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Abstract

Equilibrium thermodynamical characteristics of ferrosmectics are estimated under conditions
when both magnetic and steric interparticle interactions are taken into account. Deformation and
condensation phase transitions in ferrosmectics are studied. c© 2001 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Interest of investigators in compositions of magnetic colloidal particles suspended in
liquid crystal systems has increased (see, for example, Refs. [1–5]) in recent years. This
is explained by the fact that response of these compositions to external magnetic ;eld
is much more than those of pure liquid crystals. The possibility to control the inner
structure of magneto-liquid crystal systems, and, therefore, their optical, rheological
and other macroscopical properties using moderate or weak magnetic ;elds attracts the
attention of researchers to these systems.
Smectic liquid crystals, contained one-domain ferromagnetic particles embedded in-

side their lyotropic layers, are called the ferrosmectics. These systems were synthesised
by Fabre with collaborators and studied actively [4–9]. Very interesting peculiarities
of structure and phase transitions in these systems have been discovered.
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Fig. 1. Sketch of ferrosmectic structure. Circles – particles, L – lyotropic layers, W – water layers.

Theoretical models of ferrosmectics have not been developed practically. For exam-
ple, in Ref. [5] the model of Lorenz–Weiss mean-;eld approximation is used to take
into account eEects of magnetodipole interparticle interaction. However, such mean-;eld
models are too rough even for ordinary ferrocolloids on low-molecular base. For ex-
ample, they predict a ferromagnetic phase transition, which is principally impossible in
ferrocolloids. One can expect that the error of these models for lamellar systems, such
as ferrosmectics, might be more than the error for ordinary ferrocolloids.
A phenomenological model of structural deformations in ferrosmectics was suggested

in Ref. [10]. This model does not take into account the important peculiarities of
magnetic interparticle interaction in these systems and does not allow to calculate
macroscopical properties of samples (for example, components of tensor of magnetic
susceptibility).
The attempt to obtain thermodynamical relations for ferrosmectics on the basis of

regular methods of statistical physics was undertaken in Ref. [11]. Unfortunately, some
errors were made in this work. Our aim now is to develop consistent statistical the-
ory of equilibrium thermodynamical properties of ferrosmectics and to analyse phase
transitions in these systems. At this point we will improve the errors of Ref. [11].
We suppose that the ferrosmectic has the same inner structure as samples in experi-

ments [4,9]. Namely, lyotropic layers, containing ferroparticles, alternate with the layers
of low-molecular liquid (“water”) (Fig. 1). Ferroparticles are supposed to be identical
spheres with a constant magnetic moment. Particles cannot move inside the lyotropic
layers and leave them. The diameter of a particle 2ap equals approximately the width
of the lyotropic layers a1 and the following inequality 2ap ¡a1 ¡ 4ap holds. For the
sake of de;niteness we assume smectic layers to be immovable on all boundaries of
a sample. We neglect the interaction of molecules of both the lyotropic layers and
“water” ones with the magnetic ;eld. The magnetic ;eld H is assumed to be small
enough to use the linear law of magnetization.

2. The free energy of the system of ferroparticles in nondeformed sample

Let us introduce a cartesian coordinate system X; Y; Z with the axis OZ normal to
layers of nondeformed ferrosmectic. Let the number of layers per unit of length in
the OZ direction be �= l−1 (l= a1 + a0; a0 is the width of the “water” layer), n the
number of the particles per unit square of lyotropic layer. Then c = n� is the number
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of the ferroparticles per unit volume of the sample. Let H1 be magnetic ;eld inside
the lyotropic layers, T be the absolute temperature in energetic units, �1 = mH1=T is
the mean dimensionless ;eld in the layers.
The volume density of free energy fp of the particles system can be represented in

the following form:

fp = f1 + fd ; (1)

where f1 is the free energy density of ideal gas of the particles in the ;eld H1, fd is
the part of fp, which occurs because of the magnetic interparticle interaction.
We estimate the energy f1 using the well-known Langevine formulae

f1 =−cT ln
sh�1
�1

≈ −1
6
Tc�21; �1�1 : (2)

The main problem of the theory is estimation of the magnitude fd. In order to prevent
any intuitive constructions, we use a regular method of thermodynamic perturbation
theory [12,13].
According to the perturbation theory, fd can be written as follows:

fd =−TcnG ; (3)

G =
1
2

(
4��1
sh�1

)2 ∫
’(Z)exp(�1(e1 + e2))

[
exp

(
−Ud(e1; e2; r)

T

)
− 1

]
de1 de2 dr ;

e1;2 =
m1;2

m
:

Here m1 and m2 are the magnetic moments of two interacting particles, Ud is the
potential of their magnetodipole interaction, r is the radius-vector, connecting the cen-
tres of these particles, ’(Z) is the one-particle distribution function along the axis OZ .
Integration in Eq. (3) is made so that the particles do not overlap.
Taking into account that the particles are in the lyotropic layers, one can write

’(Z) ≈ �(Z − lp); p= 0;±1;±2; : : : ; (4)

where � (x) is the delta function.
The perturbation theory approximation is suitable, if max|Ud=T | is not more than

unity. In this situation one can expand the exponent of Eq. (3) as a power series in
Ud=T and write

exp
(
−Ud

T

)
≈ 1− Ud

T
+

1
2

(
Ud

T

)2

: (5)

Substituting Eq. (5) into Eq. (3) and, taking into account the strong inequality �1�1,
after simple calculations one obtains

G ≈ [g0 + g1X (�21X + �21Y ) + g1Z�21Z ] ; (6)

g0 = q0 + p0; g1J = q1J + p1J ; J = X; Y; Z ;
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q0 =
1

4(4�)2

∫ (
Ud(e1; e2; r0)

T

)2

de1 de2 dX dY ;

p0 =
1

2(4�)2
∞∑
p=1

∫ (
Ud(e1; e2; rp)

T

)2

de1 de2 dX dY ;

q1J =
1

(4�)2

∫
e21J

(
−Ud(e1; e2; r0)

T

)
de1de2 dX dY ;

p1J =
1

(4�)2
∞∑
p=1

∫
e21J

(
−Ud(e1; e2; rp)

T

)
de1 de2 dX dY ;

r0 = (X; Y; 0); rp = (X; Y; pl) :

At the derivation of Eq. (6) we neglected the small terms proportional to �21(Ud=T )2

and less.
Integral in relation (3) has a peculiarity. The fact is that due to the potential Ud

depending on interparticle distance as r−3, the result of integration depends on the
shape of integration [14].
The ;eld H1 must be equal to macroscopical ;eld in the region where the interacting

particles are placed. For this reason we choose the integration volume as an in;nitive
cylinder with the axis directed along H1, passing across the centre of one particle. The
length of this cylinder is much larger than its diameter. It means that, calculating p1Z

in Eq. (6) we need, ;rst, to perform a summation over p and then to integrate with
respect to X and Y . Calculating p1X we need, ;rst, to integrate over X; Y and then to
sum over p. We must calculate p0 and q0 in such a way that |r0|¿ 2ap.

The results of such calculations when a1 ≈ 2ap are

g0 =
�
12

#2(2ap)2
(
1 +

�4
45

a41
l4

)
; g1X =

1
3
v�#

l
a1

; g1Z =
2
3
v�#

(
2− l

a1

)
;

v=
4�
3

a3; #=
m2

(2ap)3T
: (7)

Here # is the dimensionless parameter of magnetodipole interaction between the
particles.
Substituting Eq. (7) into Eq. (6), then its result into (1) and then in the ;rst relation

of Eq. (3), using Eq. (2), we get

fp =−n�T
[
1
6
�21 + %#

(
l

3a1
(�21X + �21Y ) +

2
3

(
2− l

a1

)
�21Z + ng0

)]
: (8)

Here %= vn� is the volume concentration of the particles.
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The components of the sample magnetization M are

MX =− @fp

@H1X
= (||H1X ; MZ =− @fp

@H1Z
= (⊥H1Z ;

(|| = (L

(
1 + � l

a1
(L

)
; (⊥ = (L

(
1 + 2�(L

(
2− l

a1

))
;

(L =
2
�%# ; (9)

where (L is the Langevin initial susceptibility of dilute ferrocolloid.
Relations (9) allow us to make the following conclusions. First, magnetodipole in-

teraction between the particles increases the initial susceptibility (|| corresponding to
orientation of the ;eld H1 along the smectic layers. When this ;eld is perpendicular to
these layers, the interparticle interaction leads to increase of the corresponding suscep-
tibility (⊥ when l¡ 2a1 and to its decrease when l¿ 2a1. Second, the susceptibility
(|| is more than (⊥ if the inequality l¿ 4a1=3 holds; (|| ¡(⊥ in the opposite case.

3. The structure deformations in the ferrosmectics

It is well known (see, for example, Refs. [15,16]) that periodical deformations (the
Helfrich deformations) of smectic structure occur when the sample is placed in suL-
ciently large magnetic ;eld normal to the smectic layers. In ferrosmectics these structure
phase transitions occur in the ;elds by several orders of value smaller than those for
pure smectics [5]. The aim of this part of the work is the analysis of critical parameters
of the Helfrich phase transitions in ferrosmectics.
Let u(X; Z) = (0; 0; u) be a small two-dimensional displacement of the layers inside

the ferrosmectic. Under the presence of a weak external ;eld He the magnetic free
energy of the sample is

Fm =
∫

fm dV ;

fm =− 1
2 (HeM) : (10)

The expression in Eq. (10) is to be integrated over all the volume of the sample.
We assume that the ;eld He is directed along the axis OZ , i.e., it is normal to the
sample layers.
Let H1 and Ho

1 be ;elds inside of deformed and nondeformed lyotropic layer, re-
spectively, h1 = H1 − Ho

1 (h1�Ho
1 ), . is a unit vector normal to the surface of the

deformed layer (Fig. 2).
We denote by /|| and /⊥ the susceptibilities of one layer corresponding to orienta-

tions of the local magnetic ;eld parallel and perpendicular to the layer surface. It is
obvious that /i = (i=(a1�), where i = ||;⊥.
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Fig. 2. Sketch of deformated ferrosmectic. Notations are the same as in Fig. 1.

Let H1|| and H1⊥ be components of the local magnetic ;eld inside the lyotropic
layer, parallel and perpendicular to its deformed surface, M|| and M⊥ the corresponding
components of the local magnetization. It is clear that MJ = (JH1J where J = ||;⊥.
Substituting this relation into Eq. (10) and taking into account that Ho

1 = He=11 (11 =
1 + 4�/⊥), after simple transformations we obtain

fm =−H 2
e

2

[
1
11

(⊥ + (⊥2Z + (a

(
.2X

(
1
11

+ 2Z

)
− .X .Z2X

)]
;

(a = (|| − (⊥; 2=
h1
Ho

1
: (11)

Let us consider the following small deformations:

u= u0(Z)cos kX (12)

For small deformations, the following strong inequalities hold:

u0�a1; a0; ka1; ka0�1 :

In the linear approximation in u

.X =
@u
@X

; .Z = 1 : (13)

It will be shown below that in this approximation 2X;Z ∼ .X . Taking into account
the character of dependence of .X on coordinate X , one can show that the result of
integration in Eq. (10) of the terms noneven over .X is zero. Therefore, without loss
of accuracy, one can rewrite Eq. (11) in the following form:

fm =
H 2

e

2

[
1

11(�)
(⊥(�) + (a

(
1

11(�)
.2X − .X 2X

)]
: (14)

In order to calculate 2X we introduce a local cartesian coordinate system with the
origin in the middle of nondeformed lyotropic layer, and axes x; y; z aligned along
X; Y; Z , respectively. Supposing that the characteristic scale of changing of u0(Z) is
much more than a0; a1, we write on the scales of l:

u(x) = u0 cos kx; u0 = const : (15)
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Let H0 and Ho
0 be the local ;elds inside the deformed and nondeformed “water”

layer, h0 = H0 − Ho
0. It is convenient to introduce the magnetic potentials  1;  0 by

the rule

h1 = grad  1; h0 = grad  0 : (16)

Because the electric Mux is absent, the Laplas equations N 1 =N 0 =0 are ful;lled.
The conditions of magnetostatics and periodicity of the sample give

10(.H0) = 11(.H1); [.×H0] = [.×H1]; z = 1
2a1 + u ;

10(.H0)|z=a0+a1=2+u = 11(.H1)|z=−a1=2+u ;

[.×H0]|z=a0+a1=2+u = [.×H1]|z=−a1=2+u ; (17)

where

.X ≈ @u
@X

; .Y ≈ @u
@Y

; .Z ≈ 1

and 10 ≈ 1 is the magnetic penetration of the “water” layer.
We seek the potentials  i in the following form:

 i = [Ai exp(kz) + Bi exp(−kz)]cos kx ;

Ai; Bi = const:; i = 0; 1 : (18)

Substituting expressions (18) into boundary conditions of Eq. (17), taking into ac-
count the conditions ka0;1�1 and 10 ≈ 1 after simple however combersome calcula-
tions, one can obtain

Ai ≈ Bi ≈ −u0HeW ;

W ≈ 2�/⊥a0
11(11 + a0)

: (19)

Substituting Eq. (19) into Eq. (18) and, further, into Eq. (14), averaging result over
lyotropic layer and taking into account that ka1�1, we ;nd the average density of free
energy

〈fm〉=−H 2
e

2

[
(⊥(�)
11(�)

+ (aQ
(

@u
@X

)2
]

;

Q =
1
11

+W : (20)

It follows from general theory of small deformations that the local density � of
lyotropic layers depends on u0(Z) as follows:

�(Z) ≈ �0

(
1− du0

dZ

)
; (21)

where �0 is the value of � for a nondeformed sample.
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Let us denote

��= �(Z)− �0 =−�0
du0
dZ

; ;(Z) =
(⊥(�)
11(�)

:

In the quadratic approximation in ��

;(�) ≈ ;(�0) + ;′��+ 1
2;

′′(��)2 : (22)

Simple calculations give

;′′ = 2a1
/0

101
’
(
1− /0

101

)
;

where

/0 =
m2n
3a1T

; ’= 4n#
(
2− l

a1

)
;

101 = 1 + 4�/0 :

Here /0 and 101 are values of /⊥ and 11 for a nondeformed sample.
Taking into account Eq. (22), relation (20) can be written as

〈fm〉= 〈fm0〉 − H 2
e

2

[
1
2
�20

(
du0
dZ

)2

+ (aQ
(

@u
@X

)2
)

; (23)

where fm0 means the value of fm for a nondeformed ferrosmectic.
In the absence of a magnetic ;eld the free energy of deformed sample is the sum of

the elastic free energy �Fe and the free energy �Fd arising due to change of energy of
the particle dipole–dipole interaction. Using standard relations to �Fe and taking into
account Eqs. (8) and (12), we have

�Fe =
1
2

∫ [
K1

(
@2u
@X 2

)2

+ K2

(
@2u
@Z2

)2

+ C
(

@u
@Z

)2
]
dR ;

�Fd =−>
∫ (

@u
@Z

)2

dR ;

> = 40Tn2p0�0 : (24)

We place the origin of coordinate system (X; Y; Z) in the middle of our sample. Let
2L be its thickness. We suppose that the sample is placed between two parallel rigid
plates and deformations on the sample boundaries are equal to zero (u0(z =±L) = 0).
As usual, assuming that u0(Z) = U cos qZ (q = �=2L) and substituting this expression
into Eqs. (23), (24) and (10), one obtains for free energy �F of the sample in external
magnetic ;eld:

�F = �Fm + �Fe + �Fd

= 1
2V 〈cos2 kX cos2 qZ〉U 2[K1k4 + K2q4 + Bq2 − H 2

e ;
′′ 1
2�0q

2 − H 2
e (aQk2] ;

B=C − > : (25)
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Let us consider now several characteristic situations.
(1) (a ¿ 0; B¿ 0: In this case the ordinary Helfrich deformations can appear in

the ferrosmectic. Indeed, the free energy �F is negative when the following inequality
holds:

He ¿Hec; H 2
ec =

K1k4 + K2q4 + Bq2

(aQk2 + ;′′�0q2=2
: (26)

The second-order deformational phase transition takes place in this situation. The
critical wave number kc in the point of the phase transition corresponds to a minimum
of Hec as function of k. Taking into account, that as a rule (aQk2�;′′�0q2, we obtain

k2c ≈
√

K2q4 + Bq2

K1
; H 2

ec ≈
2

(aQ
K1k2c : (27)

Because for ferrosmectics the parameter (a is much more than that for pure liquid
crystals, Hec for ferrosmectic is much smaller than that for pure smectics.
(2) B¿ 0; (a ¡ 0: The longitudinal deformations with k=0 and q=�=2L can occur

now in ferrosmectics. The critical ;eld of this transition is

H 2
ec = 2

B+ K1q2

;′′�0
: (28)

It should be noted, that when (a ¡ 0, the parameter ;′′ is positive automatically
(see Eqs. (9) and (22)).
(3) He=0; B¡ 0: If parameter >, corresponding to magnetic attractions of lyotropic

layers, is large enough, the coeLcient B in Eq. (25) can be negative. The longitudinal
deformations can appear in ferrosmectic in this situation even without magnetic ;eld.
The critical value of B for these transformations is

B=−K2q2 : (29)

Hence, besides well-known shear Helfrich deformations, longitudinal deformations
can appear in ferrosmectics due to the eEect of magnetodipole interparticle interaction.
It should be stressed that the value and sign of parameter (a of ferrosmectic magnetic
anisotropy depends on the ratio l=a1 of the smectic period to the thickness of the
lyotropic layers.

4. Condensation phase transitions

The condensation phase transitions induced by interparticle magnetodipole interac-
tions in ordinary ferrocolloids are well known (see, for example, Refs. [13,17,18]). It
is easy to understand, that similar transformations can take place in lamellar ferrocol-
loids (ferrosmectics). The aim of this point is to study the phase transitions in these
systems. To simplify calculations, we assume that the smectic structure of sample is
nondeformed now.
Let us denote by s=�a2pn the square concentration of the particles in lyotropic layer.

Using well-known van der Waals approach, we can estimate the density fs of steric
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free energy of the particles as follows:

fs ≈ Tc ln
s

1− s=s∗
; (30)

where s∗ ≈ �=(3
√
3) is the maximal square density of the particles in the layer. It is

easy to connect the square s, volume % and numerical c concentrations of the particles:

s= 3%
l
a1p

= 3cv
l
a1

: (31)

Taking into account (8), (30) and (31), we obtain the following expression for
density f of the free energy of the ferroparticles system:

f = fs + fp = Tc
[
ln

s
1− s=s∗

− �21=6− sG1

]
;

G1 =
G

4�a2p
= #2

(
1 +

�2
45

a41
l4

)
+ #

(
1
18

(�21X + �21Y ) +
1
9
a1
l

(
2− l

a1

)
�21Z

)
:

(32)

Chemical potential 1 and osmotic pressure p of the particles are

1 =
@f
@c

=
3l
ap

T
[
ln

s
1− s=s∗

+
s

1− s=s∗
− 2sG1

]
;

p= c2
d
dc

(
f
c

)
=

T
�a2pl

(
s

1− s=s∗
− s2G1

)
: (33)

A simple analysis of relations (33) shows that the van der Waals loops appear on
plots of functions 1(s) and p(s) when parameter G1 is more than some critical value
Gc. It means that the equilibrium separation onto dense and dilute phases can occur in
the ferrosmectics. The condition of equilibrium coexistence of these phases is

1(s1) = 1(s2); p(s1) = p(s2) ; (34)

where indices 1 and 2 correspond to the two coexisting phases. Macroscopical param-
eter G1 of the magnetic interparticle interaction depends on microscopical parameter #.
In Fig. 3 the phase diagrams of the phase transition in plane (%; #) are given for
diEerent values of ratios l=a1 and �1 = 0.
Let us discuss the eEect of an external magnetic ;eld on the conditions of this phase

separation. For simpli;cation we neglect the thin eEects connected with diamagnetizing
;elds and assume that the magnetic ;elds in the coexisting phases are identical.
The results of calculations of critical value #c, corresponding to G1c as a function

of the ratio l=a1 are shown in Fig. 4. It is seen that #c increases with the period of
the smectic. The physical origin of this result is a decrease of the magnetic interaction
between particles inside the diEerent layers with the growth of interlayer distance. The
magnetic ;eld parallel to smectic layers decreases #c (in other words, it increases a
critical temperature of this phase transition); ;eld perpendicular to the layers, decreases
#c when l¡ 2a1 and increases it in the opposite case.



372 A.Yu. Zubarev, A.O. Ivanov / Physica A 291 (2001) 362–374

Fig. 3. Phase diagram of the ferroparticles system in the ferrosmectic. Magnetic ;eld is absent. Figures near
curves equal to the ratio l=a1.

Fig. 4. Dependence of the critical value #c of ferroparticles phase separation on ratio l=a1: (1) �1 = 0;
(2) �1X = 1, �1Z = 0; (3) �1X = 0; �1Z = 1.

The dependences of #c on �1 for diEerent orientations of this ;eld and diEerent ratios
l=a1 are presented in Fig. 5.
The particle condensation increases the susceptibility (a in regions, where the particle

concentration is higher. The smectic structure deformation in these regions can occur
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Fig. 5. Dependence of #c on a dimensionless magnetic ;eld: (1) �1=�1X , l=a1=1:5; (2) �1=�1Z , l=a1=1:5;
(3) �1 = �1Z , l=a1 = 2:5.

more easily as compared to the other parts of the sample. This eEect, together with the
one studied in Ref. [19], can be the origin of local deformational domains, observed
in ferrosmectics in Ref. [6].

5. Conclusions

Thermodynamical characteristics of ferrosmectics are calculated taking into account
the magnetic interaction between the particles. Our results show that the initial suscep-
tibility (||, corresponding to the parallel orientation of a magnetic ;eld to the smec-
tic layers, increases when the interparticle interaction grows. If the ;eld is normal
to these layers, then corresponding susceptibility (⊥ increases with the interparticle
interaction when the thickness a0 of “water” layer is less than thickness a1 of the ly-
otropic layer, containing ferroparticles, and decreases when a0 ¿a1. If a0 ¿a1=3 then
(a = (|| − (⊥ ¿ 0 and (a ¡ 0 if a0 ¡a1=3.
When inequality (a ¿ 0 is valid, the Helfrich deformations can occur in ferrosmectic

placed in a suLciently large normal magnetic ;eld. We have estimated the critical
values of magnetic ;eld and wave number of the deformations corresponding to the
point of the phase transition. When (a ¡ 0, some longitudinal deformations can appear
in a suLciently large normal magnetic ;eld. Similar deformations can occur without
a magnetic ;eld under the action of magnetic interaction between particles, placed in
the diEerent lyotropic layers.
The magnetic interparticle interaction can lead to the condensation phase transition

in ferrosmectic and, as a result, to separation of this system from phases with diEerent
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concentration of the particles. External ;eld, parallel to smectic layers, increases the
critical temperature of this phase transition. The ;eld, normal to the layers, increases
this temperature when a0 ¡a1 and decreases in the opposite case.
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