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Abstract. Two-dimensional magnetic fluid foams are cellular structures whose framework is made of mag-
netic fluid. The features of these equilibrated patterns are driven by a control parameter: the amplitude of
the applied magnetic field. When the latter is rapidly increased, an instability occurs: the walls between
cells undulate. Such an instability has also been observed in other 2D cellular structures, which exist for
instance in Langmuir monolayers or in magnetic garnets thin films. In this paper we give a theoretical anal-
ysis of this instability, the issues of which are shown to be well confirmed by experiments and numerical
simulations.

PACS. 75.50.Mm Magnetic liquids – 46.30.Lx Static buckling and instability

1 Introduction

Bubble, foam and stripe patterns are present in a wide
variety of dipolar systems, like ferromagnetic films, am-
phiphile monolayers, plane layers of magnetic fluid [1].
These equilibrium structures are due to the balance be-
tween attractive interactions and repulsive dipolar inter-
actions. In a plane layer of magnetic fluid (MF) submitted
to a perpendicular homogeneous magnetic field, the com-
petition between the surface energy and the long-range
magnetic dipole-dipole interaction leads to the formation
of such patterns at the millimetric scale. A complete re-
view of these two-dimensional (2D) patterns is given else-
where [2].

In [3,4] the author has established the smectic-like
behaviour of the 2D MF stripe system. The elastic con-
stants of this macroscopic 2D smectic have been measured
and calculated [5]. A quasi-static increasing of the applied
magnetic field leads to an undulation of the stripes, and
to the formation of a chevron pattern for high values of
the magnetic field [5]. In reference [6] the dynamics and
the instabilities of an isolated stripe have been studied.
For a given value of the ramp rate of the magnetic field
a fingering phenomena occurs for a thick stripe, while a
bending phenomena occurs for a thin stripe. Finally the
stripe relaxes in order to reach its equilibrium state.

A similar behaviour, as it will be illustrated below, can
also be expected in 2D foams of MF [7], with cell bound-
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aries made of MF stripes which join at vertices. Indeed
the width of these boundaries is fixed by the control pa-
rameters, which are, H0, the amplitude of the external
field, h, the thickness of the layer, and Φ, the volume frac-
tion of MF. As in the case of the MF stripes, the thickness
decreases if the strength of the applied magnetic field is in-
creased, then the total length of the MF boundaries must
be increased. Therefore, if the magnetic field is rapidly in-
creased, the global rearrangements of the stripe network in
the foam have no time to occur, and the MF stripes undu-
late. This phenomenon is experimentally and numerically
illustrated below. Such an instability has also been ob-
served in other 2D cellular structures. In magnetic garnet
thin films, a froth is obtained if a perpendicular magnetic
field is applied. The pattern consists in bubbles which are
domains of magnetization parallel to the applied field, sur-
rounded by a domain the magnetization of which is an-
tiparallel to the field [8,9]. A buckling of the cell edges
occurs on decreasing the amplitude of the magnetic field:
the size of the global framework is then increased for the
system to decrease its total magnetization. A 2D foam
pattern can also be formed in amphiphile monolayers at
the air-water interface [10]. In the coexistence region of
the phase diagram between a 2D liquid phase and a 2D
gaseous phase, cells made of the gaseous phase surrounded
by the liquid phase are observed. The network undulates
if the temperature is rapidly increased near the critical
point. It is reasonable to assume that this phenomenon is
caused by the same reasons which account for the undu-
lation instability in the 2D MF foams. Let us also remark
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Fig. 1. Sketch representing a top view of a stripe with the
notations used for the calculation of the energy of an isolated
long stripe.

that a similar analysis can also explain the quite com-
plicated dynamics of the networks observed in a recent
numerical simulation for the labyrinthine instabilities of a
MF droplet [11].

2 Theoretical analysis

In this calculation we consider the foam as an assembly
of isolated stripes, which are linked one to each others
by vertices (the coordination number is always equal to
three). The vertices are fixed because the time of variation
of the external magnetic field is smaller than the time
of vertices displacements. Let us then consider one MF
stripe of length, L, with a fixed volume, confined between
two plates separated by a distance h. The notations used
in this calculation are shown in Figure 1. The energy of
the stripe includes an interfacial energy and a magnetic
energy. The demagnetizing field energy of the stripe can
be expressed as follows [12]:

Edm = −
µ0

2

∫
VMF

dV M ·Hd

=
µ0

4π
M2

∫
SMF

d2ρ

∫
SMF

d2ρ′

[
1

|ρ− ρ′|
−

1√
(ρ− ρ′)2 + h2

]
(1)

where the MF magnetization M is supposed to be con-
stant within the stripe and parallel to the external mag-
netic field and Hd is the demagnetizing field. The inte-
gration in (1) is carried out along the MF-oil interface in
the (x, y) plane (see Fig. 1). equation (1) can be obtained
by the surface charge analogy [4], which transforms the
dipolar-dipolar potential into a Coulombic potential be-
tween magnetic charges on the upper and lower bound-
aries of the MF layer. The surface tension forces of the
MF-oil interfaces must be accounted for. The equations
of the stripes boundaries y+ and y− are: y+ = d + ζ(x)
and y− = −d + ζ(x) (Fig. 1). The interfacial energy of a
slightly deformed stripe can thus be expressed as follows:

Es = 2σh

∫ L
2

−L2

dx

√
1 + ζ′

2(x), (2)

where σ is the MF-oil surface tension. We use here the
usual and reasonable assumptions [12–14], that the MF-oil

interfaces are normal to the plane of the layer. The total
energy of the stripe is then calculated up to the second
order term in the undulation amplitude, ζ(x), neglecting
the end effects. It is expressed as follows:

E = 2σhL+ σh

∫
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(4)

For a straight stripe, N = 2(h/2d)D(2d/h) is the demag-
netizing factor.

Representing the bending deformation by a Fourier in-
tegral ζ(x) = 1

2π

∫
ζ(k)eikxdk, equation (3) in the limit

L→∞ gives:

E = 2σhL+
µ0

4π
LM2h2D

(
2d

h

)
+

σ

2πh

∫
|ζ(k)|2fe(k)dk

(5)

where:

fe(k) = (kh)2 − 4Bm

[
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2
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2
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(6)

K0 is the Mc Donald function, γ the Euler constant and

Bm =
µ0

4π

M2h

σ
, the magnetic Bond number.

The two first terms in equation (5) represent the en-
ergy of a straight stripe. The third term is the deformation
energy of the stripe: the deformation occurs if this term is
negative, whereas the stripe remains straight if it is pos-
itive or zero. Hence according to equation (5), the undu-
lation of the stripe is energetically allowed if the spectral
density of the undulation energy, fe(k), given by equation
(6), is negative. The stripe shape is then the result of the
superimposition of all the wavelengths λ = 2π/k for which
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Fig. 2. Spectral density of the undulation energy, fe(λ), for

magnetic Bond numbers Bm = µ0
4π

M2h
σ

= 1.59, 1.73, 1.88 and
2.02. These values correspond, according to equation (10), to
an effective surface tension σe/σ = −0.1, −0.2, −0.3 and −0.4.
The undulation is allowed when the deformation energy of
the stripe is negative, i.e., according to equation (5), when
the function fe(λ), given by equation (6), becomes negative.
This occurs for the large wavelength modes. The minimal al-
lowed undulation wavelength, λmin, diminishes when Bm is in-
creased. In a foam, where an undulation occurs if the MF walls
length is at least equal to one allowed wavelength, it means
that there exists a critical value of Bm for the stripes undu-
lation: the shorter the stripe, the higher Bmc . The minimum
of fe(λ) determines the energetically most favorable bending
mode. The wavelength are given in units of the experimental
cell thickness h (h = 1 mm in the experiments).

fe(k) < 0. This is the crucial point for the understanding
of the present analysis. Moreover, the minimum of fe(k)
determines the most energetically dangerous bending de-
formation mode, for a given value of the magnetic Bond
number. The function fe(k) is plotted in Figure 2 versus
the undulation wavelength λ = 2π/k for Bm = 1.59, 1.73,
1.88, 2.02 and 2d/h = 1.0. These curves show that the
allowed wavelength bending deformation modes are the
longest ones for the lowest values of Bm. When Bm is
increased, the minimal value of λ (which is the root of
fe(λ) = 0 given by Eq. (6)), λmin, diminishes. In a foam,
the length of a stripe is limited by two vertices. The un-
dulation deformation will thus develop if the length of the
stripe, L, is at least greater than one allowed wavelength.
For a given magnetic Bond number, the stripes for which
L > λmin undulate, and those for which L < λmin re-
main straight. As a result of this theoretical analysis, the
magnetic Bond number must be greater than some crit-
ical value for the MF boundaries to undulate in a foam.
This critical value of Bm is different for each MF wall, and
depends on the length of the stripe. This result is exper-
imentally and numerically confirmed below. The growth
increments for a viscous magnetic fluid stripe deformation
in dependence on the wave number of the undulation are
calculated in reference [15].

The phenomenon of bending instability of a MF stripe
can also be understood in the following qualitative way,
using the argument of negative effective surface tension.
The equilibrium width of the long straight stripe is found
minimizing the two first terms of the right side of equation
(5) with respect to 2d/h, for a fixed stripe area S = 2dL.
Using equation (4), it gives the following equation:
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(7)

Expanding fe(k) up to the second order terms in the wave
number k using equation (6), the expression (5) in the
limit of the long wavelength deformations can be written
as follows:
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h
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h
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Therefore σe = σfe(k)/(hk)2 acts as an effective surface
tension, which does not depend on hk in the limit hk → 0.
From equation (7), one can see that σe is exactly equal to
zero if the stripe width reaches its equilibrium value. More-
over, the equilibrium width, 2d, of a long straight stripe is
a decreasing function of the magnetic Bond number. Thus
because the total area of the stripe is fixed, the equilib-
rium length of the stripe increases with an increasing Bm.
If Bm is rapidly increased, the stripe has no time to reach
its equilibrium length. Therefore its width becomes big-
ger than its equilibrium value; according to equation (9)
the effective surface tension σe becomes negative and the
stripe must undulate.

Stripe undulation is also observed in 2D foams of ethyl
heptadecanoate monolayers [10] or porphyrin monolay-
ers [16], in the coexistence region of the phase diagram
between a 2D gaseous phase and a 2D liquid phase. It oc-
curs if the temperature is fast enough risen at the right
side of the critical point [10]. This instability can also be
explained rather well by the action of dipolar forces (with
a fast temperature increasing), using equation (6). Since
for foams of amphiphile monolayers the distance h be-
tween opposite charges is quite small in comparison with
the width of the stripes, the parameter 2d/h is large. In
this case, the Bond number is defined as µ2/γ [17], where µ
is the electric dipole moment surface density, and γ is the
line tension between the two phases. According to equa-
tion (7), the critical Bond number for the undulation de-
formation is

Bmc ≈
1

ln(2d/h)
· (10)



206 The European Physical Journal B

According to the relation (6), the wave number k0 of the
energetically most favorable undulation deformation can
be expressed for the asymptotic relation valid at Bm → 0
and kh→ 0:

hk0 = 2 exp(−1/Bm). (11)

From relations (10, 11) it follows a simple estimation for
the wavelength of the energetically most favorable undu-
lation deformation mode (Bm > Bmc): λ ≥ λm = πd. The
last estimation for the wavelength of the undulation defor-
mations at 2d = 3 µm [10] gives λ ≥ 10 µm, what is fairly
in good accordance with the wavelength of the undula-
tion deformations observed in experiments. The values of
the critical Bond number obtained from equation (11) for
2d = 3 µm and h = 3 Å, Bmc ≈ 0.11, looks also quite
reasonable in comparison with other amphiphile systems
referenced in [18] (Bmc ≈ 0.03) and in [19] (Bmc ≈ 0.08),
as obtained from the shape thermal fluctuation studies of
2D droplets in amphiphile monolayers [20].

3 Experimental results

A MF, also called ferrofluid, is a colloidal suspension of
nanoscopic ferromagnetic particles. Here we use an ionic
MF (water based) with cobalt ferrite particles [21].

Our system consists in a mixture of a MF and an im-
miscible oil of lower density. This mixture is placed in
a cell made of Altuglass©c, the thickness is very small
(h = 1 mm) in comparison with the other dimensions
(ca. 10 cm). The presence of the oil avoids wetting phe-
nomena of the MF, because a thin film of oil always lies
between the MF and the walls. The cell is placed in the
horizontal position and located between two coils in the
Helmholtz configuration, in order to get a vertical spa-
tially homogeneous magnetic field. An alternating mag-
netic field H̃(t) = H0 cos(2πνt) (frequency ν = 50 Hz)
is required to create a MF foam pattern, which consists
of cells of oil separated by MF boundaries, as it is exten-
sively described in [7]. The images are recorded by a video
camera and digitized in a computer. An increase in H0 in-
volves an increase in the MF magnetization, and thus an
increase in the magnetic Bond number. The MF volume
fraction Φ fixes the mean length of the MF stripes in the
foam: 〈L〉 ≈ 3(1/Φ− 1)2d. Since the dispersion of the MF
stripe length around 〈L〉 is small, the experiments have
been performed for two different values of Φ. Φ = 0.04
(〈L〉 = 22.5 mm) and Φ = 0.20 (〈L〉 = 6.4 mm). Figure 3
shows the undulation instability for Φ = 0.20. The experi-
ment has been done rapidly (the ramp rate of the magnetic
field is dH/dt = 0.22 Am−1s−1), so the vertices have no
time to move, and the assumption of fixed vertices is quite
reasonable. One can also see in Figure 3 that the longest
MF walls undulate first on increasingBm, and the shortest
stripes do not undulate. Let us notice that a characteris-
tic distance between stripes appears in Figure 3c, suggest-
ing that the interactions between stripes are important for
high values of the magnetic Bond number. Nevertheless for
this value of Bm, only the shortest stripes remain straight.

H1

H2 > H1

H3 > H2

Fig. 3. Photographs of the undulation instability. The MF
appears black. The MF volume fraction is Φ = 0.20. The initial
magnetic Bond number at t = 0 is equal to 1.2, then it is
increased with a growth rate of 4 × 10−3 s−1 (corresponding
to dH/dt = 0.22 Am−1s −1). (a) t = 115 s and Bm = 1.9;
the magnetic Bond number is just below its critical value for
the MF stripes to undulate in such a foam, and no stripe is
bent. (b) t = 125 s and Bm = 2.0; the longest walls begin to
undulate. (c) t = 190 s and Bm = 2.2; the bending instability
is well developed for the most of the stripes, but the shortest
ones remain straight.

Most of the stripes in the foam begin undulating for lower
values of Bm; in this case the aspect of the foam is like in
Figure 3b: no characteristic length scale appears so clearly
as in Figure 3c, suggesting that the stripe-stripe interac-
tions are weak. The model is thus expected to be valid only
for the low values of Bm. Figure 4 shows the experimental
data corresponding to the wavelength of the MF walls at
the threshold of their undulation versus Bmc . These data
are fitted with the theoretical curve obtained from equa-
tion (6): fe(k = 2π/λ,Bmc) = 0, with a fixed value of the
stripes width: 2d = 0.83 mm, which corresponds to the
measured one. The MF/oil surface tension has been taken
as a fitting parameter. One obtain σ = (22± 2) mNm−1;
comparable values have been already measured in previ-
ous works [5,7]. The accordance between the experimental
data and the theoretical predictions validates the model
of the bending instability presented here, in spite of the
strong assumptions. That conclusion is further supported
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Fig. 4. Comparison between the theory and the experiments.
The wavelength of the MF walls undulation at the threshold
of the instability have been plotted versus the corresponding
critical magnetic Bond number. A fit of these data is obtained
from equation (6), with fe(k = 2π/λ, Bm = Bmc) = 0 at the
threshold of the instability, for 2d = 0.83 corresponding to the
measured width of the MF stripes.

by the results of the numerical simulations described in
the next section.

Let us notice that, contrary to the bending stripe in-
stability in the 2D MF smectic system [3–5], the wall un-
dulation in a MF foam is a dynamical effect. Indeed, after
some long time the bending disappears, because of the
foam rearrangements which consist in two facts: on one
side the MF flow through the vertices is responsible of the
vertex motion; on another side the cells of the foam can
grow or shrink by oil flow between the MF and the plates
of the Hele-Shaw cell. The time scales are the following:
the response time of the undulating MF walls is of the
order of 1 s and the response time of the vertices is about
several min. The growth rate of the cell area is of the or-
der of 10−2 mm2s−1. Since an experiment lasts for about
5 min, the vertex motions and the variation of the cell
area can be neglected. Nevertheless they are responsible
for the long time relaxation of the pattern. Furthermore
for high values of the magnetic Bond number the foam is
destroyed: the MF boundaries come off the vertices; the
final pattern is one long MF stripe, meaning that this
pattern is more stable than the network structure (i.e.
the foam is a metastable pattern in comparison with the
stripe pattern).

4 Numerical simulations

The numerical method is based on a boundary integral
equation formulation for the Hele-Shaw flow of the MF,
described by the modified Darcy equation due to the ac-
tion of the MF selfmagnetic forces [15,22]:

−αv −∇p+
2M

h
∇ϕ = 0; div v = 0, (12)

where v is the local velocity of the MF, p is the pressure,
and α is a constant which depends on the MF viscosity and

on the cell thickness h. The magnetostatic potential for the
particular configuration of the MF, ϕ(ρ), is expressed as
follows under the assumption of uniform magnetization:

ϕ(ρ) = −M

∫
d2ρ

[
1

|ρ− ρ′|
−

1√
(ρ− ρ′)2 + h2

]
· (13)

The pressure at the interface is determined according to
the Laplace law:

(P )Li = σκi, (14)

where κi is the radius of curvature of the interface
and Li, i = 1, ..., Nc, are the foam interfaces. For the
boundary integral equation formulation of the problem
(12, 14), the stream function of the potential 2D flow(
vx =

∂Ψ

dy
; vy = −

∂Ψ

∂x

)
satisfying Laplace equation is

expressed as a simple layer potential:

Ψ =
1

2π

Nc∑
i=1

∫
dl′fi(l

′) ln(|ρ− ρ′|). (15)

According to the relations (12, 14), the tangential compo-
nent of the velocity of the fluid on the interfaces is known

and is expressed as follows: vt = −
1

α

[
d

dl

(
σκ−

2M

h
ϕ

)]
.

The normal derivative of the stream function on the

boundary is:
∂Ψ

∂n
= −vt. Then taking into account the

theorem for normal derivative of the simple layer poten-
tial, the following set of equations for the functions {fi}
is obtained:

− 2

[
d

dl

(
κ−

2Bm
h2

ϕ(l)

)]
Li

= fi(l)

−
Nc∑
j=1

Aj

π
P

∮
Lj

fj(l
′)
yl(x− x′)− xl(y − y′)

(x− x′)2 + (y − y′)2
dl′ (16)

where Ai = −1 for all the interfaces of the foam except the
external boundaries (i = 1), for which Ai = 1. x(l) and
y(l) are parametric representations of the foam interfaces,
xl and yl are derivatives of the parametric representations,
and P denotes the Cauchy principal value. For the sim-
plicity of the numerical calculations, the expression of the
magnetostatic potential (13) is transformed into a contour
integral [14,22]:

[ϕ(l)]Li = −Ai

Nc∑
j=1

Aj

∮
Lj

(
x′l(y − y

′)− y′l(x− x
′)√

(x− x′)2 + (y − y′)2

− xl ln
(
y − y′ +

√
(x− x′)2 + (y − y′)2 + h2

))
dl′.

(17)
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Fig. 5. (a) MF foam which has been used as the initial config-
uration of the numerical simulations. The indicated lengths of
the walls are given in units of the experimental cell thickness
h. (b) Energy density fe(k = 2π/λ) versus the perturbation
wavelength (in units of h) at different magnetic Bond numbers
Bm. For this foam, 〈2d〉 = 1.2h.

The Cartesian components of the velocity a the interfaces,
[(vx′ vy)]Li , are then calculated:

[(vx, vy)(l)]Li =
fi(l)(xl, yl)

2(x2
l + y2

l )

+
1

2π

Nc∑
j=1

P

∮
Lj

fj(l
′)

(y − y′, −x+ x′)

(x− x′)2 + (y − y′)2
dl′. (18)

The numerical methods based on an energetic ap-
proach [23] are not useful in this case, because the undula-
tion is a dynamical effect out of equilibrium. The numer-
ical method presented here takes account of the magnetic
interactions in a more realistic way, i.e. we account for the
dipole-dipole interactions exactly by solving (in approxi-
mation of constant magnetization) the Maxwell equations.
The cell size is conserved in the present boundary integral
equation formulation, because the bubble growth can be
neglected in one experiment (see the experimental time
scales given in Part 3).

The numerical simulations have been performed for the
given configuration of the MF foam shown in Figure 5a.
The average MF walls thickness is 〈2d〉 = 1.2h. This value
is estimated from the relation 〈2d〉 = 2S/L, where S is the
total area of MF domain, and L is the total length of all
the interfaces. S and L can be easily determined from the
numerical data. The values of some wall lengths (in units
of cell thickness), L/h, are also indicated in Figure 5a.
They must be at least greater than one wavelength for the

      

Bm = 1.25

Bm = 1.5

Bm = 1.75

Fig. 6. Results of the numerical simulations. MF foam struc-
ture when increasing the time (from left to right), for magnetic
Bond number Bm = 1.25 (upper row), Bm = 1.5 (middle row)
and Bm = 1.75 (lower row).

development of the undulation deformations. The equilib-
rium for this given foam according to equation (7) corre-
sponds to Bm = 1.2. The spectral density of the undula-
tion energy versus the perturbation wavelength, fe(λ), is
plotted in Figure 5b, for some values of Bm. According to
the relation (5), only the modes with fe(λ) < 0 are grow-
ing. To satisfy this condition, stripes with enough large
length for given Bm must be present in the foam. We can
see that for Bm = 1.25, all stripes in the foam should be
stable. For Bm = 1.5, only the longest walls (L/h = 7.6
and L/h = 8.2) can undulate, but for Bm = 1.75 most of
the stripes should be undulated. The results of the numer-
ical calculations presented in Figure 6 correspond to the
expectations reasonably well. That means that the model
of the infinite stripe works quite well for the foam with
enough large ratio L/d (Fig. 5a).

5 Conclusions

In this paper, we give a theoretical analysis of the undu-
lation instability, which occurs in a two-dimensional mag-
netic fluid foam if the strength of the applied magnetic
field is increased fast enough. It is a dynamical (out of
equilibrium) effect. The calculation is performed for an
isolated stripe; we consider the whole foam as an assembly
of isolated magnetic fluid stripes, linked one to each other
by fixed vertices. We show that a critical value of the mag-
netic Bond number exists, above which a magnetic fluid
stripe undulates in the foam. This critical value depends
on the stripe length; the shorter the stripe, the higher the
critical value of Bm. These theoretical predictions are well
confirmed by experiments and by numerical simulations.

Such a calculation can be extended to account for un-
dulation instability in other 2D cellular structures which
are driven by the competition between surface energy and
dipolar repulsive interactions, for instance 2D foams in
amphiphile monolayers.



F. Elias et al.: Undulation instability in 2D foams of magnetic fluid 209

References

1. M. Seul, D. Andelman, Science 267, 476 (1995).
2. F. Elias, C. Flament, J.-C. Bacri, S. Neveu, J. Phys. I

France 7, 711 (1997).
3. A. Cebers, Magnitnaya Gidrodinamica 30, 179 (1994);

Magnetohydrodynamics 30, 148 (1994).
4. A. Cebers, J. Mag. Mag. Mat. 149, 93 (1995).
5. C. Flament, J.-C. Bacri, A. Cebers, F. Elias, R. Perzynski,

Europhys. Lett. 34, 225 (1996).
6. J.-C. Bacri, A. Cebers, C. Flament, S. Lacis, R. Melliti, R.

Perzynski, Progr. Colloid Polym. Sci. 98, 30 (1995).
7. F. Elias, C. Flament, J.-C. Bacri, O. Cardoso, F. Graner,

Phys. Rev. E 56, 3310 (1997).
8. K.L. Babcok, R.M. Westervelt, Phys. Rev. A 40, 2022

(1989).
9. M. Portes de Albuquerque, P. Molho, J. Mag. Mag. Mat.

113, 132 (1992).
10. K.J. Stine, Ch.M. Knobler, R.C. Desai, Phys. Rev. Lett.

65, 1004 (1990).
11. A. Cebers, I. Drikis, Magnitnaya Gidrodinamica 32, 11

(1996); Magnetohydrodynamics 32, 8 (1996).

12. A. Cebers, M.M. Maiorov, Magnitnaya Gidrodinamica 16,
27 (1980); Magnetohydrodynamics 16, 21 (1980).

13. S.A. Langer, R.E. Goldstein, D.P. Jackson, Phys. Rev. A
46, 4894 (1992).

14. D.P. Jackson, R.E. Goldstein, A. Cebers, Phys. Rev. E 50,
298 (1994).

15. A. Cebers, Magnitnaya Gidrodinamica 17, 3 (1981); Mag-
netohydrodynamics 17, 113 (1981).

16. M. Yoneyama, A. Fuji, S. Maeda, T. Murayama, J. Phys.
Chem. 96, 8982 (1992).

17. A. Cebers, Magnitnaya Gidrodinamika 25 13 (1989); Mag-
netohydrodynamics 25, 149 (1989).

18. D.J. Benvegnu, H.M. Mc Connell, J. Phys. Chem. 96,
6820 (1992).

19. E. Goldstein, D.P. Jackson, J. Phys. Chem. 98, 9626
(1994).

20. M. Seul, Physica A 168, 198 (1990).
21. S. Neveu-Prin, F.A. Tourinho, J.-C. Bacri, R. Perzynski,

Colloid Surf. A 80, 1 (1993).
22. A. Cebers, Magnitnaya Gidrodinamika 20, 43 (1984);

Magnetohydrodynamics 20, 140 (1984).
23. D. Weaire, F. Bolton, P. Molho, J.A. Glazier, J. Phys.

Condens. Matter 3, 2101 (1991).


