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Abstract
In this paper, we present a new simple two-dimensional forced
Rayleigh-scattering (FRS) experimental set-up for determination of the
nanoparticle-diffusion coefficient (DM ) and the Soret coefficient (ST ) in
colloids. For this purpose, we give a two-timescale model for the evolutions
of temperature and colloid concentration (similar to that given for a former
one-dimensional FRS method) and a complete description of the signals
diffracted by a squared-lattice grating. Both transport properties in
ferrofluids (magnetic colloids) determined with this new set-up are in good
agreement with those found with samples already studied using the
one-dimensional technique. This work is completed by studying new
samples. Experimental results we obtained confirm and make clearer the
following: (i) the strong Soret effect in ferrofluids has a nanoparticle origin
and (ii) furthermore, this origin lies in the immediate surroundings of the
nanoparticles (ionic or surfacted coating and dispersion liquid).

1. Introduction

Thermodiffusion (also called the Soret effect or Ludwig–Soret
effect) is a phenomenon where a mass flow is induced by a
gradient of temperature in a complex, at least binary, liquid
[1–3]; it was observed for the first time almost 150 years
ago [1]. The conventional hydrodynamic techniques using
a thermodiffusion-flow cell [4, 5] were later enriched, for a
faster determination of the Soret coefficient (ST ), by using
optical methods such as small-angle Rayleigh scattering [6,7],
beam deflection [8–10], and forced Rayleigh scattering (FRS)
[11–16].

While advances in thermodiffusion have focused
primarily on dissolved polymers, studies on this effect
in colloids, where the nanoparticle-diffusion coefficient is
much smaller, are fairly recent developments [17–20]. The
interferential FRS technique has enabled us first to measure
the nanoparticle translational diffusion coefficient (DM ) in
magnetic colloids (ferrofluids) [21, 22] and then to study the
Soret effect in these materials [23, 24]. With this method,

the temperature variation is not only taken to generate a
nanoparticle-concentration modulation in the colloid but is
also used to calibrate it, which prevents us from performing
difficult absolute photometry measurements; furthermore, the
small sizes of the experiment, the cell size, and typical lengths
in the heated part of the sample make the measurements rather
insensitive to convection phenomena that could be generated
by strong local density variations in the sample [15].

After a brief presentation of the ferrofluids and especially
of the samples studied (section 2), a new FRS experimental set-
up, simpler and cheaper than the conventional interferential
one, is presented in section 3 [25]. In section 4 is given a
two-dimensional theoretical analysis of the coupled evolutions
of the temperature and the nanoparticle volume fraction
in the sample using the new set-up. The index grating
induced in the sample is probed by a cw He–Ne laser whose
diffracted intensity is studied in section 5. Sections 6 and 7,
are devoted, respectively, to theoretical and experimental
studies of the decay of the high-order diffracted intensities
after switching off the heating light. The accuracy of our
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FRS method is analysed, allowing us to determine easily
the translational nanoparticle-diffusion properties in different
types of samples. In section 8 is given a method for
determining the thermodiffusion coefficient (ST ) using the
new set-up. Section 9 is devoted to experimental results
obtained on ST using this technique, with ferrofluids at various
volume fractions, particle coatings, and dispersion liquids;
some of them can be compared with the results found using
the previous set-up. Appendices A and B are devoted to the
numerical determinations of some data so as to validate the
approximations used in sections 4, 5, 6, and 8.

2. Ferrofluids

Ferrofluids are colloidal suspensions of magnetic iron-oxide
nanoparticles dispersed in a liquid medium. Interest in them
arises from the fact that these liquids can be controlled by
applying a magnetic field. The study of magnetic colloids
started in 1965 through the pioneering patents of Papell
and Rosensweig [26, 27]. Ferrofluids are incorporated into
commercial and industrial processes; they find application in
seals, bearings, dampers, etc, and more recently in biomedical
applications [28, 29]. These systems are also at the origin
of many theoretical papers in magnetism, optics, rheology,
biophysics, and thermodynamics [30–32]3. Ferrofluids are
divided into two main groups, depending on the interparticle
repulsion used to avoid their aggregation. According to the
nature of the nanoparticle surface, the repulsion is either steric,
when nanoparticles are coated with surfactants (surfacted
ferrofluids), or electrostatic, when their surface bears charges
(ionic ferrofluid). To obtain a ferrofluid, there are two basic
steps: synthesis of the magnetic nanoparticles and then, by
giving the nanoparticle surface suitable treatment, making a
suspension in a carrier liquid.

The nanoparticle core of the ferrofluids studied here is
made of maghemite (γ -Fe2O3). Nanoparticles are synthesized
through a chemical process during which their size distribution
is monitored in the nanometric range in order to obtain stable
dispersions that would not settle under the action of gravity
or of a magnetic field gradient. They are synthesized by
a precipitation reaction occurring when mixing an aqueous
mixture of FeCl2 and FeCl3 with ammonium hydroxide [33].
The so-obtained magnetite (Fe3O4) is then acidified, oxidized
into maghemite, and dispersed into water, giving an ionic
acidic ferrofluid (called IH). The nanoparticles are positively
charged with nitrate (NO−

3 ) counter-ions. This ferrofluid is
then taken as a precursor for the samples studied. Adsorption
of an ionic organic ligand (trisodium citrate) on these positive
particles leads to an ionic ferrofluid (noted IC), stable in an
aqueous medium (pH > 3); in this case, the nanoparticle
surface charge is negative and neutralized by Na+ counter-
ions. To obtain a surfacted ferrofluid dispersed in cyclohexane,
the nanoparticles are coated either with Beycostatne®, an
industrial anionic surfactant (samples called SCB), or with
oleic acid (sample called SCOA). The volume fraction of
a ferrofluid is determined from chemical titration of iron
[34]. Our nanoparticle-size data come from magnetization

3 The bibliography about magnetic fluids is regularly summed up in the
proceedings of the International Conference on Magnetic Fluids in a special
issue of J. Magn. Magn. Mater.

measurements, and the distribution law for the nanoparticle
magnetic core diameter (d) is assumed to be a lognormal one:

P(d) = 1√
2πσd

exp

[
− 1

2σ 2
m

(
ln

d

dm

)2
]

.

For each sample, the mean magnetic diameter, dm, and the
distribution width, σm, are determined from magnetization
measurements through a two-parameter fitting [35, 36]; the
good fits found validate the assumption on the distribution
law. Later, in this paper, we will use a volume-averaged
magnetic diameter, dV

m (dV
m = 〈d3〉1/3). In the case of a

lognormal distribution law, we have dV
m = dm exp(1.5 × σ 2

m).
The constitutive characteristics of the samples studied here are
given in table 1.

3. A new grid FRS set-up

In our previous FRS set-up, the spatial modulation of the
heating light was obtained with a powerful pulsed frequency-
doubled Nd : YAG laser beam split into two beams that interfere
inside the sample [23]. In the new set-up shown in figure 1, the
heating light source is a high pressure mercury arc lamp, and
the spatial heating modulation is obtained by making, with a
camera lens (f = 50 mm), the image of a periodic object in
a 10–100 µm thick sample, perpendicular to the lens axis. In
our experiments, objects are square-latticed metal grids with a
wire diameter of about 0.4 mm and a period of about 1.4 mm.
The image period, �i , in the sample can be varied from 80 to
200 µm by moving the grid in the object space of the lens. The
‘F number’ is generally f/2.

The spatial modulation of temperature (T ) induced in
the sample yields a periodic modulation of the nanoparticle
volume fraction (�) through the Soret effect. Both
modulations induce diffracting gratings that are probed by a
cw laser beam sent onto an area of the sample including the
grid image; a He–Ne laser is chosen as its beam is weakly
absorbed by magnetic colloids at λ = 632 nm. Therefore, as
the partial derivatives (δn′/δ� and δn′/δT ) of the real part (n′)
of the refraction index of our samples at λ are much larger than
those (δn′′/δ� and δn′′/δT ) of its small imaginary part (n′′),
these gratings are mainly index ones, which is convenient when
interpreting diffraction data. Diffracted beams are detected,
after filtering, with photomultiplier tubes having a highly linear
response. In this study, problems associated with gravity such
as convection, instabilities, or sedimentation (in the case of
a nanoparticle Brownian energy lower than the gravitational
potential energy gap between the top and bottom of the cell)
are assumed not to occur. Anyway, to avoid these problems,
experiments can be performed with a horizontal sample so that
gravity plays the same role in any direction of the (Ox, Oy)
plane (see inset in figure 1).

In our former FRS set-up, a pulsed pump laser (100 ps
pulses gathered in 40 pulse trains (200 ns long) with a
10–1000 Hz repetition rate) was used so as to be able to
determine the Soret coefficient with a linearized two-timescale
model [23]. In the present set-up, the heating light source is
a mercury arc lamp whose intensity is roughly proportional to
the rectified power supply voltage, giving in Europe a 100 Hz
time modulation. A model has then to be found for studying
results obtained with the new set-up.
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Table 1. Structure and properties of the ferrofluid samples studied here. All the samples share the same nanoparticle maghemite (γ -Fe2O3)
core. In the surfacted samples SCB and SCOA, the nanoparticles are coated with Beycostatne® and oleic acid surfactant molecules,
respectively, and are dispersed in cyclohexane (C6H12). In the ionic samples IC1 and IC2, the colloid is stabilized by citrate ions (negative
surface charge) and Na+ counter-ions (pH ≈ 7). In the ionic sample IH, the colloid is stabilized by H+ ions (positive surface charge) with
NO−

3 counter-ions (pH ≈ 2). In all the ionic ferrofluids, the nanoparticles are dispersed in water. Their magnetic core diameters are
observed to obey a lognormal distribution law with a mean magnetic core diameter of dm, a distribution width of σm, and a volume average
magnetic core diameter of dV

m . The calibration factor, NF , is the opposite of the ratio of the two partial derivatives ∂n′/∂� and ∂n′/∂T of
the ferrofluid refractive index; both are determined from measurements made with a total-refraction refractometer. The solvent viscosity, η,
is found from [44]. In this table, the symbol ≈ before a number indicates a value estimated from nearby data.

∂n′

∂�
104 ∂n′

∂T
(K−1)

Surfacted ferrofluid samples
103η (Pa s)

Solvent Surfactant Name dm (nm)/σm dV
m (nm) � NF (K) at 20˚C

Cyclohexane Beycostatne® SCB1 7.5/0.37 9.2 2.27–6.8% 1.08 −5.6 1929 0.97
SCB2 9.6/0.35 11.5 3.3–8.1%

Cyclohexane Oleic acid SCOA 7/0.36 8.5 1.1–7.5% ≈1.08 ≈ −5.6 ≈1929 0.97
Ionic ferrofluid samples

Stabilization Counter-ions Name

Citrate Na+ IC1 9/0.35 10.8 3.3% ≈1.32 ≈ −1.22 ≈10820 1.002
IC2 8/0.30 9.15 1.3–6.5% 1.32 −1.22 10820 1.002

H+ NO−
3 IH 9/0.35 10.8 3.3% ≈1.32 ≈ −1.22 ≈10820 1.002

He–Ne

Figure 1. Experimental set-up. A camera lens makes in the sample the image of a grid lighted by a high pressure mercury arc lamp (100 Hz
modulation in Europe). The index grating induced by both temperature and nanoparticle concentration modulations is probed by a cw
He–Ne laser beam. Diffracted beams are detected by photomultiplier tubes (PMT) that have a highly linear response; only the {−10} and
{01} beams are shown here. A set-up modification for studying horizontal samples is shown in the inset. A viewer (not shown here) is used
to test that the grid image is in the sample plane.

4. Model for a two-dimensional two-timescale
analysis

4.1. Two-dimensional temperature and concentration
gratings

Our samples are ferrofluid layers of thickness l, located
between two parallel glass plates that define the (Ox, Oy)
plane. The nanoparticle volume fraction and the temperature
in the sample can be written as

T (x, y, z, t) = T0 + δT (x, y, z, t),

�(x, y, z, t) = �0 + δ�(x, y, z, t),
(1)

where T0 and �0 are the initial homogeneous temperature
and nanoparticle volume fraction, respectively, while
δT (x, y, z, t) and δ�(x, y, z, t) are the variations of

temperature and volume fraction in the sample. In the
absence of convection (small temperature and volume fraction
variations, small typical lengths), these two thermodynamic
variables obey the following continuity equations:

ρcp

∂T

∂t
= −div �Jth + Q̇ (2)

and
∂�

∂t
= −div �JM, (3)

where �Jth and �JM are the heat and nanoparticle volume fraction
flows, respectively; ρ, cp, and Q̇ are the density of the
colloid, its specific heat, and the heat input per unit time and
unit volume, respectively. As experiments are performed at
constant pressure and as the Dufour effect (heat flow induced
by a nanoparticle volume fraction gradient) has been proved
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to be negligible in our samples [23], the expression for �Jth

reduces to
�Jth = −ρcpDth �∇T , (4)

where Dth is the thermal diffusivity of the colloid, while �JM is
written as

�JM = −DM( �∇� + ST
�∇T ), (5)

where DM is the nanoparticle diffusion coefficient and ST is
the Soret coefficient, so that the product −ST DM

�∇T is the
thermodiffusion volume fraction flow [1–3]; we also define
S∗

T by S∗
T = ST /�. These rather unusual definitions of ST and

S∗
T are taken from [23]. We recall that ST is connected to some

other parameters used in the literature, such as the thermal
diffusion coefficient, DT = S∗

T DM , or the thermal diffusion
factor, αT = T S∗

T [37]. In any case, no a priori assumption has
to be made about the variation of ST , DT , or αT as functions
of �, especially at rather high concentrations.

The components Jth z and JM z along (Oz) of �Jth and �JM

are assumed to obey the following boundary conditions on the
cell walls:

Jth z(x, y, 0, t) = −KS
th[T (x, y, 0, t) − T0],

Jth z(x, y, l, t) = KS
th[T (x, y, l, t) − T0],

JM z(x, y, 0, t) = JM z(x, y, l, t) = 0,

(6)

where KS
th is an interface heat conductance (units of

W m−2 K−1) through each glass plate of the cell and where
T0 is also the temperature outside the sample (equation (1)).
The first two conditions above express heat losses from the
sample through the glass plates.

A three-dimensional solution of partial differential
equations (2) and (3) with the above boundary conditions
(equation (6)) can be found in [38]. However, for the sake
of simplicity, the temperature and nanoparticle concentration
variations along the Oz direction in the sample will not be
taken into account in this paper. This is allowed because
at least one of the two following conditions is fulfilled here:
either l < �i or ∂T /∂z is negligible; the latter corresponds
to weakly absorbing (diluted) samples for which l has to be
chosen larger than �i so as to obtain a measurable signal.
For performing a two-dimensional approximation, we will use
from now and without any danger of confusion the following
functions, T (x, y, t) and �(x, y, t), which are the averages of
the temperature and the nanoparticle volume fraction over the
cell thickness, l.

As shown in [23] and in appendix A, the amplitude of the
temperature modulation and that of the nanoparticle volume
fraction can be considered to be small when using both FRS
techniques; DM and ST will therefore be assumed to be
constant throughout the sample. From equations (3) and (5),
the evolution of �(x, y, t) is then ruled by

∂�(x, y, t)

∂t
= DM [��(x, y, t) + ST �T (x, y, t)]. (7)

Similarly, from equations (2), (4), and (6), T (x, y, t) obeys the
following partial derivative equation,

∂T (x, y, t)

∂t
= Dth�T (x, y, t) +

Q̇(x, y, t)

ρcp

−2
K ′S

th

lρcp

[T (x, y, t) − T0], (8)

where K ′S
th is the heat conductance of the interface modified

for taking the present two-dimensional approximation into
account and where Q̇(x, y, t) is now the heat input per unit
time and unit volume of colloid due to the optical absorption
averaged over the sample thickness, l. As Q̇ is proportional to
Ip(x, y, t), the input heating beam intensity, it is written as

Q̇(x, y, t) = αIp(x, y, t) (9)

(for a monochromatic heating sourceα = (1 − exp(−ε�l))/ l,
ε being the sample absorption coefficient at the heating wave-
length per unit volume fraction).

The grids we use are periodic with, at least, a rectangular
lattice where the (Ox) and (Oy) axes are symmetry ones.
Assuming an infinite two-dimensional extension for the grid
image, the heating-beam intensity, Ip(x, y, t), in the sample
can be Fourier expanded as

Ip(x, y, t) = I (t)

∞∑
m=0

∞∑
n=0

cmn cos(mqxx) cos(nqyy) (10)

with

qi = 2π

�i

with i = x, y, (11)

where �i is the space period of the heating beam along the
(Oi) direction inside the sample. Expression (10) would be
different with asymmetric objects or another two-dimensional
lattice (hexagonal for instance); such cases are not studied
here. Similarly, the temperature modulation, δT (x, y, t), can
be Fourier expanded as

δT (x, y, t) =
∞∑

m=0

∞∑
n=0

Tmn(t) cos(mqxx) cos(nqyy). (12)

4.2. Two-timescale model

From equations (8), (9), (10), and (12), it is seen easily that the
Fourier components, Tmn(t), obey the following differential
equation:

dTmn

dt
+

Tmn

τ th
mn

= WcmnI (t) (13)

with
W = α

ρcp

(14)

and

(τ th
mn)

−1 = 2K ′S
th

lρcp

+ (m2q2
x + n2q2

y )Dth; (15)

it is worth noting that a non-zero value of K ′S
th makes (τ th

00)
−1

non-zero too. If the time period of the heating beam intensity,
I (t), is much larger than the thermal relaxation time, τ th

mn, and
if high order time Fourier components of I (t) can be neglected,
Tmn(t) is proportional to I (t) according to (equation (13)):

Tmn(t) = Wτ th
mncmnI (t) (16)

(valid even for m and n = 0). In this equation and in the
following similar ones, no implicit summation is made on
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m or on n. In the case of non-negligible high order time
Fourier components of I (t), a time shift between the minima
of Tmn(t) and I (t) is seen; furthermore, the amplitude of the
temperature modulation, Tmn(t), is slightly less than that given
in equation (16) [38]. Both phenomena will be neglected
hereafter. In fact, in the previous works performed with the
same sample thickness range, τ th

mn has been shown to be less
than 0.25 ms [23]. In the present experiments, the time period
of the heating intensity (10 ms) is much larger than τ th

mn, and
equation (16) will be used in the following.

By assuming the same periodic two-dimensional infinite
extension for the nanoparticle volume fraction, δ�(x, y, t) can
also be Fourier expanded as

δ�(x, y, t) =
∞∑

m=0

∞∑
n=0

�mn(t) cos(mqxx) cos(nqyy). (17)

From equations (7) and (16), �mn(t) is seen to obey the
following equations:

�00 = 0

d�mn(t)

dt
+

�mn(t)

τM
mn

= −ST

Tmn(t)

τM
mn

∀(m, n) �= (0, 0)

(18)

with
(τM

mn)
−1 = (m2q2

x + n2q2
y )DM; (19)

�00 is zero because of the number conservation of
nanoparticles. Solving equation (18) shows that, after a
long enough elapsed time (t � τM

mn), the component �mn(t)

of the volume fraction modulation tends to be periodic; its
mean value, �S

mn, is proportional to the time-averaged value,
〈Tmn(t)〉, of Tmn(t) according to

�S
mn = −ST 〈Tmn(t)〉 ∀(m, n) �= (0, 0). (20)

�S
mn can be also written as (equation (16))

�S
mn = −ST Wτ th

mncmnI0 ∀(m, n) �= (0, 0), (21)

where I0 is the time-averaged heating light intensity I (t).
A slight time-periodic modulation appears in �mn(t), but it
is easily proved to be undetectable because the period of the
temperature modulation, Tmn(t), i.e. that of the heating beam
intensity (τ = 10 ms), is much shorter than the nanoparticle
concentration–relaxation time, τM

mn (of the order of 1 s). The
nanoparticle volume fraction is quasi-steady for t � τM

mn, and,
for the sake of simplicity, we will study the Soret effect under
this condition for t , following a reasoning similar to the one
used for presenting the two-timescale model in [23]; �mn(t) is
then taken to be constant and equal to �S

mn.

5. Probe laser beam diffracted intensities

The grating induced by both temperature and nanoparticle
volume fraction modulations is probed by a cw He–Ne probe
laser beam. Much information about the sample is found by
analysing the intensity diffracted at several orders. In our
experiment, the induced grating is found to work in the Raman
and Nath regime (thin grating) according to Kogelnick et al’s

rule (2πλl/n′�2
i < 10) [39] taking, at the worst, λ = 632 nm,

l = 100 µm (the grating being not thicker than the cell),
n′ = 1.477, and �i = 80 µm. The complex expression for the
electromagnetic field, �Ed(u, v), diffracted in the (u, v) Fourier
plane direction is then written as

�Ed(u, v) = �E∗ exp

(
−2πl

λ
n

′′
0

)

×
∫∫

�

exp

(
i
2πl

λ
δn′

)
exp(−i(ux + vy)) dx dy, (22)

where �E∗ is the complex incident probe electromagnetic field,
� is the area in the sample common to the grid image and
the probe beam spot, and n′′

0 is the imaginary part of the
refractive index of the sample ‘at rest’; the useless phase shift
((2πl/λ)n′

0) is omitted and no δn′′ contribution is taken into
account [23]. As δT and δ� are small, the n′ modulation is
simply

δn′ = ∂n′

∂T
δT +

∂n′

∂�
δ�. (23)

Using the expressions for Tmn and �mn in equations (16) and
(21), �Ed(u, v) is written as

�Ed(u, v) = �E∗ exp

(
−2πl

λ
n

′′
0

)

×
∫∫

�

exp

(
i
∑
mn

ϕmn cos(mqxx) cos(nqyy)

)

× exp(−i(ux + vy)) dx dy, (24)

where the quantities ϕmn are defined as (equation (23))

ϕmn = 2πl

λ

(
∂n′

∂T
Tmn +

∂n′

∂�
�mn

)
. (25)

By Taylor expanding the second exponential function in
equation (24), �Ed(u, v) is written as

�Ed(u, v) = �E∗ exp

(
−2πl

λ
n

′′
0

)

×
∫∫

�

∞∑
k=0

ik

k!

(∑
mn

ϕmn cos(mqxx) cos(nqyy)

)k

× exp(−i(ux + vy)) dx dy. (26)

To take the sharpness of the grid image into account, the
expansions of m and n in equation (26) should be led up to
a rather high order.

An optical coherent diffraction background is generally
generated by unavoidable static defects in the volume lighted
by the probe beam. By taking it into account together with the
incoherent background contribution to the diffracted signal, the
intensity, I d , measured in the (u, v) direction is expressed as

I d(u, v) = 1
2�ε0c‖ �Ed(u, v) + �Ec(u, v)‖2 + I nc(u, v), (27)

where I nc is the non-coherent background intensity in the
(u, v) direction, while �Ec(u, v) is the coherent background
EM field. It can be factorized as

�Ec(u, v) = �E∗[gr(u, v) + igi(u, v)], (28)

gr and gi being the real and imaginary parts of the ratio
Ec(u, v)/E∗; in both the above complex equations, the phase
difference between �Ed and �Ec is clearly expressed. Using also
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equation (28), algebraic expressions can be found for I d(u, v)

as a function of ϕmn, gr , and gi . However they are too long
to be presented in a table, but they can be established easily
with the help of ‘Mathematica’ or ‘Maple’ software. The
upper limits for the k, m, and n expansions will be studied
from experimental results in the following section. The usual
Bessel’s function expansion in equation (24) would have led to
very complicated expressions except for the case when m and
n � 1. The {ij} notation for a two-dimensional diffraction
order is defined by i = u/qx and j = v/qy .

6. Diffracted signal decay

If we wait a time longer than the thermal relaxation time after
switching off the heating light (at t = 0 in this section),
the temperature modulation becomes negligible and no Soret
process occurs any more. The concentration grating remains
then the only one, and its slow decay can be studied easily from
diffraction measurements.

6.1. General study

The decay of the volume fraction component, �mn(t), is
expressed as (equations (18) and (21))

�mn(t) = −ST cmnWτ th
mnI0 exp(−DM(m2q2

x + n2q2
y )t). (29)

Setting Tmn to zero in equation (25), ϕmn(t) is then written as

ϕ00(t) = 0,

ϕmn(t) = ϕ0
mn exp(−DM(m2q2

x + n2q2
y )t) ∀(m, n) �= (0, 0),

(30)

where

ϕ0
mn = −2πl

λ

∂n′

∂�
ST WI0cmnτ

th
mn. (31)

The diffracted intensity decay is still given by equations (26)
and (27), where ϕmn is made explicit by equation (30).

6.2. Case of a square-latticed grid

For a square-latticed grid, the cmn coefficients can be
factorized as

cmn = cnm = cm(r)cn(r), (32)

where

c0(r) = r,

cn�=0(r) = (−1)n
2

nπ
sin(nrπ)

(33)

and where r = (� − dw)/�, dw being the grid wire diameter
and � the period of the grid square-lattice. The grid image
in the sample maintains the ratio r , but the above formula
for n �= 0 is only valid for the grid image, i.e. the heating
intensity, if the camera lens is of good enough quality. Taking
qx = qy = q, equation (30) reduces to

ϕmn(t) = ϕ0
mn exp

(
−(m2 + n2)

t

τM

)
, (34)

where
1

τM
= q2DM. (35)

The diffracted intensity functions, I d
ij (t), can be expanded as

the following series of decreasing exponential functions,

I d
ij (t) =

∞∑
p=0

I d
ijp exp

(
−p

t

τM

)
+ I nc

ij , (36)

where I nc
ij is the non-coherent background intensity measured

in the direction defined by the {ij} order of diffraction.
Algebraic expressions for I d

ijp or, more precisely, for I d
ijp/I ∗,

where I ∗ is the incident probe intensity (I ∗ = 1
2

∑
ε0c‖ �E∗‖2),

obtained from equations (26), (27), and (28) with the help of
Mathematica, are summed up for {ij} = {10}, {11}, and {20}
in table 2, for p � 8 (equation (36)) and with the following
limitations on equation (26): k � 2, m � 3, and n � 3
(I d

ij (t) = I d
ji(t) by the symmetry property).

7. Experimental results from decay studies

In this section, the decay of the nanoparticle volume fraction
grating is studied by checking the decays of intensities
diffracted at various orders, for three purposes: (i) testing the
validity and the accuracy of the calculations developed above,
(ii) evaluating the coherent background contributions, and
(iii) determining τM , then DM (equation (35)), and finally the
hydrodynamic diameter, dH , using Stokes–Einstein’s equation
(3πηdHDM = kBT ). As the heating duration is much larger
than τM , the value we obtain for dH is that of a volume averaged
hydrodynamic diameter [40].

The three experimental intensity curves, I d
10(t), I d

11(t),
and I d

20(t), shown in figure 2, are found from experiments
performed with the SCB2—3.3% sample. They should
obey equation (36), the expressions for I d

ijp being given in
appendix B, which is tested by a best-fit procedure where the
ten following parameters τM , gr

kl , g
i
kl , and Cij (proportionality

factors defined in appendix B) are determined. The other
quantities, ϕ0

mn and I nc
ij , in equation (36), are previously,

respectively, evaluated from input power measurements
(appendix A) and incoherent background measurements
(by switching off the probe laser beam). As τM is common to
the three expressions for I d

ij (t), the best-fit procedure has to be
carried out with the three curves simultaneously.

7.1. Model validity and approximations in signal analyzing

The fitting procedure gives back best-fit curves very close
to the experimental ones (figure 2), which proves the three
diffraction signals ({10}, {11}, and {02} directions) share
the same time constant, τM , as intended in the section 6
description. Mathematically, each one of the three diffracted
signals carries enough information for determining the same
transport properties and the coherent background contribution
at the same time. If the diffracted signals can be measured
with enough accuracy, it is enough to work only on one
order of diffraction, and in this case, the first-order signal
({01} or {10}) is the easiest one to study because (i) it
is the most intense and (ii) equation (B.1) is simpler than
equations (B.2) and (B.3) (appendix B). This observation
validates former works where only signals diffracted at the
first-order (even with one-dimensional experiments) were
studied. Another technique, the ‘homodyne/heterodyne’
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Table 2. Algebraic I d
ijp/I ∗ expressions for (i, j) = (1, 0), (1,1), and (2,0) according to equation (36) obtained with the help of Mathematica

from equations (25), (26), (27), and (28) with the following restrictions: k � 2; m, n � 3; and p � 6.

p
Id

10p
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I d

11p
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Figure 2. Decay of the nanoparticle concentration grating. The
experimental diffracted intensity curves (arbitrary units), I d

10, I d
11,

and I d
20, as functions of time. For a clearer presentation,

simultaneous curves are abscissa shifted. The experiment is
performed with a BNE-surfacted ferrofluid sample dispersed in
cyclohexane (sample SCB2—3.3%). A best-fit procedure applied to
equations (B.1), (B.2), and (B.3) gives τM , gr

ij , gi
ij , and Cij

parameters that give back well fitting curves. For determination of
DM , and ST , the linearized version of the square-grid model is then
validated by the weak values found for ϕ0

mn (appendix B), gr
ij , and

gi
ij . The relaxation time found for τM (6.5 s) is consistent, through

Stokes–Einstein’s equation, with previous results on the
nanoparticle size [42, 43].

one [41], gives more precise results on the coherent background
with a one-dimensional interferential set-up; a similar
‘homodyne/heterodyne’ technique could be developed later
with a two-dimensional set-up!

Less general conclusions can be drawn from the best-fit
values found with the SCB2 sample.

(i) Among the terms where a grating contribution appears,
the dominant one is given by p = 2(i2 + j 2), which is not
surprising as this term is built from the lowest power terms
and, as in the case of weak heating (δT small), ϕ01 � 1 and
ϕmn is a decreasing function of (m2 + n2) (appendix B).
Therefore, increasing the upper limits for the k, m, n,

and p expansions would not improve the determination
accuracy.

(ii) The coherent background contribution can be neglected in
the I d

ij expression of equations (B.1), (B.2), and (B.3) in
appendix B when the gr

ij and gi
ij dependent coefficients

of the time exponential terms are much smaller than
the coefficients independent of gr

ij and gi
ij of the first

exponential term due to the concentration grating only. We
can see that for the {10} diffracted signal, this condition is
verified if 5.68 × 10−5gr

10 and 2.24 × 10−2gi
10 are smaller

than 1.26 × 10−4, i.e. if gr
10 and gi

10 are less than 1 and
10−2, respectively. But for the {11} and {20} diffracted
signal, the background contribution can be neglected if
gr

ij and gi
ij are less than 10−1 and 10−3, respectively. In

our experiment, the best-fit values found for gr
ij and gi

ij

are about 10−3 to 5 × 10−3. The coherent background
contribution can then be neglected in the {10} diffracted
signal, but on the contrary, it cannot be neglected when
studying the {11} and {20} diffracted signals.

Gathering the above partial conclusions for the
determination of DM leads us to study only the {10} signal, to
consider only its p = 2 term, and to neglect any coherent
background. This observation made with one sample is
however quite general, and the coherent background can be
neglected in the {01} diffraction signal, with all the samples
exhibiting low enough diffuse scattering, i.e. with all the
samples we studied. These conclusions also validate previous
FRS works [11–16, 21, 22].

For further determination of ST , we will use the above
conclusion about the determination of DM : we will study only
the {10} signal, consider only its p = 2 term, and neglect
any coherent background. Will these approximations still
hold when studying highly concentrated colloids where strong
absorption or large optical scattering is seen?

7.2. Results on translational nanoparticle diffusion

The above best-fit procedure gives a relaxation time of 6.5 s
and therefore a nanoparticle diffusion coefficient, DM , of
26.5 × 10−12 m2 s−1 (equation (35)) with �i = 82.5 µm.
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Table 3. The nanoparticle diffusion coefficients, DM , are measured using both interferential and grid FRS setups, either according to the
method given in section 6 with the SCB2 surfacted ferrofluid or according to the method given in [21] with the other samples. The
hydrodynamic nanoparticle diameter, dH , is found from DM through Stokes–Einstein’s equation using results from two-dimensional
experiments when available and interferential ones when not. The effective coating thickness, eef , is defined by (dH − dV

m )/2. S∗
T is the

reduced Soret coefficient (S∗
T = ST /�). Values for DM and S∗

T given here are averages from many experiments. The Soret mobility, µS ,
which characterizes the Soret velocity response to a temperature gradient, is found through equation (47). In this table, the symbol ≈ before
a number indicates a value estimated from nearby data.

1012 DM (m2 s−1) S∗
T = ST /� (K−1) 10−9 µS (kg−1 s)

Surfacted Pulsed Hg arc Pulsed Hg arc Pulsed Hg arc
ferrofluids laser heating lamp heating dH (nm) eef (nm) laser heating lamp heating laser heating lamp heating

SCB1 30.6 29.6 15.0 2.9 0.131 0.104 290 223
SCB2 31.3 26.5 16.7 2.6 0.155 0.164 352 315
SCOA ≈31.5 31.5 14.1 2.8 0.041 0.043 93.4 98.2

Ionic
ferrofluids

IC1 27 ≈27 15.9 2.5 −0.123 −0.0839 −241 −164
IC2 49.3 ≈49.3 8.73 −0.2 −0.0142 −0.0138 −50.7 −49.3
IH 36 ≈36 11.9 0.5 −0.076 −0.11 −198 −287

With a cyclohexane viscosity, η, of 0.97 × 10−3 Pa s at 20˚C
[44], it gives a hydrodynamic diameter, dH , of 16.7 nm,
which is in good agreement with the mean volume average
magnetic diameter of about 11.5 nm found from magnetization
measurements (table 1) if we take the thicknesses of the
nonmagnetic layer (0.8–1.0 nm) and the surfactant molecule
layer (∼2 nm) into account [42, 43].

The values (averages from many measurements) we obtain
for DM and dH with different ionic and surfacted samples
are summed up in table 3. Noting that the hydrodynamic
diameter is a volume averaged diameter, the dH values can
be connected tentatively with those of dV

m shown in table 1 by
defining an effective coating thickness, eef , as (dH −dV

m )/2 (see
table 3). Experiments are performed with both, interferential
and grid, FRS setups; it is seen clearly that both setups provide
consistent results. With both setups, diffraction measurements
are performed only at the first-order of diffraction, as allowed
by the above conclusion (section 7.1), with the only exception
of the above study performed with the sample SCB2 using
the grid set-up. Our different samples exhibit quite similar
diffusion characteristics, with the noticeable exception of the
sample IC2. With surfacted ferrofluids, the effective coating
thickness is remarkably constant, whatever the surfactant, and
consistent with the above data in [42, 43]. The ionic samples
have various effective coating thicknesses and in particular a
‘small’ negative value is found with sample IC2. This last
value is not inconsistent if it is remembered that eef is the
difference between two data that do not come strictly from the
same distribution laws (magnetic core and hydrodynamic), but
anyway with this sample, the average citrate layer must be very
thin (see further comments on ST ).

8. Determination of the Soret coefficient

For determination of the Soret coefficient according to the two-
timescale model presented in section 4.2, it is necessary to be
able to distinguish in the diffraction signal the part of the signal
due to the concentration grating alone from that given by the
superposition of both thermal and nanoparticle concentration
modulations. It is made possible by using a mercury arc lamp,

whose intensity is rather well approximated as

I (t) = π

2
I0| sin(ωt)|, (37)

where I0 is again the mean value of I (t); note I (t) is modulated
at the frequency of the rectified power supply voltage (F =
2(ω/2π)). As the thermal relaxation time, τ th

mn (0.2–2 ms) is
much shorter than the heating time period (τ = 1/F = 10 ms),
the sample temperature follows the time variation of the heating
light intensity according to (see equation (16))

Tmn = π

2
cmnWτ th

mnI0| sin(ωt)|, (38)

whereas as the relaxation time, τM
mn, of the nanoparticle

grating is larger than τ (τM
mn ≈ 0.5–5 s), the volume fraction

modulation components tend to the steady state value, �S
mn

(see equation (21)). Similarly, under this nanoparticle-
concentration steady state condition, ϕmn can be expressed as
(equation (25))

ϕmn =
(

2πl

λ
cmnWτ th

mnI0

) (
π

2

∂n′

∂T
| sin(ωt)| − ∂n′

∂�
ST

)
∀(m, n) �= (0, 0). (39)

As with our samples, we have ∂n′/∂T < 0 and ∂n′/∂� >

0, the two elementary refractive index gratings due to the
temperature and nanoparticle concentration modulations are
in phase if the nanoparticles move towards colder regions;
conversely, if nanoparticles move towards warmer regions, the
two gratings have opposite phases.

As shown in section 7, k > 1 terms and high order ϕmn

components give negligible contributions to I d
10(t), at least

with our set-up and our samples; the coherent background
contribution has been shown to be negligible too. Therefore,
I d

10(t) is expressed accurately enough by taking only k = 1
and ϕ10 (or ϕ01) in equation (26) and setting �Ec(u, v) = �0
in equation (27). In the following lines, the incoherent
background is omitted, but it is easy to take into account when
it is measurable.

At the quasi-steady state of the nanoparticle volume
fraction, the first-order diffracted intensity of the probe beam,
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(a)

(c)

(b)

(d)

Figure 3. Theoretical first-order diffracted intensity, I d
10(t), curves can take four different shapes according to the value of the parameter X

(equation (40)). The shape of each experimental I d
10(t) curve is compared with the four theoretical ones so as to choose in what domain X

lies (the sharp extrema in the experimental curves are sometimes not so easy to distinguish from the smooth ones). For each shape, a
formula is given to determine ST from the experimental data, NF , I�, and IT � (equation (46)).

I d
10(t), can then be approximated as

I d
10(t) ∝ I ∗(ϕ10)

2 = I ∗
(

π2l

λ
c10Wτ th

10I0
∂n′

∂T

)2

×(| sin(ωt)| + X)2, (40)

where X is a dimensionless quantity defined as

X = 2

π
NF ST , (41)

NF being a temperature-dimensioned calibration factor
defined as follows:

NF = −∂n′/∂�

∂n′/∂T
. (42)

Denoting by IT � the first-order diffracted intensity when both
gratings take place simultaneously, the thermal grating being
at its maximum, IT � is expressed as

IT � = I d
10|| sin(ωt)|=1 ∝ (1 + X)2, (43)

whereas when the nanoparticle volume fraction grating is the
only one in the sample, the first-order diffracted intensity,
denoted I�, is simply given by

I� = I d
10|| sin(ωt)|=0 ∝ X2. (44)

Equations (43) and (44) give the following relation between X

and the ratio I�/IT �:

X2

(
IT �

I� − 1

)
− 2X − 1 = 0. (45)

The value of ST is then determined by choosing the right
expression between the two solutions, S+

T and S−
T , expressed

as (equation (41))

S±
T = − π

2NF

1

1 ± √
IT �/I�

. (46)

The choice is made by comparing the shape of the experimental
I d

10(t) curve with the four possible different shapes that I d
10(t)

may have; all four are plotted in figure 3, and the corresponding
expression for determining ST is given for each of them.
The linear approximation used above leads to an algebraic
evaluation of ST that depends only on the ratio IT �/I� and
therefore where no absolute experimental determination of
light intensities is needed.

9. Soret effect with surfacted and ionic colloids

Figures 4(a) and (b) show typical intensity curves at a short
timescale for I d

10(t) during the quasi-steady state of the
nanoparticle volume fraction, with the samples SCB1—6.8%
and IC1, respectively. It is seen clearly that the temperature
contribution exhibits the heating light periodicity. With the
sample SCB1, the experimental I d

10(t) curve (figure 4(a)) has
the same shape as the one given in figure 3(a), thus proving
ST is positive. On the contrary, the Soret coefficient of the
sample IC1 is found to be negative because the experimental
I d

10(t) curve (figure 4(b)) has the figure 3(b) shape. However,
in these curves, surfacted colloids give, in proportion, a higher
thermal contribution than the ionic ones, and this phenomenon
was observed with almost all the other samples we studied (here
and in [23, 24]). This effect is easily understood by checking
equation (46) with the definition of NF (equation (42)) and
noting that, with our samples, |ST | is of the same order of
magnitude for both types of ferrofluids. As the value of ∂n′/∂�

is mostly ruled by the nature of the nanoparticle core, it is
of the same order of magnitude with our different samples
(table 1). On the contrary, ∂n′/∂T is mainly given by the
nature of the solvent; |∂n′/∂T | is about five times smaller with
water (the dispersion liquid of the ionic samples) than with
organic solvents in which the surfacted ferrofluids studied were
dispersed (see table 1).

In figures 5(a) and (b) are given experimental plots of ST

as a function of � with the samples SCOA (surfacted) and
IC2 (ionic), respectively. Note again that ST > 0 with the
surfacted sample, whereas ST < 0 with the ionic one. It is also
seen that ST is proportional to �, at least for � < 10%, which
confirms the results obtained previously with other ferrofluid
samples [23].
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(a)

(b)

0 1 2 3 4

Figure 4. (a) Typical short timescale response curve of the
first-order diffracted intensity, I d

10(t), during the particle volume
fraction quasi-steady state; the experiment is performed with a
BNE-surfacted ferrofluid dispersed in cyclohexane (sample
SCB1—6.8%). The experimental curve has the same shape as the
theoretical one shown in figure 3(a) (ST > 0). The refraction index
gratings due to both temperature and concentration modulations are
in phase, proving nanoparticles move towards the coldest regions.
(b) Typical short timescale response curve of the first-order
diffracted intensity, I d

10(t), during the particle volume fraction
quasi-steady state; the experiment is performed with a citrated ionic
ferrofluid (sample IC1). The experimental curve has the same shape
as the theoretical one shown in figure 3(b) (ST < 0). The refraction
index gratings due to both temperature and concentration
modulations have opposite phases, proving nanoparticles move
towards the warmest regions.

The volume fraction flow due to the Soret effect alone
(−DMST

�∇T ) can also be expressed as the product ��vS , where
�vS is the nanoparticle mean drift velocity due to the Soret effect
alone. The Soret mobility, µS , defined by the expression
�vS = −µS

�∇(kBT ) [23], can be then determined from the
following relation,

µS = DM

ST (�)

kB�
, (47)

where Boltzmann’s constant, kB , is used to keep to µS the usual
mobility dimension. As ST is observed to be proportional to
the nanoparticle volume fraction, �, in any type (surfacted
or ionic) of ferrofluid and as DM does not vary very much
within the same concentration range (see equation (5) in [22]),
µS is seen not to depend on � for � < 10%. The Soret

(a)

(b)
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Figure 5. (a) Plot of the Soret coefficient, ST , as a function of �
with the surfacted sample SCOA. The experiments are performed
with the interferential FRS set-up (�) and the new grid FRS set-up
( ). Consistent results are provided by the two setups. A linear
regression made only with the new FRS set-up results gives
S∗

T = ST /� = 0.033 K−1. (b) Plot of the Soret coefficient, ST , as a
function of � with the ionic sample IC2. The experiments are
performed with the FRS laser set-up (�) and the new FRS grid
set-up ( ). Consistent results are provided by the two setups.
A linear regression made only with the new FRS set-up results gives
S∗

T = ST /� = −0.014 K−1.

effect is then proved to be a nanoparticle property, at least
for � < 10%. The algebraic values of S∗

T (S∗
T = ST /�)

and µS we obtained with different ionic and surfacted samples
are summed up in table 3. Experiments performed with both
(interferential and grid) FRS setups provide consistent results.
No variation with the incident intensity, I0, has been observed
in ST when studying a citrated sample, which is consistent with
the linearized master equations of the Soret effect.

An improvement in the precision of the knowledge about
the origin of the Soret effect can be attained. Almost all the
ferrofluids we studied (here and in [23, 24]) were made of
nanoparticles that share the same magnetic maghemite core,
but these samples differ in the nanoparticle coating and the
dispersion liquid. The origin of the Soret effect is then to
be found in the whole formed by the (surfactant or ionic)
nanoparticle coating and the region of the dispersion liquid
in the vicinity of each nanoparticle [45–47]; the thickness of
this ‘surrounding whole’ could be estimated tentatively by the
effective thickness, eef , defined in section 7.2. The two SCB
samples were not synthesized and studied in the same years, but
they clearly exhibit, rather close properties. On the contrary,
the samples SCB and SCOA, which differ in the nature of the
surfactant molecules (table 1), give quite different positive
values for S∗

T although their eef values are very near. The
two citrated ionic samples, IC1 and IC2, give quite different
values for S∗

T and eef (table 3); however, it is worth noting that
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the sample that gives a small value of |S∗
T | is the one where eef

has been seen to be very small too. These remarks should be
followed by deeper investigations.

10. Conclusion

The new FRS set-up presented in this paper for determination
of the nanoparticle diffusion coefficient and the Soret
coefficient, is cheaper and smaller than our previous
interferential one using a pulsed heating laser. With this new
set-up, the image period, �i , in the sample can be varied by
moving the grid in the object space of the lens, taking grids
with other periods or varying the focal length of the camera
lens; the diffracting geometry can even be modified by making
images of objects that are not grids. Furthermore, the heating
light spectrum can be modified easily by using optical filters
or by changing, at a low cost, the nature of the arc lamp.
The two-dimensional nanoparticle volume fraction grating
induced by the Soret effect opens a way for observing two-
dimensional movements of nanoparticles. It could be used for
studying nanoparticle transport along two directions submitted
to different physical conditions simultaneously (such as those
induced by gravity or an external magnetic field).

This simple experimental set-up can be used easily to
study the mass transport properties of other colloids that
have transport characteristics near those of ferrofluids. Other
materials such as binary mixtures that exhibit a larger mass
diffusion coefficient (DM ≈ 10−10 m2 s−1) could be studied
with such a set-up as their mass diffusion coefficient would
be still much smaller than their thermal diffusion coefficient
(Dth ≈ 10−8–10−7 m2 s−1 [14, 16]), but it would be needed to
change the period, �i , of the image in the sample or to increase
the frequency of the heating light (when possible) so as to
maintain the validity of the present model (τM > τ > τ th).

In this paper, the first-order approximation used in
section 7 for determination of Soret properties is justified by
theoretical and experimental studies (section 6) on intensities
diffracted at high orders during the vanishing process of
the nanoparticle volume fraction grating. Therefore the
numerical calculations given in appendix B, which need
previous knowledge of ST and absolute determination of
I0, are useless from now. In this case, only relative light
intensity measurements are needed for determinations of
ST and DM because they are used in ratios such as that
seen in equation (46). Nevertheless, the above complete
theoretical study could be useful for analyzing results from
experiments exhibiting larger coherent backgrounds or non-
negligible intensities diffracted at high orders.

The nanoparticle diffusion properties and the experimental
values of the Soret coefficient, S∗

T , in ferrofluid samples
obtained with this set-up are of the same order of
magnitude as those obtained previously from interferential
FRS experiments. As was observed before, the Soret
coefficient of the citrated and acidic ionic samples is found to
be negative, in contrast to that measured with our surfacted
ones (positive sign of ST ). It confirms the fact that the
Soret coefficient of a ferrofluid is dependent strongly on the
nature of the carrier liquid, the nature of the stabilization,
and the surface charge of the nanoparticle; by studying other
types of ferrofluids, this dependence has been shown to be

rather complicated [24]. The non-dependence on � we
observe for µS seems to exclude any nanoparticle–nanoparticle
interaction; although it is quite normal at low nanoparticle
concentrations, this observation is more surprising at high �

because, for instance, the mean distance between two near
nanoparticles is only about twice their diameter at � =
10%. To our knowledge, no theoretical model published so
far sheds light on the Soret effect mechanism in magnetic
colloids completely [45,46], but a general framework has been
proposed recently [47].
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Appendix A. Small δT and δΦ assumption validity

The linearized model presented above is valid if DM and ST

can be considered as constant all over the sample, i.e. if δT

and δ� are small enough (equation (1)). Taking the following
data on the surfacted sample SCB2, 2K ′S

th /lρcp = 4000 s−1,
Dth = 1.0 × 10−7 m2 s−1, and ρcp = 1.5 × 106 J m−3 K−1

from [23], with ST /� = 0.164 K−1 (table 3), we finally find
by noting T̄ij = 〈Tij (t)〉 (equation (16))

T̄00 = 0.0498 K T̄20 = −0.0137 K
T̄10 = −0.0303 K T̄21 = 0.008 74 K
T̄11 = 0.0187 K T̄22 = 0.004 35 K

T̄30 = −0.002 78 K
T̄31 = 0.001 82 K
T̄32 = 0.000 97 K
T̄33 = 0.000 22 K

and (equation (20))

�S
00 = 0 �S

20 = 4.72 × 10−5

�S
10 = 1.04 × 10−4 �S

21 = −3.01 × 10−5

�S
11 = −6.46 × 10−5 �S

22 = −1.5 × 10−5

�S
30 = 9.59 × 10−6

�S
31 = −6.29 × 10−6

�S
32 = −3.33 × 10−6

�S
33 = −7.89 × 10−7

under the following experimental conditions: � = 3.3% and
l = 10 µm, �i = 82.5 µm, r = 5/7, and I0 = 7077 W m−2.
The first two conditions lead to a value for α of 52 700 m−1

and a rate of power absorption by the sample of 53%. The
maximum values for δT and δ�/� are then found to be
0.0026 K and 0.5%, respectively, which is small enough
to validate the linear approximations used in the model
(equations (17), (38), (21), and (12)).

Appendix B. Expansions for the intensity, Id
ijp,

diffracted by a decaying concentration grating

To find explicit numerical expressions for I d
ijp (equation (36)),

the coefficients ϕ0
mn have to be determined previously from
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equations (14), (15), and (31). Taking the same experimental
conditions as in appendix A, we find

ϕ0
10 = 1.12 × 10−2 ϕ0

20 = 5.06 × 10−3

ϕ0
11 = −0.693 × 10−2 ϕ0

21 = −3.23 × 10−3

ϕ0
22 = −1.61 × 10−3

ϕ0
30 = 10.3 × 10−4

ϕ0
31 = −6.75 × 10−4

ϕ0
32 = −3.57 × 10−4

ϕ0
33 = −0.85 × 10−4

As assumed in the model, ϕ0
mn is much less than 1 and clearly

a decreasing function of (m2 + n2). Using the data of table 2,
it gives the following expressions for the three first diffracted
intensities I d

ij :

I d
10(t) = I nc

10 + C10

[
(gr

10)
2 + (gi

10)
2 + 2.24 × 10−2gi

10

× exp

(
− t

τM

)
+ 1.26 × 10−4 exp

(
− 2t

τM

)

+5.68 × 10−5gr
10 exp

(
− 3t

τM

) ]
, (B.1)

I d
11(t) = I nc

11 + C11

[
(gr

11)
2 + (gi

11)
2 − (1.26 × 10−4gr

11

+1.39 × 10−2gi
11) exp

(
− 2t

τM

)
+ 4.8 × 10−5

× exp

(
− 4t

τM

)
+ 7.13 × 10−5gr

11 exp

(
− 6t

τM

)]
, (B.2)

I d
20(t) = I nc

20 + C20

[
(gr

20)
2 + (gi

20)
2 − 6.28 × 10−5gr

20

× exp

(
− 2t

τM

)
+ (−1.20 × 10−5gr

20 + 1.01 × 10−2gi
20)

× exp

(
− 4t

τM

)
+ 3.6 × 10−5gr

20 exp

(
− 6t

τM

)

+2.56 × 10−5 exp

(
− 8t

τM

) ]
, (B.3)

where Cij are proportionality coefficients related to
photometry measurements. The three expansions above are
limited to a level p defined by the lowest term that does not
depend on gr

ij or gi
ij (other high p terms are retained when

having the same order of magnitude).
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[6] Li W B, Segré P N, Gammon R W and Sengers J V 1994
Physica A 204 399
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