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Abstract

The formation of chain-like aggregates in polydisperse ferrofluids is studied theoretically on the basis of the model

bidisperse system, consisting of two fractions of small and large ferroparticles. Various topological structures of chains,

containing the particles of both fractions, are considered. The equilibrium chain distribution is obtained with the help of

the density functional approach. It was found that in real conditions the majority of large particles and the minority of

small particles are connected in short chains of 1–3 large particles in the middle and 1–2 small particles at the edges. The

chain distribution is greatly dependent on the mole portion of the large particle fraction.

r 2002 Published by Elsevier Science B.V.

Keywords: Ferrofluids; Chain aggregates; Polydispersity

It is well known that the presence of various types of

aggregates influences greatly the macroscopical proper-

ties of magnetic fluids. Due to the non-central dipole–

dipole interaction, the most typical aggregate structure

in ferrofluids is a chain one. The chain formation was

studied numerically and theoretically (see, for example

Refs. [1–5]), but only the monodisperse model systems

were considered. Usually such studies are based on

Frenkel’s theory [6] and the following assumptions are

adopted: (a) particles are treated as identical spheres of

volume v with constant magnetic moment; (b) structures

that differ from those of linear chains are ignored; (c)

only the interaction between the nearest neighboring

particles in every chain is taken into account; (d)

interaction between chains is not considered.

The final problem is to find the minimum of free

energy functional (1) under condition (2) (see, for

example, Ref. [2]):

F ¼ kT
XN
n¼1

g nð Þ ln
gðnÞv

e
� eðn � 1Þ

� �
-min; ð1Þ

r
v
¼

XN
n¼1

ngðnÞ: ð2Þ

Here kT is the thermal energy, n is the number of particles

in a chain. The function gðnÞ stands for the number of

chains, consisting of n particles, per unit volume.

Expression (1) follows from Frenkel’s theory of hetero-

phase fluctuations [6]; the first term is the free energy of an

ideal gas of chains, and the second term describes the

energy of a chain consisting of n particles with the

dimensionless energy of interparticle interaction e > 0:
Condition (2) represents the mass balance equation, and r
has the meaning of volume particle concentration.

Naturally, the presence of a large particle fraction in

practically used ferrofluids demands for taking into

account the polydispersity in theoretical models. The

peculiarities brought by the polydispersity into the chain

formation process can be estimated even in an example

of a two-fraction system. So, the bidisperse model is

regarded. To use Frenkel’s theory and obtain the free

energy functional, one needs to find the energy of all

topologically different chains. The algorithm, allowing

to account for all chains having different energies and

consequently different structures, was worked out.

Let n and m be the number of large and small particles

per chain, respectively; vector E ¼ ða; b; gÞ—the energy

vector: a; b; g > 0—the energies of the coupling dipole–

dipole interaction between the particles of fractions

‘‘large–large’’, ‘‘small–small’’ and ‘‘large–small’’ divided*Corresponding author.
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by thermal energy kT ; respectively. Thus, the energies of
all chains, consisting of n large and m small particles, are

described by the scalar product /E;SiS; where co-

ordinates of Si ¼ ðai ; bi; ciÞ are the numbers of a; b; g
interparticle bonds and satisfy

ai þ bi þ ci ¼ n þ m � 1: ð3Þ

All different solutions of Eq. (3) are shown in Fig. 1, but

not all of them describe the structure of real chains;

hence by imposing additional restrictions on Si; the

number of topologically different chain structures

Iðn; mÞ could be obtained. Thus, functional (4) and

mass balance equations (5) and (6) are the natural

generalization of problem (1)–(2), where the function

gði; n; mÞ stands for the number of chains per unit

volume of the system with structure iAfIðn; mÞg;
consisting of n and m particles, and rn; rm; vn and

vm—the particle concentrations and volumes of frac-

tions n and m:

F ¼ kT
XN

nþm>0
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Using the Lagrange method, expression (7) for

gði; n; mÞ follows from problem (4)–(6):

gði; n;m; Þ ¼
expðl1n þ l2m þ/Si;ESÞ

vn
; ð7Þ

where l1 and l2 are the Lagrange multipliers, which

should be determined from balance conditions (5) and

(6) numerically.

Moving from a real continuous particle distribution

by size to a model bidisperse one, it is reasonable to

adopt the following principles [7]: (a) the size of one of

the fractions xm should be chosen as the mean diameter

of the continuous distribution; (b) fraction mole

portions nn; nm and size xn of the large particle fraction

should be determined by the conditions of equality of

the experimentally observed saturation magnetization

and initial susceptibility; that is, the mean magnetic

moment and the mean squared magnetic moment. Thus,

a model bidisperse distribution has the following

properties. The main fraction consists of small particles

with magnetic core diameter xmB729 nm, and mole

portion nmB90298%. The second fraction consists of

small number of large particles xnB14217 nm and

vnB5210%. Allowing for the existence of the nonmag-

netic and solvent layers for magnetite particles at room

temperatures, the following values of the coupling

energies are obtained: bB0:220:3; gB121:5; aB527:
Hence, the main fraction consists of particles with the

weak interparticle attraction, whereas the interaction

between large particles is quite intensive.

It appeared that not only the energies of interaction

but also the volume concentrations influence the number

and structure of chains. The chain formation in the

above-mentioned bidisperse ferrofluid was analyzed at

magnetic phase concentration 1–5%. It was found that

the majority of small particles B40–80% and only B2–

10% of large particles were nonaggregated. Due to the

great amount of m particles in the system, their couples

are sufficiently probable. The majority of chains consist

of large particles in the middle and two–three small

particles at the edges. The most typical topological chain

configuration appears to be as shown in Fig. 2. Most of

such chains contain one large particle and two small

ones. Chains consisting of several small particles, placed

in the middle of a chain, are extremely rare.

The problem of calculation of the mean number of

particles per chain is worth discussing. The mean

number of large particles per chain is observed to be

B2–3. Nevertheless, the total mean number of particles

Fig. 1. Surface of solutions of Eq. (3). This surface allows us to

determine the number of a; b; g interparticle bonds (ai; bi ; ci,

respectively) for each topologically various structure of the

chain, consisting of n large particles and m small ones.

n

Fig. 2. Most typical topological chain structure. The chains

consist of 1–2 large particles in the middle and 1–2 small

particles along the edges.
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per chain, defined as the total number of chains divided

by the total number of particles, slowly grows with the

increasing concentration and the decreasing temperature

and varies over B1.1–2.0. These low values are caused

by the large number of single small particles. But as it

was observed, the majority of large particles were

connected in chains. So, it is important to find the

mean chain length /NS:

/NS ¼

P
N

nþmX2

PIðn;mÞ
i¼1 ðm þ nÞgði; n;mÞP

N

nþmX2

PIðn;mÞ
i¼1 gði; n;mÞ

: ð8Þ

Here we state n þ mX2 because the nonaggregated

particles are excluded from the account. This number—

/NSFstrongly depends on the concentration of n

fraction and less on temperature. Fig. 3 demonstrates

the dependence of /NS on the mole portion nn of the

large particle fraction under different temperatures. The

presence of minimum is the consequence of the most

probable chain structure transformation.

In conclusion, the analysis presented above shows

that in a model bidisperse ferrofluid, almost all the large

particle fraction is connected in chains. However, the

total number of chains is comparatively small due to the

low molar portion of this fraction. In spite of the high

small particle fraction molar portion the majority of

them are nonaggregated. This is the result of the very

weak interparticle dipole–dipole interaction between the

small particles.
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Fig. 3. Dependence of the mean chain length /NS on the mole

portion nn of the large particle fraction in bidisperse ferrofluid

with the magnetic phase concentration 5% for various

temperatures.
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