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Abstract

We study the evolution of a system of drop-like aggregates suspended in a macroscopically
homogeneous magnetic 
uid made metastable by strengthening of an external magnetic �eld
with account of both the reduction in metastability and the continuing initiation of new nuclei
in the metastable surroundings. The growing aggregates are highly elongated ellipsoidal shaped
and are distributed over volume. The distribution density is governed by a kinetic equation
which neglects of 
uctuations in the growth rate of a single aggregate. The approximate solutions
for supersaturation and diverse characteristics of the distribution density has been found as func-
tions of time. An in
uence of emerging aggregates on the macroscopic ferrocolloid properties
is illustrated by the example of the time dependence of magnetization and e�ective viscosity.
c© 1998 Elsevier Science B.V. All rights reserved.

PACS: 82.60.Nh; 64.60.My; 75.50.Pp
Keywords: Kinetics; Phase separation; Magnetic 
uids

1. Introduction

The break up thermodynamic stability of a colloid is followed by the origination
of initial critical nuclei of a new colloidal phase, by their transformation into macro-
scopic drop-like aggregates and by ensuing growth of those aggregates in a metastable
environment. This phase separation can occur as a result of a fall of temperature, an
increase in the ionic strength of a solvent, and the presence of a polymeric solute
that is not capable of being completely adsorbed by the surface of colloidal particles
[ 1–5]. The aggregates are characterized by the volume particle concentration that
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di�ers from that of the ambient colloid, and the whole process strikingly resembles a
gas–liquid-phase transition in molecular systems [1,2]. In magnetic 
uids still another
type of phase separation is experimentally observed, i.e. phase separation in a magnetic
�eld [ 6–12]. Such a phenomenon looks like a non-trivial phase transition of the con-
densation type, induced by an external magnetic �eld. In this case, the demagnetization
e�ects lead to an approximately ellipsoidal shape of the drop-like aggregates stretched
along the external �eld direction [ 8–10,12]. Common methods of equilibrium thermo-
dynamics su�ce to understand under what conditions the phase separation is bound
to start [1,2,5,13]. However, they are certainly inapplicable to elucidate what happens
next and so must be replaced by suitable kinetic methods.
In a theoretical research it is reasonable to distinguish three basic stages of the

evolution of a particulate system that follows the preliminary stage of the development
of a metastable state [14]. The �rst one corresponds to the initiation of critical new
phase nuclei which further form either macroscopic new phase elements in a metastable
molecular system or drop-like aggregates in a colloid. A fact of great consequence for a
theoretical treatment is that, during this initial stage, the state of the colloid is practically
not a�ected by the emerging nuclei so that each of them can correctly be regarded as
evolving under the constant metastability condition. The second, intermediate stage
covers a combined process of the growth of existing aggregates and of the initiation
of additional nuclei in the circumstance of permanently reducing metastability of the
parent colloid. An analysis of this stage is greatly complicated by the presence of
negative feedback between the process of aggregate formation and growth dependent
on a transient degree of metastability (e.g., a value of the supersaturation) and by the
gradual reduction of metastability by the growing aggregates. At last, the third stage
of �nal coalescence corresponds to the Ostwald ripening process when the dependence
is of primary importance but the origination of new nuclei almost ceases and may be
safely overlooked.
As far as the �rst stage is concerned, a relevant theory can be put forward by

following common trends speci�c to the theory of nucleation in molecular systems
[14,15]. Recently, such a theory has been worked out for colloids in Ref. [16]. An initial
stage of the origination of drop-like aggregates in a ferrocolloid made metastable by
strengthening of an external magnetic �eld has been considered in Ref. [17]. As shown
in Ref. [17], at real conditions the supercritical aggregate nuclei can be regarded as
highly elongated ellipsoids of revolution even in a weak magnetic �eld (H ∼ 10–50Oe).
By taking into account the interrelations between the aggregate volume and elongation
degree [8,9,12,17], the expressions for the growth rate of a highly elongated aggregate,
for the critical nucleus volume and for the nucleation rate have been obtained under the
conditions when the emerging nuclei are still not large enough to a�ect the ferrocolloid
properties appreciably.
The necessity of allowing simultaneously for the nucleation and the growth of new

phase elements has been con�rmed in Refs. [18,19]. Nevertheless, models suggested
in the last papers rely, in fact, on a concept of constant nucleation rate, which may
actually be true merely at the initial stage of the process.
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There are a great deal of works in which attempts were made to study the time de-
pendence of the spectrum of a particulate system evolving in a metastable environment.
Among those, papers on batch crystallization [20,21], on bulk condensation of a vapour
[22,23] and on the initiation of a reaction at a solid surface by means of origination
and subsequent evolution of islands of a new phase [24,25] have to be mentioned.
On the whole, the application of such models has met with appreciable success as
pertains to the formulation of a general method of tackling the problem concerning the
dynamics of the intermediate stage of the new phase evolution. An e�ective method of
overcoming the existing mathematical di�culties has been demonstrated in Ref. [21]
on example of a batch crystallization process. In addition, a similar approach has been
applied to the problem of evolution of spherical drop-like aggregates in colloids with
central [26] and dipole [27] interparticle interactions. Recently, this approach has been
generalized to situations when there are noticeable 
uctuations of the aggregates growth
rate and the on
ow of colloidal particles to a growing aggregate from the bulk of a
metastable colloid is of essentially non-linear nature [28].
A theory of Ostwald ripening was developed by Lifshitz and Slyozov [29] (also

recently in Ref. [30]) under complete neglect of 
uctuations of the growth rate of a
single aggregate.
In the case of large initial degree of metastability, the phase separation may originate

from the thermodynamic absolute unstable state. The kinetics of such a process, known
as spinodal decomposition (see, for example, Refs. [31,32]), possesses some di�erences
of principal nature. Analysis of the spinodal decomposition phenomenon in magnetic

uids a�ected by the external �eld was carried out in Refs. [33,34].
All the theories mentioned above have been carried out with respect to spherical

or quasi-spherical shape of new phase elements. In the present research we will focus
our attention on the fundamental problem concerning the in
uence of a magnetic �eld
on the kinetics of the intermediate stage of a ferrocolloid phase separation from a
metastable state. We intend to consider the subsequent evolution of the assemblage of
ellipsoidal supercritical aggregates when the degree of metastability of the parent mag-
netic 
uid can no longer be thought of as invariable and independent of the assemblage
history.

2. Basic equations

Let us study the evolution of a system of drop-like ellipsoidal aggregates suspended
in a macroscopically homogeneous metastable magnetic 
uid at the intermediate stage
of phase transition under the conditions when both the reduction in metastability (the
decrease in the parent ferrocolloid supersaturation) and the continuing initiation of new
nuclei in the metastable surroundings are taken into account. The degree of metastability
is supposed rather small so that it is possible to consider the supercritical aggregate
nuclei as macroscopic objects. The growing aggregates are distributed over volume and
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the distribution density f(t; V ) is governed by a kinetic equation

@f
@t
+
@
@V

(
dV
dt
f
)
= 0; t¿0; V¿V∗ ; (1)

under complete neglect of 
uctuations of the di�usionally controlled growth rate of
single aggregate. We presume the function f(t; V ) to be normalized to the number
concentration N (t) of the aggregates. The determination of the quantity dV=dt as a
function of aggregate volume V has been the objective of Ref. [17]. In the case of
highly ellipsoid elongation, the aggregate volume growth rate may be approximately
written:

dV
dt
=

(
4�
3

)2=3 3D
’II

V 1=3 − V 1=3∗
c2=3∗ |ln(c∗=2)|

(
V
V∗

)�−1=3
�(t) ;

� =
3
7
− 5
7 ln (V∗=B)

− ln 2
ln(c∗=2) ln(V∗=B)

; B =
4�7�3

3H 6
�3I

(�II − �I )6 ; (2)

where V∗ and c∗ have the meaning of the volume and semiaxes ratio of the critical
aggregate, � is the absolute supersaturation of the metastable magnetic 
uid, and D is
the coe�cient of mutual Brownian di�usion of the ferroparticles down a concentration
gradient. The parameter B relates the aggregate volume V to the elongation degree
c : V ≈B=c7|ln c|3 [17]. This relationship is dependent on an external magnetic �eld
strength H0, on the interfacial tension � acting on the drop-like aggregate surface,
and on the magnetic permeabilities �I and �II of a dilute ferrocolloidal surroundings
with ferroparticle volume concentration ’I and of a dense magnetic 
uid substance
of the aggregate characterized by the concentration ’II (’II/’I ). For real magnetic

uid at separation conditions [ 8–12]: �∼ 5–10× 10−4 erg=cm2, H ∼ 50Oe, �I ∼ 1–2,
�II ∼ 20–40, the order of value of B may be easily de�ned: B∼ 10−23–10−25 cm3.
Considering that critical aggregate contains some tens or hundreds of ferroparticles, we
arrive at the strong ratio V∗=B∼ 106–108 and, consequently, the highly elongated shape
of supercritical aggregates, c6c∗. 1.
Initial and boundary conditions imposed upon physically meaningful solutions of

Eq. (1) are of the form

dV
dt
f
∣∣∣∣
V=V∗

= J [�(t)] = C�(t) exp
[
−E �20

�(t)2

]
; f(0; V ) = 0 : (3)

The above representation of the nucleation rate J results from Ref. [17]. Here
C ≈ const; �0 is an initial value of the supersaturation and E stands for the dimen-
sionless activation energy referred to initial supersaturation. The quantity E is com-
monly much larger than unity and depends on a magnetic �eld strength (see Table 1,
Ref. [17]).
In order to close the set of Eqs. (1)–(3) it is necessary to de�ne the supersatu-

ration as a function of parameters speci�c to an assemblage of growing aggregates.
A requirement of conservation of the overall number of ferroparticles in the system
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under study leads to the mass balance equation

�(t) = �0 − (’II − ’I )
∞∫
V∗

Vf(t; V )dV; �(0) = �0 : (4)

Since the characteristic volume of aggregates during the intermediate stage of their
growth considerably exceeds the volume of the critical nucleus, it is permissible to
regard the latter quantity as negligibly small V 1=3−V 1=3∗ ≈V 1=3 in the expression given
by Eq. (2). It is consistent with the neglect of possible coalescence processes speci�c
to this stage. The aggregate distribution density is clearly little a�ected by this simpli-
�cation only in the vicinity of the point V ∼V∗, but it does not change in the region
of interest V /V∗.
The set of Eqs. (1)–(4) includes only two external dimension parameters – the

mutual di�usivity D and the nucleation rate J . They enable us to construct time and
volume scales, t0 and V0, intrinsic to the evolution process under study:

V0 =

[(
4�
3

)2=3 D�0
’II J0

3

c2=3∗ |ln c∗|V�−1=3∗

]1=(2−�)
; t0 =

1
J0V0

; J0 = J (�0) : (5)

It is also convenient to introduce dimensionless variables and parameters according
to the relations

s =
V
V0
; � =

t
t0
; !(�) =

�(t)
�0

; q =
’II − ’I
�0

; F(�; s) = V 20f(t; V ) : (6)

Eqs. (1)–(4) in dimensionless variables (Eq. (6)) are

@F
@�
+ !(�)

@
@s
(F · s�) = 0; �¿0; s¿0;

ds
d�
= s�!(�) ;

F(0; s) = 0;
∣∣F · s�∣∣s=0 = exp[Eg(�)]; g(�) = 1− !(�)−2 ; (7)

!(�) = 1− q
∞∫
0

sF(�; s)ds; !(0) = 1 : (8)

It is this set that is investigated in the remainder of the paper.

3. Integral equation for the supersaturation

Let us introduce the new functions

u(�; s) = s�F(�; s); �(�) =

�∫
0

!(�′)d�′ : (9)

From Eq. (7) we get a boundary problem for u(�; s):

s−�
@u
@�
+
@u
@s
= 0; u(0; s) = 0; u(�; 0) = exp[Eg(�)] ; (10)
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which can be solved with the help of method of characteristics. The solution of kinetic
Eq. (7) satisfying the initial conditions can be written in a form

F(�; s) = s−� · u[�(�)− y(s)] · H [�(�)− y(s)]; y(s) =

s∫
0

x−� dx =
s1−�

1− � ;

(11)

where H (z) is the Heaviside step-function, and the function u(z) satis�es the boundary
condition, Eq. (10):

u[�(�)] = exp
{
E[1− !(�)−2]} : (12)

The characteristics of the partial di�erential Eq. (10) gives us the value at a time �
of dimensionless volume s(�; �) of an aggregate which appeared at a moment �:

y[s(�; �)] = s(�; �)1−�=(1− �) = �(�)− �(�) ;
sm(�) = s(�; 0) = [(1− �)�(�)]1=(1−�) : (13)

Here sm(�) can be considered as a maximal volume of aggregates. In order to make
use of Eq. (11) we need to know a functional dependence of the dimensionless su-
persaturation !(�) on the function �(�) de�ned in Eq. (9). This dependence has to
be found by means of substituting F(�; s) (Eq. (11)) into the mass balance equation
in Eq. (8):

!(�) = 1− q
sm(�)∫
0

s1−�u[�(�)− y(s)]ds ; (14)

where the upper limit of integration sm(�) appears after taking into account the Heav-
iside step-function H [� − y]. Changing the integration variable s to � according to
Eq. (13)

y(s) = �(�)− �; dy(s) = s−�ds = −d� ;
s = 0→ � = �(�); s = sm(�)→ � = 0 ;

and using Eqs. (12) and (13) we get an integral equation for the dimensionless super-
saturation as a function of �:

![�(�)] = 1− Q
�(�)∫
0

[�(�)− �]1=(1−�) exp{E[1− !(�)−2]}d� ;

Q = q(1− �)1=(1−�)∼ 5−10 : (15)

This equation describes the dynamics of changes in the supersaturation caused by the
growth of aggregates.
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4. Kinetics of the metastability reduction

The supersaturation is governed by the strongly non-linear functional integral equa-
tion given in Eq. (15) which could hardly be handled to yield an exact solution in an
explicit form. However, there is a large parameter in the exponent of the integrand in
Eq. (15) due to the dimensionless activation energy E of the critical nucleus formation
being much larger than unity. Since the function g(�) de�ned in Eq. (7) is negative,
there appears a sharply decreasing function in that integrand, and this gives the op-
portunity to get an approximate solution. The same approach is common in the theory
and has been put into e�ect through the use of an iteration method in Refs. [22,23]
and of the Laplace method in Refs. [21,27,28].
At small dimensionless times we get from Eq. (15) an asymptotic:

!(�)≈ 1; g(�)≈ 0; !(�)≈ 1− Q
�
��; � =

2− �
1− � ≈ 11

4
; (16)

the region of validity of which is obvious �. (�=Q)1=�. Time dependence of !(�)
can be estimated with due regard for the relation �(�)≈ � following from Eq. (33) at
small �:

!(�)≈ 1− Q
�
��; �. (�=Q)1=� ; (17)

instead of Eq. (16). At su�ciently large � an approximate solution of integral Eq. (15)
may be obtained under the conditions when the large values of parameter E is taken
into account. Since E is larger than unity and the function g(�) is negative (Eq. (7)),
exp[Eg(�)] is rapidly decreasing as � is growing. It shows, as usual, that the main
contribution to the integral in Eq. (15) is promoted by the nearest vicinity of the point
� = 0, which permits expanding the slowly changing function (�−�)1=(1−�) in a Taylor
series. Following Ref. [28] we get

!(�) = 1− Q
�∫
0

[
�1=(1−�) − 1

1− ��
�=(1−�)�+ · · ·

]
exp[Eg(�)]d� : (18)

For reasons given, the above integrals converge very quickly, which allows both
the upper limit of integration to be put equal to in�nity and small-time asymptotics
(Eq. (16)) to be used for !(�). Therefore, it is easy to obtain an approximate expression

![�(�)] = 1− �1�(�)
 + �2�(�)
−1 + · · · ; 
 = 1=(1− �)≈ 7=4 ;

�1 = Q

∞∫
0

exp[Eg(�)]d�; �2 = Q 


∞∫
0

�exp[Eg(�)]d� ;

g(�) = 1−
(
1− Q

�
��
)−2

; (19)
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which is valid at su�ciently large times from the beginning of the evolution process.
Coe�cients �j can be calculated with the help of the relation

exp[Eg(�)]≈ exp
(
−2EQ

�
��
)
;

following from Eq. (19), which yields after integration

�1≈ Q
�

(
�
2EQ

)1=�
�
(
1
�

)
≈ 0:99(E−4Q7)1=11∼ 1−1:5 ;

�2≈ Q

�

(
�
2EQ

)2=�
�
(
2
�

)
≈ 0:95(E−8Q3)1=11∼ 0:1–0:2 ; (20)

�(z) being the Eulerian gamma function. It can be readily demonstrated that not only
�2=�1≈ (EQ)−4=11. 1 but also �j+1=�j. 1 at any j = 1; 2; : : : It justi�es using merely
a few initial terms in the series in Eq. (18).
The di�erential equation d�(�)=d� = !(�) results from Eqs. (9) and (19). Its solution

at the evident initial condition �(0) = 0 is

� =

�(�)∫
0

d�
1− �1�
 + �2�
−1 : (21)

Asymptotics, Eqs. (19) and (21) are adequate at su�ciently large �(�). A corre-
sponding estimate gives the following restriction imposed on this function from below
Eqs. (19) and (21) to be valid:

�(�)¿(�=2EQ)1=�≈ 1:1(EQ)−4=11≈ �2=�1. 1 :

Thus, we have obtained a pertinent approximate solution of the integral equation
in Eq. (15) that determines relative supersaturation !(�) as an implicit function of
dimensionless time �(�).
It is worth noting that the usage of further terms of series in Eq. (18) is impossible

in a straightforward way because it would give rise to terms with negative exponents
of the type of �
−n; n = 2; 3; : : : ; 
−n ¡ 0, which diverge at � coming to zero. This is
due to violation of the necessary conditions of the transition from Eq. (18) to Eq. (19)
and, in particular, �j cannot be regarded now as independent of �. Allowance for such
a dependence brings about a correct but somewhat cumbersome mathematical problem
instead of the one that has been studied.
The behaviour of function !(�) in conformity with approximate formulae, Eqs. (19)–

(21), is demonstrated in Fig. 1. It agrees su�ciently well with results of an exact
numerical solution of the integral Eq. (15) which are shown in Fig. 1 by dots. This
proves the above approximation to be reasonably correct.
It should be noted that, in compliance with the developed theory, the supersaturation

entirely vanishes for a �nite time �∗ that can be presented, by virtue of Eq. (19),
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Fig. 1. Time dependence of the dimensionless supersaturation !(�) = �(t)=�0 (curves 1, 2 and dots) and
dimensionless aggregate concentration n(�) = N (t)V0 (curve 3) for a metastable magnetic 
uid character-
ized by the activation energy E = 18:3 (see Table 1, Ref. [1]); dots – numerical solution of the integral
Eq. (15), curve 1 – approximate expressions, Eqs. (19)–(21), curve 2 – small time asymptotics, Eq. (16).

through the approximate relation

�∗ = �
−1=

1 +

1


�2
�1
+ O

[(
�2
�1

)2]
: (22)

This inference is surely inaccurate because of the neglect of distinctions in the equi-
librium particle concentration of the parent magnetic 
uid at the surfaces of the ag-
gregates of di�erent volume. It amounts to ignoring processes of particle redistribution
between the aggregates which have much in common with coalescence and reconden-
sation processes in two-phase molecular systems. The latter processes a�ect the �nal
stage of the new phase formation in molecular and the Ostwald ripening process in
colloidal systems and should be accounted for during this late stage.
Eq. (22) permits an estimate of the duration of the second intermediate stage studied

here to be made as

�m≈ �−1=
1 = ��−11 ≈ �−4=71 ≈ (E16=77Q−4=11) : (23)

Values of �m corresponding to Eqs. (22) and (23) are to be found in accordance
with the de�nition of � in Eq. (9) and with allowance for the representation of !(�)
in Eq. (19).

5. Integral characteristics of a system of aggregates

The evolution of the system of growing aggregates can sometimes be described
with a su�cient accuracy with the help of moments of the aggregate size distribution.
Among those moments are the number concentration N (t) of the aggregates and the
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mean dimensionless volume 〈s(�)〉:

n(�) = N (t)V0 =

∞∫
0

F(�; s)ds =

�(�)∫
0

exp[Eg(�)]d� ;

〈s(�)〉 = 1
n(�)

∞∫
0

sF(�; s)ds =
(1− �)

n(�)

�(�)∫
0

(�− �)
 exp[Eg(�)]d� ; (24)

n(�) being the number of aggregates within the volume V0. At small times we obtain,
similar to Eq. (26):

n(�)≈ �(�)≈ �. 1; 〈s(�)〉 ≈ (1− �)
�(�)
=� : (25)

At large times, when Eq. (19) is approximately valid, we have

n(�)≈
(

�
2EQ

)1=� �(1=�)
�

=
�1
Q

≈ 0:99(EQ)−4=11 ;

〈s(�)〉 ≈ (1− �)
[�(�)
 − �2�(�)
−1=�1] ; (26)

where �(�) is implicitly expressed in Eq. (21). These formulae are derived analogously
to those in the preceding section.
Dependence on dimensionless time of n(�) is shown also in Fig. 1. It can be seen that

n(�) becomes practically constant and coincides with its asymptotic value in Eq. (26)
after a rather short length of time. This is easy to understand because the nucleation
rate represents a sharply increasing exponential function of the supersaturation and
becomes negligible when the latter quantity falls below a certain level. After that, new
critical nuclei cease to occur, and the evolution proceeds at the expense of di�usional
exchange by particles alone. As is seen from Fig. 1, the process of formation of new
supercritical nuclei (increase in aggregate concentration n(�)) goes on during the period
of time when the small-time asymptotic solution, Eq. (16), is adequate (see curves 2
and 3). This result lends support to the validity of using the small-time asymptotics,
Eq. (16), in exponential function in the integral Eq. (18).
Time dependence of the mean volume of the aggregates is illustrated in Fig. 2. At

the end of the intermediate stage of the evolution (i.e., at �≈ �m; �m being de�ned by
Eqs. (23) and (21) the mean aggregate volume reaches its maximal value that can be
shown to be equal to

〈s(�m)〉 ≈ �−11 ≈ 0:43(E4Q−7)1=11 :

The reduction of metastability during the intermediate stage is formally attended by
the increasing of the critical nucleus volume V∗(t)∼�(t)−3, s∗(�)∼!(�)−3. Such ex-
pected dependence is shown in the Fig. 2 (curve 3). Dimensionless critical volume
s∗(�) is much less than the mean volume 〈s(�)〉 everywhere over the region of time
�¡�m. This gives proof to the neglect of recondensation process during the interme-
diate stage of phase transition.
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Fig. 2. Time dependence of the maximum aggregate volume sm(�), Eq. (13) (curve 1) and the mean aggregate
volume 〈s(�)〉, Eq. (26) (curve 2) in comparison with the expected time dependence of the critical aggregate
volume s∗(�)∼!(�)−3 (curve 3).

The growth of an ellipsoidal aggregate is accompanied by its elongation. Whereas the
aggregate volume increases by several orders of magnitude, the corresponding semiaxes
ratio decreases in several times. It can be readily seen from the shape condition of an
aggregate (see Section 1 and Ref. [17]).

6. Evolution of the volume distribution density

The volume distribution density is obtained in a dimensionless form in Eqs. (11)
and (12) and is fully determined if !(�) and, consequently, �(�) are known. That is
why the above results concerning the decline of the supersaturation allow F(�; s) to
be calculated as a function of dimensionless time and of relevant parameters. In the
�eld of adequacy of large-time asymptotics, Eq. (19), the distribution density can be
written in a form

F(�; s) = s−�exp{Eg[�(�)− y(s)]}H [�(�)− y(s)] ; (27)

g(z) = 1− (1− �1z
 + �2z
−1)−2 ;
where the function y(s) is de�ned in Eq. (11) and the functional relation between �
and �(�) is given by the Eq. (21).
The evolution of the dimensionless distribution density is presented in Fig. 3 where

the measure of an area under the curves is equal to the dimensionless aggregate concen-
tration n(�). At small times the distribution density constitutes a very high and narrow
function of the dimensionless aggregate volume. This is caused by the active nucleation
process at the beginning of the intermediate stage. After the period of continuing ini-
tiation of new nuclei the aggregate concentration in the system becomes constant (see
curve 3 in the Fig. 1). It means that subsequent evolution of the distribution density
goes on under the condition of constancy of the area measure under the curve. As is
clear from Eqs. (2) and (7) the various points of the function F(�; s) move towards the
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Fig. 3. Dimensionless distribution density at subsequent time moments: � = �m=2 (curve 1); 3�m=4 (curve
2); �m (curve 3).

right in the Fig. 3 (i.e., in the space of dimensionless volumes) at a rate ds=d�. Since
the rate of such motion represents the increasing function of dimensionless volume
s, then the function F(�; s) becomes more spreading. This means that the distribution
density of the aggregates by volume is characterized by increasing dispersion. In accor-
dance with this, the maximum value of the function F(�; s) is the decreasing function
of s (see curves 1–3 in Fig. 3).
The emergence of aggregates a�ects rheological, thermophysical and other properties

of magnetic 
uids to considerable extent, their evolution making those properties time
dependent. By using the corresponding methods of the macroscopic theory of multi-
phase and heterogeneous media, the time evolution of such properties may be predicted
with the help of the known aggregate distribution density, Eq. (27). To demonstrate
these time dependences we shall consider the evolution of ferrocolloid magnetization
and e�ective viscosity during phase-separation process.

7. Magnetization of separating ferrocolloid

As growing aggregates have the shape of highly elongated ellipsoids of revolution,
the demagnetization e�ects become negligibly small. In this case the magnetization
of the separating system Msep can be additively de�ned under the mixture rule through
the quasi-equilibrium magnetizations of coexisting phases I and II. The latter depends
on the current values of ferroparticle concentration in phases and should be determined
with allowance for interparticle dipole–dipole interaction of ferroparticle magnetic mo-
ments. Analysis of this problem on the basis of thermodynamic perturbation theory
[13] has resulted in a simple expression which most advantageously describes the ex-
perimental ferrocolloid magnetization curves [13,35]:

M (’; �) = ML(’; �)
[
1 +

4�
3
dML(’; �)

d�

]
;

ML(’; �) = Ms(’)(coth �− 1=�); � = mH=kT : (28)
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Fig. 4. Time dependence of the relative magnetization M = Msep(�)=M (’0) from expressions, Eqs. (28)
and (29).

Here � is the Langevin parameter de�ned as an energy of magnetic moment m,
interacted with an external magnetic �eld H , related to thermal energy kT . The mag-
netization of an ideal paramagnetic gas ML depends on the dimensionless magnetic
�eld � and saturation magnetization Ms being a function of ferroparticle concen-
tration ’.
Assuming the relaxation time of magnetization in phases to quasi-equilibrium values

to be small in comparison with the characteristic evolution time of the aggregate system,
we come to approximate but qualitatively correct formulae for the magnetization of
ferrocolloid during phase-separation process:

Msep(�) = M [’1(�)][1− K(�)] +M (’II )K(�) ;

K(�) =

∞∫
0

Vf(t; V )dV =
’0 − ’1(�)
’II − ’I =

�0
’II − ’I [1− !(�)] ;

’0 = ’I + �0; ’1(�) = ’I + �(�); M (’II )/M (’1) : (29)

Here ’0 is an initial concentration of ferrocolloid transferred in a metastable state by
strengthening of the external magnetic �eld.
Fig. 4 demonstrates the time dependence of magnetization Msep related to magne-

tization M (’0) of the initial homogeneous metastable ferrocolloid. The magnetization
of highly concentrated drop-like aggregates exceeds by far the corresponding one in
a metastable environment. A general fraction of the system volume K(�), engaged in
aggregates, also increases with time, reaching its maximum value (’0−’I )=(’II −’I )
at � → ∞. The in
uence of these factors surpasses the reduction of magnetization
in diluted phase caused by a decrease of the current concentration ’1. As a result
the magnetization of separating system is increased with time (Fig. 4). This means, in
the phase-separation region the ferrocolloid magnetostatic curve becomes dependent
on the measurement time. Such an e�ect was experimentally found in Ref. [36],
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an in
uence of the aggregation process has been suggested as a possible
explanation.
When the intermediate stage of phase transition is completed, the magnetization Msep

exceeds the magnetization M (’0) on some tens of percents. It leads to the occurrence
of characteristic bowing on ferrocolloid magnetization curve observed in experiments
[37]. The presence of similar bowings may be considered as one of the indirect factors
indicating a phase separation of magnetic 
uids.

8. E�ective viscosity

Let us consider a stationary 
ow of an uncompressible magnetic 
uid containing
drop-like highly elongated aggregates stretched along an external �eld direction. The

ow is assumed to be so weak that the following conditions hold true:
– The shear Peclet number, constructed on the sizes of all agreggates representing
interests and on the di�usion coe�cient of single ferroparticles, is much less than
unity. Therefore, it is possible to neglect the in
uence of the convective particle 
ux
on the aggregate surfaces. Thus, the aggregate growth rate does not depend on the
magnetic 
uid 
ow.

– The viscous hydrodynamic stresses on the aggregate surfaces are much less than
both capillary and Maxwell stresses. Consequently, the shape of aggregates can be
also considered as independent of the ferrocolloid 
ow.

– The hydrodynamic moment of forces, turning aggregate, is more weak as compared
to the magnetic torque. Therefore, the aggregates may be regarded as stationary
oriented and the axis of symmetry of each of them di�ers little from an external
�eld direction.

– The e�ective viscosity of the concentrated substance of aggregates is appreciably
higher than the viscosity of diluted metastable magnetic 
uid. Especially, it is dis-
played far from the critical point of phase transition. Thus, as a �rst approximation,
we may accept that the strongly viscous drop-like aggregates exert such e�ect on
the magnetic 
uid 
ow as hard particles coincidently sized and shaped.

– The distance between aggregates is rather large that it is possible to neglect their
hydrodynamic and magnetic interactions.
By the above assumptions and using the known results of the hydromechanics of

suspension-containing ellipsoidal particles [38], the components of macroscopic hydro-
dynamic stress tensor are de�ned by the expression

�ik = �sik + �
a
ik ; (30)

�sik = �0


2
ik +

∞∫
0

Vf(t; V )[−�(V )ejel
jl�ik + 2�(V )
ik

+(�(V ) + �(V )�(V ))(eiej
jk + ekej
ji) + �(V )(!ijejek + !kjejei)
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+ (�(V )− 2�(V )�(V ))eiekejel
jl]dV

 ;

�aik =
1
2

∞∫
0

f(t; V )q(V )(eiejHjHk − ekejHjHi)dV; i; j; k; l = x; y; z :

Here ei are the components of the unit vector e directed toward the aggregate axis
of symmetry, �0 stands for the viscosity of the liquid carrier, �ik is the Kronecker
delta-tensor, !ik = (@ui=@xk − @uk=@xi)=2, 
ik = (@ui=@xk + @uk=@xi)=2, and ui are the
components of the ferrocolloid velocity vector. The quantities 
ik and !ik have the
meaning of the symmetric and anti-symmetric parts of the tensor of the 
ow velocity
gradient, repeating indices in Eq. (30) mean summation. The meaning of functions
�(V ); �(V ); �(V ); �(V ); �(V ); q(V ); �(V ) are given in the Appendix.
Linearly on !ik and 
ik approximation, the vector e components in the expression

for the symmetric part of the stress tensor �s need to be treated such as in a stationary
medium. In the case of a coordinate system with symmetry axis z parallel to an external
�eld H direction, the unit vector e components in a stationary ferrocolloid can be
de�ned as ei = �iz. The non-equilibrium values of vector e components, appearing in
the expression for the anti-symmetric part of the stress tensor �a, can be found with
the help of a balance equation for the quasi-hard ellipsoidal aggregate placed in a shear

ow [38]:

!lm + �(V )ej(em
lj − el
mj) = q(V )
6�0V�(V )

ekHk(elHm − emHl) ; (31)

where the function �(V ) is given in the Appendix. With the help of Eq. (31) the
components el may be simply determined for any geometry of a 
ow. Let us consider
three characteristic examples.
1. The 
ow velocity u is perpendicular to the aggregate axis of symmetry and the
value u linearly changes along this axis, i.e.

ux = 2!z; ! = const; uy = uz = 0; 
xz = 
zx = !xz = −!zx = ! :
In this case for e�ective magnetic 
uid viscosity we get from Eqs. (30) and (31):

�xz = 2�1!; �1 = �0


1 +

∞∫
0

Vf(t; V )
[
�(V ) +

1
2
(�(V ) + �(V )�(V ) + �(V ))

+
3
2
�(V )(1 + �(V ))

]
dV


 : (32)

2. The 
ow velocity is aligned with the aggregate axis of symmetry and its value
linearly varies along the perpendicular axis, i.e.

uz = 2!x; ux = uy = 0; 
xz = 
zx = !zx = −!xz = ! ; �zx = 2�2!;
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Fig. 5. Time evolution of the relative e�ective viscosity for three given 
ow geometries, �gures at the curves
correspond to expressions, Eqs. (32)–(34). The e�ective viscosity �1 for the �rst 
ow geometry is presented
with the scale factor 10−3.

�2 = �0


1 +

∞∫
0

Vf(t; V )
[
�(V ) +

1
2
(�(V ) + �(V )�(V )− �(V ))

+
3
2
�(V )(1− �(V ))

]
dV


 : (33)

3. The 
ow velocity is directed perpendicular to the aggregate axis of symmetry and
its value linearly changes along another perpendicular axis, i.e.

ux = 2!y; uy = uz = 0; 
xy = 
yx = !xy = −!yx = ! ;

�xy = 2�3!; �3 = �0


1 +

∞∫
0

Vf(t; V )�(V )dV


 : (34)

Fig. 5 shows the time evolution of the e�ective viscosities in all given geometries
of ferrocolloid shear 
ow. In the second and third cases the e�ective viscosity slowly
increases with time. The presence of drop-like aggregates results in that, upon termi-
nation of the intermediate stage of phase transition the e�ective viscosity on 10–20%
exceeds the viscosity of a homogeneous magnetic 
uid.
Another situation develops in the �rst case. At the given geometry the drop-like

aggregates are extended across the 
ow, and the gradient aspires to turn them along the

ow direction. Stronger counteracting in
uence of an external magnetic �eld brings in
the occurrence of large additional hydrodynamic stresses. Because of this, the e�ective
viscosity rapidly grows on some decimal orders. Naturally, in this case, the approach,
Eq. (30), cannot be applicable and the curve 1 in Fig. 5 has a purely illustrative
character.
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9. Discussion

While summing up �ndings, we are able to state that the evolution of the system
of drop-like ellipsoidal aggregates in a metastable magnetic 
uid at the stage of major
emergence of those aggregates can be described with a high accuracy by purely analyt-
ical methods, with merely occasional application of simple numerical methods. Essen-
tially, the same inference pertains the numerous processes of the new phase formation in
molecular and colloid systems. As compared with the latter, the magnetic-�eld-induced
phase separation in magnetic 
uids is substantially governed by the mutual dependence
between the volume of an aggregate and its shape. An elongation of the aggregate dur-
ing its growth is attended by an increase of both the interfacial surface and the concen-
tration gradient in the vicinity of the side surface. The latter is caused by the relative
decrease (as compared with a sphere) of transverse size of an ellipsiod. Consequently,
the aggregate elongation results in the higher value of growth rate in comparison with
the growth of spherical droplets. On the other hand, the large aggregate surface hin-
ders the process of formation of initial aggregates and tends to an increase of the
critical nucleus activation energy. Nevertheless, the rate of nucleation and the kinet-
ics of intermediate stage of phase transition go on more rapidly in a magnetic 
uid
made metastable by an external �eld. This is due to the fact that a small strengthening
of magnetic �eld implies a signi�cant increase of initial supersaturation (see Table 1
in Ref. [1]). The latter exerts primary control over the kinetics of phase-separation
process.
General evolution laws happen to be universal in the case of the di�usion kinetics

of phase separation, however, when expressed in terms of special time variable �(�)
de�ned in Eq. (9). These universal laws for the di�usion-limited aggregate growth in
the small-time and large-time asymptotics have the form

!(�)≈ 1− Q��=�; 〈s(�)〉 ∼ �
; n(�)≈ �; �. (�=Q)1=� ;

!(�)≈ 1− �1�
 + �2�
−1; 〈s(�)〉 ∼ (�
 − �1�
−1=�2); n(�)≈ (QE)−1=� ;

�1≈Q(EQ)−1=�; �2≈Q(EQ)−2=�; �m≈ �−1=
1 ; � ¿ �2=�1 ;

both for the magnetic 
uid phase separation induced by an external �eld and for the
phase separation of a colloid [ 5–7] made metastable by a fall of temperature or an
increase in the ionic strength of a solvent [8]. All the di�erences consist in the various
values of exponents � and 
. In the case of magnetic �eld induced phase separation
we get from Sections 3 and 4: 
≈ 7=4, �≈ 11=4. When the phase separation takes
place under the absence of an external �eld, the corresponding value of exponents
were determined in Ref. [7]: 
 = 3=2, � = 5=2.
The pertinent volume and time scales of the evolution process equal V0 and t0

de�ned by Eq. (5). The �rst scale is representative of the ultimate volume of an
aggregate attained at the end of the intermediate stage of the evolution. Similarly, t0
has the meaning of the period of time during which the supersaturation falls to zero.
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Measurements of those scales in actual phase-separation process help to enable one to
judge about the nucleation rate J .
The continuing nucleation plays a role only at an early phase of intermediate stage

because of an abrupt drop in the nucleation rate caused by a seemingly insigni�cant
decrease in the supersaturation. (If a transient value of the supersaturation is only �ve
percent smaller than the initial one, this rate can be proved to be diminished by a
factor exp(0.1E) which can be quite tremendous at large E.) After that the nucleation
may be neglected.
Unfortunately, the authors have failed to �nd out reliable experiments of the kinetics

of phase-separation process in magnetic 
uids which could su�ce to provide for a
conclusive check of the developed theory. However, it seems to be certain that the
theory is implicitly corroborated by the general bulk of available experimental evidence.
Moreover, there is an excellent agreement of the theory of the same kind [21] with
some experiments on batch crystallization, which lends an additional support to the
theory of the present paper as well.
In conclusion, we point out that the above asymptotic expression of the distribution

of the aggregates over volume presents an initial condition that should be used while
dealing with the �nal stage of Ostwald ripening. An analysis, of this �nal stage presents
a tempting object of future research.
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Appendix

The functions used in Section 8 are expressed through characteristic elliptic integrals

�0 =

∞∫
0

ds
(a2 + s)Q

; �0 =

∞∫
0

ds
(b2 + s)Q

; �′0 =

∞∫
0

ds
(b2 + s)2Q

;

�′0 =

∞∫
0

ds
(a2 + s)(b2 + s)Q

; �n0 =

∞∫
0

s ds
(b2 + s)2Q

;

�′′0 =

∞∫
0

s ds
(a2 + s)(b2 + s)Q

;

Q = (b2 + s)
√
(a2 + s) :
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Such integrals arise during the solving of the hydrodynamic problems on a 
ow around
a particle in the shape of an extended ellipsoid of revolution [38]. Strictly speaking, the
quantities used in Section 8 �; �; �; �; �; q; �; � are the functions of the ellipsoid shape
factor c = b=a (a and b stand for the ellipsoid semi-axes). In the considered case of
high-elongated drop-like aggregates (c. 1), we have from Ref. [38]

�(V ) = �[c(V )] = 1=ab4�′0≈ 2; �(V ) = �[c(V )] = (1− c2)=(1 + c2)≈ 1 ;
�(V ) = �[c(V )] = 3�[c(V )]�[c(V )]≈ − 1=c2 ln c;
q(V ) = V (�II − 1)2=4�(�II + 1) ;

�(V ) = �[c(V )] =
4

(a2 + b2)ab2�′0
− 2
ab4�′0

≈O(c2) ;

�(V ) = �[c(V )] =
2�′′0

ab4�0�′′0
− 8
ab2(a2 + b2)�′0

+
2

ab4�′0
;

�(V ) = �[c(V )] =
2(�′′0 − �′′0 ) + 3ab2(�0�′′0 − �0�′′0 )

3AB4�′0�
′′
0

;

�(V ) = �[c(V )] =
2
3

a2 + b2

ab2(a2�0 + b2�0)
≈ − 1=3c2 ln c :

The dependence of these functions on aggregate volume V in Eqs. (32)–(34) can be
received under the condition when the interrelation between the volume and the shape
of the growing aggregates is taken into account (see Section (2) and Ref. [17]).
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