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Abstract

The response of a magnetic fluid microdrop to a rotating magnetic field is studied numerically in 2D by the boundary
element method (BEM). On increasing field frequency, the motion of the droplet goes through a transition from a state
where the droplet follows the magnetic field with a constant phase lag to a state where the phase lag increases in a series of
kinks when the field frequency passes the critical one. The equations of the droplet motion are derived analytically and good

agreement with the BEM is obtained.

It is well known that for a rigid magnetic dipole there is
a critical angular velocity of the rotating field below which
the rotation of particle and field are synchronized [1].
Similar phenomena are observed for a bound pair of soft
magnetic particles [2,3]. The interplay between magnetic
and viscous forces leads to various modes of motion,
which in Refs. [2,3] are classified as (1) steady-state
rotations; (2) ‘jerky’ (rotations with stops and backward
motions); and (3) localized oscillations. Transitions be-
tween these modes are well described by a single non-lin-
ear equation and depend on the frequency and amplitude
of the rotating field, the fluid viscosity and the magnetic
susceptibility. It is found both experimentally and numeri-
cally [3] that for a pair of free spheres phase locking takes
place in an elliptical polarized field 0/0,=1/2,1/4,
etc., where {2 is the average angular frequency of the
pair-rotation and {2 is the angular frequency of the
magnetic field rotation. The magnetic fluid (MF) micro-
droplet in the rotating magnetic field includes a wide
variety of very complex phenomena in the high-frequency
range [4]. In the low-frequency range, an elongated droplet
rotates with magnetic field frequency, with the surface
tension playing an equivalent role to that of the soft
binding in a pair of magnetic spheres.

The scope of the present paper is the behaviour of the
MF droplet in the intermediate frequency range of a
rotating magnetic field, studied by a numerical simulation.
In the two-dimensional (2D) case, we apply the boundary
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integral equation technique (BEM: the boundary element
method) considered previously in Refs. [5,6]. We assume
that the magnetic permeability is constant ( u = const), and
that gravity and inertia forces are negligible due to the
very small size of the droplet. Hence the effective surface
forces have only the following normal component:

fr=o/Ry~ (= 1)(nH +H?)/(87). (1)

Here ¢ is the surface tension, R is the local curvature
radius, and w is the magnetic permeability of the MF.
Both the normal and tangential components H,, H, of the
magnetic field strength on the boundary are found as
solutions of the corresponding boundary integral equations
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Calculated field components are used for effective surface
forces (1). The surface motion is calculated using the
potential theory of viscous flow, described in Refs. [7,8].
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The corresponding boundary integral equation for the ve-
locity v of the fluid on the boundary of the droplet in 2D
is
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7 stands for viscosity, the subscripts ‘in’ denotes the MF
droplet and ‘ex” the surrounding fluid. In the present paper
only the results obtained by BEM for the case of equal
viscosities (n;, = n,,), are presented. In this case Eq. (4)
simplifies to

vx)=— G(x, x') dl. (%)
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The boundary contour is approximated by a finite
number of marker points connected together by interpolat-
ing cubic spline functions. As in Ref. [6], the distance of
marker points separation is proportional to the local radius

of curvature within limits which prevent the absence of
points at places on the contour with small curvature. This
non-equidistant distribution of marker points gives a better
accuracy at droplet tips where the contour curvature is
larger.

The approximation technique for Egs. (2), (3), (5),
described in detail in Refs. [5,9], is based on linear interpo-
lation of the corresponding unknowns (H,, H,, v;) be-
tween marker points along the droplet contour and applica-
tion of the Galerkin method. The singularities are sub-
tracted and integrated analytically, The first and second
derivatives along the boundary contour (x,, x;, y;, y;;)
are calculated by differentiating the corresponding cubic
spline functions. For a rotating field we have Hyy=
Hy cos Qyt, Hyy=Hy sin £t The sets of linear alge-
braic equations, obtained for Egs. (2), (3) are solved using
Gaussian elimination The approximation of (5) leads to a
sum. In each time step, magnetic field components are
calculated and applied for the surface movement velocity
calculation. Once the velocity has been calculated, the
position of the interface is advanced using an explicit
Euler method. After each time step the droplet dimensions
are rescaled to improve the volume conservation.

Further in this paper, a dimensionless form for physical
parameters and geometric dimensions of droplet is used.
The external field strength H,, the surface tension o, the
external fluid viscosity 1,, and the unperturbed droplet
(ie. circle) radius R are chosen as characteristic values.
Physical processes are characterized by the magnetic Bond
number B, = HZR /o, the surface energy of a circular 2D
droplet per unit length of a cylinder E,=2%Ro, the
characteristic time interval for droplet motion 7=, R/¢
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Fig. 1. (a) The orientation of a droplet with tespect to the magnetic field and laboratory coordinates. (b) The wave-like perturbation

propagation.
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and the ratio of viscosities A= /m,. So we have
dimensionless coordinates ¥=x/R, §=y/R, a dimen-
sionless velocity & = vr/R, a dimensionless magnetic field
H=H/H,, a dimensionless frequency of field rotation
Q= 07 and a dimensionless time 7 =¢/7. All the further
formulae are written in a dimensionless form dropping the
tilde; in special cases the dimensional form is denoted by a
circumflex (7).

The behaviour of the MF droplet in a rotating magnetic
field can be understood on the basis of a simple model,
derived under the assumption of an elliptical shape of the
2D droplet. The configuration of the elliptical droplet is
described by its large semi-axis a = 4/R and the phase lag
¢ of the large semi-axis with respect to the field direction
(see Fig. 1(a)). Let us separate the motion of the elliptical
2D droplet into two processes. The first is an extension—
contraction motion caused by the surface tension and the
magnetic field, acting on the droplet in a direction determi-
nated by the phase lag . The total energy (magnetic plus
surface contributions) of the elliptic 2D droplet [9] is, with
respect to the field direction (in a dimensionless form),
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where

E(e) = _/:ﬂvl —(esin x)* dx

is the complete elliptic integral of the first kind, e? =1 —
b%/a?

In this process, the total energy changes are balanced
by an energy dissipation in the viscous flow inside and
outside the droplet:

E=E +E, = — =42, )
The energy dissipation inside the droplet is approximated
as an homogeneous extension—contraction motion (v, =
x'a/a, vy = —y'a/a, see Fig. 1(a) for x', y'). It gives

En=—2Ma/a)". (8)

For the energy dissipation outside the droplet the following
approximation is used:

Ey= —2p(a/a)’, ©)

where p is some phenomenological parameter of the mode].

Collecting Eqs. (6)-(9) together, we obtain the droplet
motion equation for large semi-axis a:
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is the complete elliptic integral of the second kind.

The second process is the droplet rotation, character-
ized by the balance of the viscous and magnetic torques
(N;+N_ =0). The viscous forces are determinated by a
creeping flow around the rotating elliptic cylinder, which
could be derived using the method described for a general
ellipsoid in Ref. [10], modifying this method for the case
of 2D. The obtained viscous torque (the dimensional z-
component, per unit length of a cylinder) is

N;= =278, Q&+ b?). (11)
It has to be balanced by a magnetic torque
sin 29, (p—~ 1)%(8% - 5?)
ab = —.
8 (ﬁ-&-/.l,b)(&,u-i-b)
(12)

The angular frequency of an ellipse rotation in laboratory
coordinates is (see Fig. 1(a) for the definitions of ¢,, ¢y)

‘Q=(1ba=¢H_7§=QH_1§' (13)

Collecting together Eqs. (11)-(13) we obtain the dimen-
sionless droplet motion equation for the phase lag ©:

N, = [M 4§ x B =13
N

m

$=0y - Q, sin 29, (14)
where

g _Ba_ (u-Die(a-1)

C 16w (@ p)(a+1)(at+ 1)

At low magnetic field rotation frequencies {2, the MF
droplet rotates uniformly with a frequency equal to that of
the field. Steady-state rotations are studied using both the
BEM and the simple model, and the results for A =1 are
shown in Fig. 2 in coordinates (x/, y') which rotate to-
gether with the magnetic field so that the y’-axis is pointed
in the field direction (see Fig. 1(a)). A typical number of
marker points for BEM calculations is N = 200. For the
simple model simulations, the value p=1 is used. The
solid curve in Fig. 2 represents the positions of the elliptic
droplet tips for a continuously varying frequency {2,;. The
end of the large semi-axis with coordinates x!, = a sin &,
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Fig. 2. (a),(b) Steady-state configurations of a MF droplet in a rotating field. (c) Paths leading to the steady state. Results for different field
rotation frequencies. Thick solid lines and triangles: simple motion model; dotted lines and crosses: BEM; dashed line in (a), (b): unstable
simple model configurations. In (c) thin solid lines are simple model paths to steady state, initial state is given by solid circles; dashed lines

are paths calculated by BEM.

y, =a cos & is taken as the tip. In Fig. 2(a),(b) the solid
curve is continued by a dashed one, which corresponds to
the unstable simple model configurations. Triangles show
the stable configurations at definite frequencies (2. The
steady-state configurations obtained by the BEM at defi-
nite frequencies {2, are shown by crosses, the pointed
curve represents the interpolation of these results for a
continuously varying frequency {25. In the case of the
BEM the most extended point from the centre of the

droplet is taken as the tip of the droplet, and the phase lag
is calculated for this point. The comparison between the
BEM calculations and the simple motion equations calcu-
lation shows a fairly good agreement. Discrepancies could
be explained by two causes. The first is that the shape of a
droplet in BEM calculations (see also Fig. 3) has more
rounded tips, and hence the droplet has a smaller exten-
sion. The second is that the simple model does not account
for the wave-like perturbation propagation on the free
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Fig. 3. Series of droplet shapes at fixed time moments for transient motion in laboratory coordinates. The upper series is for the BEM, the
lower for the simple model simulation. Dashed arrows represent the field direction; the length of arrow is 3R.
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surface, caused by asymmetric stresses (see Fig. 1(b)). At
low values of the elliptic extension (a < 2) these stresses
cause a motion of the droplet surface which dominates
over the pure rotational motion. Thus the simple model
simulation shows the lack of stable configurations (Fig.
2(a)) for large field rotation frequencies when a4 is small.

Two different types of steady-state behaviour are ob-
served (see Fig. 2(a),(b)) depending on the magnetic field
strength. These two types are separated by the critical
value of the magnetic Bond number, which turns out to be
the threshold value of the instability of a 2D droplet in a
high-frequency rotating field with respect to the elliptical
deformations [9]: B, =6m(u+1)°/(u—1° If the
magnetic Bond number is less than the critical one (Bmu =
28.14, = 15), the extension of the droplet in stationary
configurations is diminishing with increase of the rotating
field frequency, and the maximal phase lag value 7 /4 is
reached at infinite frequency as it is shown in Fig. 2(a).
For the magnetic Bond numbers larger than the critical one
the maximal phase lag (= /4) is reached already at a
finite critical frequency (3., (Fig. 2(b)). Phase portraits of
the system are presented in Fig. 2(c), they are in accor-
dance with the BEM simulation. As one can see, the
dynamics of the droplet in the subcritical range of angular
frequencies (£, < 3,,) is characterized by the existence
of a stable focus, whatever are the initial conditions. In the
case of anticlockwise field rotation, the tip of the droplet
near the focus rotates clockwise in coordinates (x/, y').
The imaginary part of the perturbation decrement when
£, is approached is increasing in comparison with the
real part, thus causing the rise of the droplet tip rotation
around the focus.

In Fig. 3 a transient droplet rotation is shown by a
series of droplet shapes and corresponding field orienta-
tions. One can see that there is a fair agreement between
the simple model and the BEM for large droplet extensions
and some discrepancies for small ones. If B, > B, then
for large field rotation frequencies ({2, > (2,) the motion
of the droplet turns out to be jerky and just similarly to the
case of the two bound spheres [2,3] it can be characterized
as rotation with stops and backward motions. The jerky
rotation of the droplet could be described by average
angular frequency {2. Fixing the value of a (A> 1, or
0> ), the integration of the droplet motion equa-
tions gives [3]

0=0,-/02-0Z. (15)

The value of a could be obtained from the non-linear
equation (10) by &¢=0. The results of simple model
simulation are shown in Fig. 4 for two different magnetic
Bond number values (B, = 30, B,, = 50). As one can see,
the critical frequency increases with the increase of B,
Another important conclusion could be drawn about the
dependence of the critical frequency on A: finite values of
A cause stabilization of droplet configurations if the phase
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Fig. 4. Plot of the average angular frequency of the droplet
rotation versus the field rotation frequency. A = corresponds to
the analytical solution for fixed a.

lag ¥ is slightly greater than the critical value w /4.
Increasing A (the viscosity of the droplet), the critical
frequency decreases and tends to its analytical value (2,
(14). This effect could be explained by the small perturba-
tions from the steady-state configuration a,, ¥,. Denoting
the right part functions in Egs. (10), (14) by g(a, 9),
respectively, A(a, &), the perturbation amplitude depends
on time as exp((g, + hy)t/2), where g, =0g/da, hy=
0h /00 at a4, ¥, Beyond 7 /4, hy> 0, thus the stability
criterion is g, < —hg. From Eq. (10) it follows that
8, 1/(A + p), hence obviously an increase of A causes
the loss of stability.

Test simulations show that in the case of an elliptic
polarized rotating magnetic field, phase locking is found
like in Ref. [3].
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