relation of the surface waves is established
experimentally. On the other hand, we propose a theoretical derivation of the dispersion equation which
includes a more complete treatment of the magnetic term than the previous works. Finally, we conclude
that a linear and inviscid analysis is sufficient to fit well the experimental data, except in the vicinity of
the critical field where a surface instability occurs.

PACS. 75.50.Mm Magnetic liquids – 47.35.+i Hydrodynamic waves – 68.10.-m Fluid surfaces
and fluid-fluid interface

1 Introduction

A ferrofluid is a stable colloidal suspension of magnetic
particles. It behaves as a normal fluid except that it can
experience forces due to magnetic polarization: its mag-
netic susceptibility is giant, usually in the order of unity.

The dispersion equation of capillary/gravity waves at
the free surface of a ferrofluid in the presence of a nor-
mal magnetic field presents many interesting features. It
is already well known that above a certain critical field
the surface spontaneously deforms into regularly spaced
peaks [1]: the so-called normal field or Rosensweig insta-
bility is usually modeled using the linear analysis which
leads to the dispersion equation. At the critical field Hc,
the dispersion curve adjoins the zero frequency axis at a
non zero wavelength (usually close to the capillary wave-
length). The linear analysis is unable to explain the pat-
tern which is hexagonal just above the threshold and
sometimes square [2] for higher magnetic fields: this phe-
nomenon has already been the subject of numerous theo-
retical [3], numerical [4] and experimental [5] studies. In
this study we focus our interest on the behavior of the
surface waves below this critical field.

The dispersion curve actually exhibits a peculiar fea-
ture. It is possible to define another critical field (H∗,
lower than Hc) above which the dispersion curve is no
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more monotonic. Above this field, waves are still stable
but the dispersion curve ω(k) presents a minimum so that
the group velocity can be negative; in principle three wave
numbers could be selected for a given frequency. It is inter-
esting to note the analogy between the minimum on this
dispersion curve and the roton minimum in the energy
spectrum of superfluid helium [6].

The precise knowledge of the dispersion equation is
also of paramount importance for any process that is sen-
sitive to surface instabilities, such as the jet instability [7].
In the first published experimental study [8] surface waves
were induced by a spatial forcing: standing waves were es-
tablished by regularly shaking a ferrofluid container. The
experiment was realized in the presence of an inadver-
tent gradient of magnetic field, which implied the use of
a modified dispersion equation. Moreover the number of
experimental data was not large enough to precisely assess
the theory. Recently waves induced by a temporal forcing
were studied in a one-dimensional ring geometry [9], but
due to this particular configuration no quantitative check
of the theory has been able to be performed. To our knowl-
edge this study is the first quantitative and extensive test
of the theoretical dispersion equation.

2 Dispersion equation

Cowley and Rosensweig [1,10] were the first to study
the peak instability at the free surface of a magnetic
fluid. Although they didn’t actually express the dispersion
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equation for waves at the free surface of a ferrofluid (they
were interested in the threshold value of the magnetic
field at which the peaks form), they developed the lin-
ear theory which allows to directly derive the magnetic
term in the dispersion equation. They considered that the
ferrofluid was inviscid, that its depth was infinite and that
it was infinitely extended in the horizontal direction [11].
Zelazo and Melcher [8] refined this analysis: they consid-
ered waves at the interface of two non-miscible magnetic
fluid layers of arbitrary depth and explicitly wrote the dis-
persion equation. However, the boundary condition they
used, i.e. placing infinitely magnetically permeable mate-
rials above and underneath the fluid is not of practical
use (at least for the visualization of the interface). More
recently, Abou et al. [12] changed this boundary condi-
tion (the layer is actually surrounded by free space), and
included the effect of viscosity. However, they omitted to
take into account the demagnetization coefficient and also
supposed that the permeability of the material was con-
stant, a fact that is not supported experimentally, since a
magnetization saturation exists in the material.

Following step by step the method of Zelazo and
Melcher [8], but considering free space as the boundary
condition of the ferrofluid layer, we derive the dispersion
equation for an inviscid layer of ferrofluid of any thick-
ness. Let M be the magnetization of the ferrofluid layer,
h its thickness, ρ its density, σ its surface tension, µ0 the
vacuum permeability and g the gravitational acceleration.
Two magnetic composite quantities related to the magne-
tization curve of the ferrofluid M(H i) (H i is the magnetic
field inside the ferrofluid) appear in the calculation:
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The magnetic field H i is computed from the externally
applied magnetic field He by the resolution of an implicit
equation [13] :

He = M(H i) +H i. (3)

The analysis with normal modes of perturbation leads to
an equation linking the pulsation ω to the modulus k of
the wavevector:
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This result is compatible with Abou’s [12] for an inviscid
fluid, provided the permeability of the fluid is set constant
and the demagnetization taken into account in (4) [14].

In the equation that Abou et al. propose, magnetic and
viscous effects are not directly coupled, so it is possible
to derive a more complete dispersion equation integrating
viscous effects: a simple substitution of our magnetic term
(right side of Eq. (4)) to theirs leads to the result. Due
to the complexity, and because viscosity effects may be
neglected as we show further on, we do not present this
equation here.

To quantify the effect of viscosity, it is possible to de-
fine two Reynolds numbers [12], either based on the depth
of the ferrofluid layer, or based on the wavelength:

Re =
ωh2

ν
(5)

or

Re =
ω

νk2
· (6)

The influence of viscosity on the flow generated by sur-
face waves is negligible provided the Reynolds number is
greater than 10 [15]. This leads to two conditions for the
pulsation ω for short and long wavelengths. In the follow-
ing we show that these two conditions are verified in our
experiment:

ω > sup
(

10
ν

h2
, 10νk2

)
· (7)

The influence of the thickness of the layer on the disper-
sion equation depends on the value of the wavelength. If
the wavelength is small compared to the thickness, that is
kh� 1, we are in the asymptotic regime of infinite thick-
ness. In this limit and considering that the permeability
of the magnetic fluid is constant, equation (4) simplifies:
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σk3
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It is then possible to analytically derive Hc and H∗:

ω = 0 and
∂ω
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Hc ≈ 0.93 Hc. (10)

With this approximation, the critical wavelength kc at the
threshold of the peak instability is equal to the capillary
wavelength; we define a characteristic pulsation ωc as the
pulsation corresponding to the capillary wavelength with-
out any magnetic field
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√
ρg

σ
(11)

and

ωc = 2

(
ρg3

σ

)1/4

· (12)
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Fig. 1. Theoretical dispersion equation in the limit of infinite
thickness for an inviscid ferrofluid. Hc represents the critical
field of the peak instability; ωc is the pulsation at the capil-
lary wavelength for a null field. The curves are not monotonic
anymore provided H > 0.93Hc = H∗.

Fig. 2. Magnetization curve of the ferrofluid sample. The best
least square fit with equation (16) gives A0 = 26.15 kA/m and
A1 = 3.63 kA/m.

It is then possible to rewrite the dispersion equation in a
non-dimensional form :(
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Let k∗ and ω∗ respectively correspond to the wave vector
modulus and pulsation at the bifurcation towards a non-
monotonic dispersion curve; we have:

k∗
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√
3
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≈ 0.58 (14)

and

ω∗2

ω2
c

=

√
3
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≈ 0.096. (15)

We have drawn in Figure 1 the normalized dispersion
curves for different magnetic field ratios H/Hc.

3 Experimental setup

3.1 Characteristics of the ferrofluid sample

We use an ionic ferrofluid synthesized according to Mas-
sart’s method [16,17]. It is composed of a colloidal sus-
pension of cobalt ferrite particles in water. Its density is

Fig. 3. Variation of magnetic characteristics of the sample
with the external magnetic field.

Fig. 4. Effective magnetic susceptibility χeff in function of
the external magnetic field He for different non-dimensional
wavevectors kh.

ρ = 1560 kg/m3 and the deduced volume fraction of par-
ticles is 14%. Its surface tension with air, carefully mea-
sured with a Krüss K10T ring tensiometer, is 71.4 mN/m
at 20 ◦C. This value is very close to the surface tension
of water (73.2 mN/m), in agreement with the fact that
our ionic ferrofluid is free of surfactant. The magnetiza-
tion curve has been obtained by the use of a calibrated
fluxmeter (Fig. 2). Because our ferrofluid is highly concen-
trated and polydisperse, it is unlikely to follow a classical
Langevin paramagnetic curve. However, this approxima-
tion may stand for the range of magnetic field amplitude
of our interest (from 0 to about 12 kA/m, the field around
which the peaks instability develops):

M ≈ A0(coth(H i/A1)−A1/H
i). (16)

It should be noted that the A0 value obtained is a pri-
ori different from the magnetization saturation of the fer-
rofluid sample. The knowledge of the parameters of the
fit A0 and A1 allows us to compute all the magnetic pa-
rameters of the problem, that is r, s and M in function
of He. In Figure 3 it can be seen that the influence of the
externally applied magnetic field on these three quantities
is very small.

Let us introduce an effective susceptibility χeff as a
function of the external magnetic field and of the non-
dimensional product kh. This χeff value is computed so
that the magnetic terms in equations (4, 8) give the
same value. It is a measurement of the discrepancy when
the magnetic term of (8) is misused. The following plot
(Fig. 4) shows that the value of χeff is almost indepen-
dent of the magnetic field thus justifying a posteriori the
use of a simplified magnetic term (i.e. χ constant); on the
other hand it shows that the dependence of the magnetic
term on the thickness of the layer has to be accounted
for. The dynamic viscosity of the sample, measured with
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Fig. 5. Shadowgraph method. The amplitude of the wave has
been exaggerated for the purpose of the sketch.

a Poiseuille viscometer, is 20 mPa s which leads to a kine-
matic viscosity of ν = 1.28 × 10−5 m2/s. In our experi-
ment, viscosity effects may be neglected (see Sect. 4).

3.2 Experiment design

A circular Teflonr dish of 20 cm in diameter that contains
the ferrofluid is placed between two horizontal coils (in-
ner diameter is 25 cm, outer diameter 50 cm and thickness
11 cm); they produce the static vertical magnetic field and
are arranged such as to ensure a 99% horizontal spatial ho-
mogeneity of the field (the gap between the coils is 6.5 cm
wide). It should be pointed that the maximum observable
wavelength is of same order as the radius of the vessel.

For our experiment, we need a very sensitive optical
method to detect the wave amplitude. The shadowgraph
method [18] is satisfactory since this afocal system is sen-
sitive enough to detect 60 µm amplitude ripples. The fer-
rofluid surface is illuminated by a parallel light beam com-
ing from a point-like source (an optical fiber illuminator)
at the focal distance of lens L1. The camera lens L2 is
placed in order to provide a parallel light beam to the
CCD detector (see Fig. 5). The distance d between the
CCD and the camera lens is set such as to focus just be-
neath or above the ferrofluid surface. The curved parts
of the surface act as virtual lenses, and appear lightened
or darkened on the video screen whether the curvature is
positive or negative.

The first technique used for the production of surface
waves consists in taking advantage of the magnetic prop-
erties of the fluid and use a local perturbation of the mag-
netic field as a mechanical perturbation; this is realized by
placing a small coil beneath the ferrofluid container. One
of the main drawbacks is that it is very difficult to excite
waves the wavelength of which is small compared to the
excitation coil size (about 2 cm in diameter). The same

problem would manifest if the excitation was realized by
oscillating a small permanent magnet near the surface.

Another way to achieve the excitation is to tap the
ferrofluid surface with a small tip connected to a mechan-
ical vibrator. Alternatively a small loudspeaker could have
been used for the same purpose [9]. Although this is more
adapted to the high frequency domain, it fails to produce
long wavelength (typically longer than 2 cm).

The application of a small sinusoidal modulation in
the vertical field creates propagative circular waves emit-
ted by the edges due to magnetic forces in the meniscus.
Figure 6 represents the spatio-temporal diagram of such
waves. Because of the viscous damping [19], no stationary
waves are observed, except in the center of the ferrofluid
container. This effect may be a source of errors in Faraday
instability waves experiments [20].

This method is very reliable for the production of
waves in the interesting frequency range (3–25 Hz). The
undulating component is merely 0.5% of the threshold
field Hc. It is then difficult to extrapolate the results at
fields lower than 0.1Hc where the undulation ratio is al-
ready 5%. These three methods give similar results. We
exclusively used the third technique for the experiments
because it is the only one adapted to the low frequency
range (< 7 Hz).

4 Results

In order to represent experimental results and to fit pa-
rameters of the theoretical wave dispersion equation, we
chose two cuts in the (k, ω, µ0H

2) space of parameters
(Figs. 7 and 8). The only parameter allowed to vary is
the surface tension, because of its sensitivity to contami-
nants. All other parameters (the magnetic quantities, the
density and the thickness of the ferrofluid layer) are set
to their previously measured values. We have drawn in
Figure 7 the frequency/wavelength domain where the ef-
fects of viscosity could be neglected. Our experimental
points lie outside of this zone.

The fit for any value of ω and H leads to an average
surface tension of 60 mN/m, which is 16% lower than the
carefully measured value obtained from a ring tensiometer.
The natural contamination of the surface by atmospheric
dust behaving as a surfactant may explain this discrep-
ancy. We thus perform another tensiometer measurement
by letting the ferrofluid surface rest in an unpurified atmo-
sphere: after a few minutes, the measured surface tension
is only 52 mN/m. This static value is sensibly smaller than
the result obtained in our experiment: it is known that dy-
namic measurements often lead to higher values [21]. For
this reason, and since the surface tension is extremely sen-
sitive on the presence of any surfactant (the quantity of
which is not determined), the fitted value has to be un-
derstood as an in situ value, compatible with tensiometer
measurements.

In a first experiment the magnetic field is set to dif-
ferent values and the wavevector measured as a function
of frequency. The experimental dispersion is presented in
Figure 7. The fits are satisfactory, although it is difficult
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Fig. 6. Spatio temporal diagram of 4 Hz progressive surface waves at H = 0.48Hc. Each horizontal line of this diagram
represents the profile of the surface in grey levels along a diameter cut of the ferrofluid vessel at a given time. White represents
crests and black troughs. Waves are stationary close to the center.

Fig. 7. Experimental dispersion equation in the (k, ω2) plane for different magnetic fields. The black lines represent the
theoretical dispersion equations with σ = 60 mN/m. The dotted line is the theoretical dispersion equation at the threshold field.
The shaded area represents the frequency domain where viscosity effects become non negligible (Re <10).

to make any assertion when the wavevector is smaller than
3 cm−1. The critical field is estimated from the fits: as we
will see later on, it is extremely difficult to define a precise
value of the threshold magnetic field Hc in our particular
system. The maximum experimented value of the ratio
H/Hc is voluntarily limited to 0.79 because above this
field, peaks form at the boundary of the ferrofluid vessel;
during the time of the experiment, the fluid in the peaks
would dry and become lumpy. This is why it is better to
set the frequency to different fixed values, and measure
the wavelength as a function of the magnetic field. The
corresponding results are presented in Figure 8. This plot
is more discriminating, especially in the low wavelength
domain (k < 3 cm−1). Here it can be seen that the fit is

not compatible with the experimental data especially in
the region where the dispersion curve is non monotonic.

In this region, where the magnetic field is close to Hc,
an unexpected static circular pattern develops (Figs. 9 and
10). It actually becomes visible (amplitude of the deforma-
tion exceeds 60 µm) as soon as the magnetic field exceeds
half of the threshold value. Only the precision of the shad-
owgraph method allows to see such a deformation of the
surface. The pattern is independent of the magnetic field,
only the amplitude of the deformation increases with the
magnetic field intensity. A possible explanation would be
that the effective magnetic field is inhomogeneous because
of the finite horizontal size of the sample (the demagneti-
zation factor is not rigorously equal to one and depends
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Fig. 8. Dispersion equation in the (k, µ0H
2) plane for different

frequencies. The black lines represent the theoretical dispersion
equation with σ = 60 mN/m; the thick dotted line is the the-
oretical marginal curve of stability (null frequency); the thin
dotted lines locate the minimum of the marginal curve and
read kc = 5.1 cm−1 and Hc = 11.2 kA/m. The shaded area
represents the frequency domain where viscosity effects become
non negligible (Re < 10). For clarity purpose, only a few error
bars have been plotted.

Fig. 9. Spontaneous static deformation below the critical field
(H/Hc = 0.79). The dark line represents the cut along which
the spatio-temporal diagrams have been extracted (Figs. 10
and 11).

on the distance from the radius). Although the surface is
deformed, waves emitted from the edges of the ferrofluid
container propagate onto this deformation (Fig. 11). Un-
fortunately it renders the measurement of the wavelength
more uncertain, especially when the wavelength of propa-
gating waves is close to the characteristic length of the pat-
tern – about 2.2 cm which correspond to a characteristic
wavevector of 2.8 cm−1. This value is close enough to k*
(k*≈ 0.58 kc ≈ 2.9 cm−1) so that it may lead to think that
this phenomenon is correlated to the non-monotonicity of
the dispersion curve in a way that is yet to be determined.

When the magnetic field is increased further close to
the threshold (H/Hc > 85%), the azimuthal symmetry of
the system is broken and small azimuthal ripples form in-

1.65 s

Center of the vessel Side of the vessel

9.6 cm

Fig. 10. Spatio temporal diagram of the spontaneous static
deformation below the critical field (H/Hc = 0.79).

1.65 s

Center of the vessel Side of the vessel

9.6 cm

Fig. 11. Spatio temporal diagram of a 2.5 Hz wave propagat-
ing onto the spontaneous static deformation below the critical
field at H = 0.79Hc. The measurement of the wavelength is
full of uncertainty.

side each wavecrest emitted from the edges (Fig. 12). The
characteristic length of theses ripples is roughly the same
as the wavelength of the emitted “parent” circular waves.
Although their propagative behavior is erratic, we have
found that the azimuthal ripples have the same frequency
as the “parent” circular wave. Therefore a Faraday-like
instability is unlikely to explain this phenomenon, as its
frequency would be half of the driving frequency. A non-
linear theory should explain the presence of such ripples
(in the linear theory there is no coupling between plane
waves). The amplitude of the ripples increases with the
magnetic field. If the magnetic field is sufficiently increased
(to about 95% of the threshold value), the amplitude of
the wavelets becomes so large that it masks the underly-
ing parent circular wave. It is then unlikely to precisely
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Fig. 12. Azimuthal ripples developing inside each wave crest
emitted from the edges; their characteristic wavelength is of
same order than the wavelength of the main radial wave.

determine the wave vector of the radial wave. Moreover
the static radial deformation at these fields is very intense
and the shadowgraph method fails to give a sharp image.

The sensitivity of the shadowgraph method has a
drawback: when the peaks appear on the surface, it is so
deformed that no image is given anymore. Because of the
pre-transitional effects mentioned above (static deforma-
tion and azimuthal ripples), it is difficult to precisely as-
sess the value of the threshold magnetic field Hc. Besides,
an experiment with a direct visualization of the surface
shows that the peaks don’t appear simultaneously on the
surface: when the field is increased to the threshold value,
the peaks grow inward from the edges to the center of
the cell (they start appearing on the edges at lower fields,
because of the field gradient created by the presence of
an edge). A precise estimation of the threshold magnetic
field is dependent on the choice of a threshold criteria.
We choose to keep the value of the magnetic field above
which no image is visible anymore. This method provides
a measurement of the threshold field of 11.5 kA/m which
is merely 3% above of the expected value obtained from
the fits in Figures 7 and 8.

5 Conclusion

We have designed a shadowgraph experiment in order to
measure the dispersion equation of waves at the free sur-
face of a magnetic fluid submitted to a vertical magnetic
field. The model includes the specific magnetic behavior
of the ferrofluid that we use, sensible boundary conditions
and the effects of limited thickness. The agreement be-
tween theory and experience is satisfactory except in the
region where the dispersion equation is non-monotonic.
As a matter of fact, it is difficult to experimentally ap-
proach the non monotonic part of the dispersion curve:
the emitted radial waves of interest are overcome by a
static pattern and secondary azimuthal waves for a mag-
netic field close enough to its threshold value. The cause

of these two phenomena is respectively assumed to be fi-
nite size effects and non-linear effects. However, it has not
been determined if it could somehow be related to the
non-monotonicity of the dispersion equation. This ques-
tion remains open and will be the subject of forthcoming
experiments.

We thank J. Servais and P. Lepert for their technical assis-
tance. We thank O. Cardoso for the help provided in the con-
ception and the tuning of the experimental setup. O. Sandre
has to be thanked for granting us access to an accurate ten-
siometer. Fruitful discussions were made with B. Abou and R.
E. Rosensweig.
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