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Società Italiana di Fisica
Springer-Verlag 2002

Magnetic phospholipid tubes connected to magnetoliposomes:
Pearling instability induced by a magnetic field

C. Ménager1,a, M. Meyer1, V. Cabuil1, A. Cebers2, J.-C. Bacri3, and R. Perzynski3
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Abstract. We propose here a method to modify the membrane tension of phospholipid tubes with an
applied magnetic field. The tubes are connected to giant liposomes capping the tubes at both ends. Tubes
and liposomes are all filled with a magnetic fluid. The tension of the tube membrane is tuned by the
deformation of the ending liposomes under the applied field. We modelize the magnetoliposome deformation
and we are then able to describe the tube evolution. At low magnetic fields, the tube remains at equilibrium
with a cylindrical shape and a uniform radius. It responds to an increase of membrane tension by a diameter
reduction. Above a magnetic-field threshold, the cylindrical shape becomes unstable with respect to a
pearling deformation. The tube shape then selected by the system is an unduloid, with a constant mean
curvature equal to C0, the spontaneous curvature of the membrane.

PACS. 82.70.Dd Colloids – 75.50.Mm Magnetic liquids – 87.16.Dg Membranes, bilayers, and vesicles

Lipid bilayers in water form not only quasi-spherical
vesicles, but also tubular closed membranes that have at-
tracted recently the attention of biophysicists. Very long
cylindrical vesicles are found in the Golgi apparatus and
may play an important role in the cellular traffic [1,2].
Morphological instabilities of membranes in a cylindri-
cal geometry are different from those of spherical vesicles
and may lead to original phenomena. An example of such
an instability is produced on radial tubular protusions of
adhesive cells by the disruption of their actin cytoskele-
ton [3]. This gradual disruption induces the transforma-
tion of the cylindrical cell extensions into a periodic chain
of pearls. The so-called “pearling” instability is a general
phenomenon of flexible tubes under tension and has been
found some time ago in the case of phospholipid bilay-
ers [4–6]. Bar-Ziv describes a pearling instability induced
by the application of laser tweezers on long cylindrical
lipid vesicles. The origin of this Rayleigh-like instability
has been identified as a competition between the exter-
nal tension induced by the laser and the bending rigidity
of the membrane. In the case of biological cells it is the
rigidity of the actin shell that balances the tension pro-
duced by adhesion points. Similar phenomena have also
been observed in nerve fibers when they are subjected to
a stretch or when the cytoskeleton is disrupted [7,8].
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Another example is the coiling conformation induced
in multilamellar tubes made of stacked bilayers doped with
anchored polymers [9,10] or the pearling instabilities ob-
served on hollow tubular lipid vesicles due to hydrophilic
polymer with hydrophobic side groups [11]. But in these
two cases the pearling instability is caused by a polymer
adsorption which induces a spontaneous curvature of the
membrane, it is not a tension-induced pearling instability
as in [3–6]. For flexible tubes made of a single bilayer, a
peristaltic undulation is observed sometimes at the onset
of the pearling instability. In [12] pearling is described as
a preliminary stage in the budding instability when the
quasi-spherical shape of a liposome is disrupted by a sud-
den increase of the osmotic pressure.

In the present work we describe a pearling instability
induced when a magnetic field is applied on phospholipid
tubular vesicles (tubes) filled with a magnetic fluid [13].
These tubes consist in long and thin cylinders of mem-
brane anchored at both ends to large spheres (liposomes),
which gives them the overall shape of dumbells. The origi-
nality of this system is that the stress is not exerted on the
tube itself, but on the liposomes connected to it. Under a
magnetic field of low intensity (300 Oe), the magnetolipo-
somes at the tube ends elongate along the field direction.
The tension increases both in the spherical and in the
cylindrical parts as it is uniform all along the fluid mem-
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brane. The tube develops a pearling instability in order to
relax this excess of surface tension. Another outstanding
point is that the liposomes and the tube can exchange a
membrane area.

1 Experiments

1.1 Materials

– The magnetic fluid (or ferrofluid) is a colloidal disper-
sion of maghemite (γ-Fe2O3) nanoparticles dispersed in
water at pH 7 [14]. The magnetic particles have a diameter
of the order of 10 nm. They are negatively charged and
are indeed stabilized by electrostatic repulsion between
grains. The negative surface charges are due to ionized
citrate ligands. A residual ionic strength is due to unad-
sorbed citrate species in equilibrium with the adsorbed
ones [Na3Cit] = 0.28 mol L−1. The volume fraction of
magnetic oxide before encapsulation is 6%.
– The phospholipid constituting the membrane is 1-2
dioleoyl-sn-glycero-3-phosphocholine (DOPC, Sigma). Its
phase transition temperature (Tc) is −22 ◦C so that the
phospholipid molecules are always in the fluid-like state at
room temperature. Even though phosphocholine is neutral
(with a zwitterionic head), a weak negative surface charge
due to impurities has been evidenced [15,16]. There is in-
deed no affinity between the negatively charged particles
and the negative membrane.

1.2 Preparation of phospholipid tubes

The preparation of phospholipid tubes has been described
succinctly in the literature [3,17]. Tubes are always ob-
tained from the hydration of a phospholipid film under
an induced flow of water. In [4,5], they are anchored at
both ends to lipid globules. In our case the system is no-
ticeably different because tubes are anchored not to lipid
globules but to giant liposomes exhibiting thermal fluc-
tuations visible by optical microscopy. The method we
use to encapsulate the ferrofluid inside the tube has al-
ready been described to prepare magnetic liposomes [18]:
0.5 mg of DOPC as a dry powder is mixed with 5 µL
of the aqueous dispersion of magnetic nanoparticles and
sheared on a cover slide of optical microscopy with a glove
finger. The oily orange film then obtained is presumably
a lamellar phase swelled with magnetic particles. Imme-
diately following the shearing, 50 µL of tridistilled water
is poured onto the film to start the spontaneous swelling.
The water is added directly in the observation cell con-
sisting in two cover slides separated by a paraffin-based
spacer (Parafilm, American National Can, melt on a hot
stage and squeezed between the two slides). The thickness
of the cell is of the order of 200 µm. Tubes form quickly
and can be observed fifteen minutes after the beginning of
hydration.

Fig. 1. Phospholipid tubes and liposomes as observed by op-
tical microscopy. Tubes and liposomes are linked together, the
magnetic fluid is inside the structures and can be easily local-
ized due to its contrast. The membrane exhibits large thermal
fluctuations. The bar length is 20 µm.

1.3 Experimental methods

Due to the orange color of the encapsulated ferrofluid,
the samples can be observed by optical microscopy (Leica
40x, NA 0.65). The volume fraction of magnetic parti-
cles encapsulated inside the magnetoliposomes is of the
order of 0.002% or 1014 particles/cm3 estimated from the
color observed and from previous magneto-phoresis ex-
periments [18]. The sample is placed between two pairs of
coils (500 turns each) oriented at 90◦ allowing to control
the direction of the applied magnetic field. The magnetic-
field intensity can be adjusted between 15 and 310 Oe.
The magnetic field is applied gradually by steps of 15 Oe
each 30 seconds. The pictures recorded with a CCD cam-
era are digitized with a frame grabber (LG-3, Scion Corp.
Frederick, MD USA).

Transmission Electron Microscopy (TEM) is per-
formed using a JEOL 100CXII top entry UHR. The sam-
ples are deposited on a carbon film and negatively stained
with ammonium molybdate.

2 Experimental observations

2.1 Without magnetic field

Optical microscopy : A sample prepared as described above
exhibits a lot of tubes and liposomes which are linked to-
gether (Fig. 1). Tubes and liposomes are stable (over many
hours) and thermal fluctuations are visible. The radius
R0

ves of the liposomes ranges from 30 to 80 µm (see Tab. 1).
They are quasi-spherical or pear-like shaped. Most of them
are connected to very long cylindrical structures of length
larger than 500 µm. The circular section of these tubes
has a radius R0 which varies between 1.25 to 2.5 µm (see
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Table 1. Physical characteristics of the magnetoliposome samples. R0
ves: initial radius of the magnetoliposome —optically

determined. R0: initial radius of the phospholipid tube connected to the magnetoliposome —optically determined. Hpearling:
magnetic field at which the first non-uniform deformations of the tube are transiently observed. τ0 = Kb

2R2
0
: tension of the li-

posome membrane in zero field —deduced from R0 with Kb = 21kT . A and H∗: parameters of equation (12) deduced from

plots Y = f
(
X0.25/H

)
as presented in Figure 8.

S0
tube

S0
ves

: ratio of the initial surface of the half-tube to that of the magnetolipo-

some. It is deduced from A and Kb values using equation (11):
S0
tube

S0
ves

= A
336π

. L: half-length of the tube deduced from
S0
tube

S0
ves

,

R0 and R0
ves: L =

2(R0
ves)

2

R0

S0
tube

S0
ves

. ∆Spearling

S0
ves

: ratio evaluated by A
336π

(
1 − Rpearling

R0

)
≈ 0.4 A

336π
. ∆V pearling

V 0
ves

: ratio evaluated by

3R0A
2R0

ves336π

(
1 −

(
Rpearling

R0

)2
)

≈ 0.96 R0A
R0

ves336π
. C0: spontaneous curvature deduced in the pearling regime from Figure 9b using

equations (A.4) and (16).

Vesicle Rves R0 Hpearling τ0 H∗ A
sample (µm) (µm) (kA/m) (10−8 J m−2) (kA/m)

A 27.8 1.3 4.95 2.5 0.95 470
B 36.6 2.5 3.38 0.67 0.66 549
C 51 1.6 4.74 1.7 0.55 362
D 54.6 2.1 6.18 0.93 1.30 253
E 55.1 1.25 3.71 2.7 0.64 296
F 58.3 2.4 5.05 0.75 0.84 371
G 66.6 1.7 2.47 1.5 0.98 210
H 73.4 1.65 4.94 1.5 0.76 142
I 77.5 1.45 6.18 2 0.74 162

Vesicle S0
tube/S0

ves L Field direction C0

sample (mm) ∆Spearling

S0
ves

∆V pearling

V 0
ves

with respect (µm−1)

to the tube

A 0.445 0.53 18 % 2 % ⊥ /
B 0.52 0.56 21 % 3.4 % // /
C 0.345 1.14 14 % 1 % ⊥ 0.0332

D 0.24 0.67 10% 0.9 % // 0.0296

E 0.28 1.37 11 % 0.6 % ⊥ 0.0301

F 0.35 1.01 14 % 1.4 % ⊥ 0.0291

G 0.20 1.06 8 % 0.5 % ⊥ 0.0237

H 0.135 0.88 5 % 0.3 % ⊥ 0.0214

I 0.155 1.29 6 % 0.3 % // 0.0204

Tab. 1). All the experiments are here performed in a sim-
ple configuration. The selected systems are always consti-
tuted of two liposomes connected at each extremity of a
tube and not connected with any other tube or liposome
(Figs. 2a and 3).

TEM : (Fig. 4) Even though the phospholipid mem-
brane is a bit disrupted by the staining technique, the
electron microscopy pictures show nanoparticles confined
inside the lumen of the cylinders. The tube in Figure 4
has a diameter of 0.2 µm, which is much smaller than the
diameter in solution because of the drying process and the
staining technique. Its length is much larger than the field
of view.

2.2 Application of a magnetic field

When a magnetic field is applied to an isolated liposome,
the thermal fluctuations of its membrane progressively

vanish and the liposome elongates along the field [19].
By comparison the elongation is much larger for a lipo-
some connected to a tube (Fig. 2b). The deformation un-
der a magnetic field is characterized by assimilating the
elongated liposome to a prolate ellipsoid of the following
parameters: a semi-axis along the field, b semi-axis nor-

mal to the field and eccentricity e =
√

1 − b2

a2 . Liposomes
connected to a tube reach significantly higher eccentric-
ities (for example, e = 0.97 for H = 220 Oe) than iso-
lated liposomes (e = 0.63 for the same value of H). If the
magnetic-field intensity is large enough, a sinusoidal insta-
bility develops, leading to a peristaltic modulation of the
tube diameter with a finite amplitude (Fig. 5). We note for
each magnetoliposome the magnetic field Hpearling associ-
ated to the first observation of a precursor peristaltic mod-
ulation of the tube (see Tab. 1). We call it hereafter the
“transient onset of pearling” as the peristaltic modulation
frequently disappears in a few seconds, the tube reaching
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Fig. 2. A magnetoliposome connected to one tube (a) without
magnetic field, the shape is almost like a sphere of radius R0

ves;
(b) under a magnetic field (here 24 kA/m, direction given by
the arrow), the liposome elongates along the field direction.
The diameter of the tube is close to the optical microscopy
resolution; however, one can see that its radius decreases during
the deformation. The bar length is 20 µm.

Fig. 3. Schema of the system chosen for the deformation study.
The liposome is connected to one tube with a continuous mem-
brane which is the same for the tube and for the liposome. The
phospholipid used here is DOPC. The magnetic fluid is encap-
sulated inside the system.

then its equilibrium radius under the applied field. We call
“pearling regime” the field domain H > Hpearling. The ex-
perimental wavelength λ between the pearls is of the order
of 10 to 30 µm, but its measure is biased by the fact that
the pearls often travel along the tube.

An important feature of this instability is that it is
independent of the orientation of the magnetic field with
respect to the tube axis.

3 Theoretical description

The deformation of quasi-spherical magnetoliposomes
(not connected to a tube) into prolate ellipsoids when a
magnetic field is applied, can be explained by the flatten-
ing of thermal undulations due to the magnetic stress [19].
Briefly, the deformation is measured as a function of the
field intensity and plotted as e4 vs. Ln(H2). The limiting
slope in high fields leads to the bending modulus Kb of
the bilayer, firstly introduced by Helfrich [20,21].

The bending modulus Kb deduced for those liposomes
encapsulating a ferrofluid has the same value (of the order
of 10−19J) as other measurements with non-magnetic lipo-
somes made of the same lipid. To explain here the larger
deformation under field of magnetoliposomes connected
to one tube, we propose the following scenario: under the
field the two magnetoliposomes at the tube ends increase
the membrane tension. The new equilibrium shape corre-
sponds to a tube of lower radius, while the liposomes at
the ends absorb the equivalent amount of lipids coming
from the tube. For a large tension of the membrane the
pearling instability is observed. This instability is equiva-
lent to the classical Rayleigh instability of a liquid cylinder
under surface tension [22]. As the membrane tension is re-
lated to the elongation of the two capping liposomes, we
use their deformation under field to understand how the
lipid tubes filled with a magnetic fluid evolve.

3.1 Isolated liposomes

We first recall here the basis of the model describing the
deformations of isolated magnetoliposomes submitted to
a magnetic field [19]. The formalism of [19] (e � 1) is here
extended to ellipsoids of any elongation. It is well estab-
lished that an increase of the surface tension τ of a closed
membrane induces an unfolding of its thermal undulations
and, equivalently, an increase of the projected surface area
Sτ . We note, respectively, Sτ0 and τ0 the initial values of
surface area and tension for the strongly fluctuating lipo-
some in zero magnetic field. The deformation of a giant
liposome due to tension follows a relation of elasticity that
is particular to its entropic nature [23]:

(Sτ − Sτ0)
Sτ0

∼= kT

8πKb
ln

(
τ

τ0

)
. (1)

We assimilate the elongated liposome to an ellipsoid
of eccentricity e and of constant volume. For small defor-
mations, the projected area reduces to

Sτ
∼= Sτ0

(
1 + 2

e4

45

)
. (2)

If a magnetic field H is applied, its intensity is related
to the tension τ of the membrane. Because of the magnetic
discontinuity at the boundary of the magnetoliposome, be-
tween the inside and the outside media, a magnetic force

(per unit area) develops: 2π
(

�M�n
)2

�n, �M being the mag-
netization of the magnetic liquid induced inside the vesicle
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Fig. 4. Transmission electron microscopy of a negatively stained sample (ammonium molybdate). Even if the membrane is a bit
disrupted by the coloration technique, magnetic particles (10 nm in diameter) are localized inside the tube. The tube diameter
is around 0.2 µm (much smaller than in solution). The tube length cannot be determined by this technique. The bar length is
0.1 µm.

Fig. 5. Observation of the pearling instability of a tube un-
der an applied magnetic field (its direction is along the arrow).
(a) Largely developed pearling instability. The pearls travel
along the tube so it can be difficult to determine a wavelength
between the pearls. (b) Precursory pearling deformations, tran-
siently observed.

by the applied field, �n being the external unit vector, nor-
mal to the surface of the vesicle. The magnetoliposome
elongates along the field, exactly as a buoyant ferrofluid
droplet does [24]. Assuming that the susceptibility of the
magnetic fluid is low (µ − 1 � 1, µ being the magnetic

permeability of the magnetoliposome) the magnetization
is independent of the elongation and writes: �M = (µ−1)

4π
�H.

The balance of the forces acting on the membrane
writes:

pin − pout = −2τH + Kb (2H + C0)
(
2H2−2kG−C0H

)
+2Kb∆BH − 2π

(
�M�n

)2

, (3)

where −H is the mean curvature, kG the Gaussian cur-
vature, C0 the spontaneous curvature, ∆B the Laplace-
Beltrami operator on the surface defined as in [25,26].
Neglecting the term in curvature elasticity in comparison
with the first term on the right side of relation (3), as-
suming an ellipsoidal shape for the vesicle and satisfying
the equilibrium conditions by the virial technique, we ob-
tain, in the limit of small deformations, the two following
relations for the ellipsoidal eccentricity [24,27–29]:

e2 =
(µ − 1)2

16π

H2R0
ves

τ
, (4)

and for the balance of pressures between inside (pressure
pin) and outside (pressure pout) [30]:

pin − pout =
2τ

R0
ves

(
1 − e2

3

)
. (5)

Introducing (as in [19], with µ+2 ≈ 3), the reduced pa-

rameter H∗2 =
√

45kT
32πKb

16π
(µ−1)2

τ0
R0

ves
, which is homogeneous

to a magnetic field, equation (4) simplifies

e4 =
45kT

32πKb

(τ0

τ

)2
(

H

H∗

)4

. (6)



330 The European Physical Journal E

Fig. 6. Plot of e4 as a function of 2 ln(H/H∗) for isolated
liposomes (� data from Ref. [19]) and for tube-connected li-
posomes (� sample A; � sample B; ♦ sample C; � sample D;
• sample E; ◦ sample F; � sample G; � sample H; � sample I
—see Table 1 for the sample characteristics and the direction
of the applied field). The full line is the theoretical prediction
of [19] for an isolated liposome (here Eq. (8) with ∆S = 0 and
e � 1).

H∗ is a parameter independent of H and e. It only
depends on the physical characteristics of the magnetoli-
posome namely R0

ves, µ, Kb and its initial tension τ0. Fig-
ure 6 recalls the results obtained in reference [19] for iso-
lated liposomes. Those results were all in the limit of small
deformations for which e � 1. They all plot on a single
master curve e4 versus ln(H/H∗)2. The asymptotic slope
at large field is proportional to the bending modulus Kb,
which is found for DOPC equal to 21± 2 kT . This exper-
imental value demonstrates that the magnetic fluid does
not modify the membrane elasticity.

3.2 Under-field deformation of a magnetoliposome
connected to a tube

Figure 6 compares the results obtained for isolated magne-
toliposomes to the ones obtained with magnetoliposomes
connected to a tube. Note that e4 is independent of the di-
rection of the field with respect to the one of the tube. It is
clear from Figure 6 that the magnetoliposomes connected
together by a tube exhibit a much stronger response to
the field than isolated ones. Their deformation cannot be
described anymore in the limit e � 1. Appendix A de-
velops the formalism of Section 3.1 in the general case of
any e.

In order to describe the under-field deformation of
magnetoliposomes connected to a tube, we have to take

in account that the number of lipids in the overall dum-
bell shape is constant. However, unlike isolated liposomes,
the surface area of liposomes connected by a tube can now
vary, using the cylindrical part as a reservoir of membrane.
It is indeed necessary to add a supplementary term in
equation (1) equal to the relative variation of surface of
the liposome ∆S

4π(R0
ves)

2 , ∆S being the excess of membrane
coming from the tube in order to increase the surface of
the liposome. If ∆S

4π(R0
ves)

2 � 1, equation (1) then rewrites,
using equation (A.2) of Appendix A,

f (e) − 1 =
kT

8πKb
ln

τ

τ0
+

∆S

4π (R0
ves)

2 . (7)

If the ratio τ/τ0 is now eliminated using relation (A.6),
neglecting at the first order the influence of the tube on
the vesicle shape, relation (7) becomes

16πKb

kT
(f (e) − 1) + ln

(
8πKb

45kT
g2 (e)

)
=

4 ln
(

H

H∗

)
+

∆S

4πR2
ves

16πKb

kT
. (8)

We pose

X =
8πKb

45kT
g2 (e) =

(
τ

τ0

)−2 (
H

H∗

)4

(9)

(this parameter X is inversely proportional to the square
of the tension induced by the field on the vesicle)
and

Y =
16πKb

kT
(f (e) − 1) + ln X − 4 ln H =

−4 ln H∗ +
∆S

4π (R0
ves)

2

16πKb

kT
(10)

(this parameter Y is a linear function of the surface ∆S
of membrane which is transferred from the tube to the
liposome).

Both parameters X and Y can be calculated with
equations (9) and (10) from e and H experimental values,
assuming for Kb its experimental value determined in [19].
For an isolated liposome, ∆S = 0 and Y = −4 ln H∗.

The experimentally determined quantity Y is then in-
deed linearly related to the surface variation ∆S coming
from the tube. This latter can be easily evaluated under
the assumption that the increase of surface is related to
a decrease of the tube radius R, assuming that the tube
length L is constant (we shall see further on that this hy-
pothesis is well founded —see Sect. 4.5 and App. C). Then
the excess of the surface ∆S can be expressed as

∆S = −2πL∆Rtube = 2πLR0

(
1 − R

R0

)

= S0
tube

(
1− R

R0

)
,

where R0 and R are, respectively, the tube radius in zero
magnetic field and under field, L is the half-length of
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the tube (each tube being connected to two magnetoli-
posome), S0

tube = 2πLR0 is the initial surface of the half-
tube. Last term of expression (8) then reduces to

16πKb

kT

∆S

4π (R0
ves)

2 = A

(
1 − R

R0

)

with A =
S0

tube

S0
ves

16πKb

kT
, (11)

where S0
ves = 4π

(
R0

ves

)2. Equation (8) then rewrites as

Y = −4 ln H∗ + A

(
1 − R

R0

)
. (12)

3.3 Mechanical equilibrium of the cylindric tube with a
uniform circular section

For a cylindric tube with a uniform circular section, the
Gaussian curvature kG and ∆BH are null. Then it comes
from equation (3) with H = − 1

2R that the mechanical
equilibrium of the tube results, at first order, from the
balance between the term of tension of the membrane and
the one of bending elasticity:

τ

R
=

Kb

2R3

(
1 − C2

0R2
) ≈ Kb

2R3
. (13)

– We here assume that pin−pout � τ
R and 1

2KbC2
0 � τ .

Those two approximations will be justified further on
in Section 4.2.

– The magnetic term 2π
(

�M�n
)2

, which for the vesicles

is of the same order as 2τ
R0

ves
, can be here completely

forgotten with respect to Laplace’s pressure of the tube
τ
R which is much larger than 2τ

R0
ves

as R � R0
ves.

In that framework, and as the Kb value is known from
[19], the experimental determination of R0, the tube ra-
dius in zero field, allows the determination of the ten-
sion τ0 in zero field (see Tab. 1). Typically, we find for
R0 = 2 µm, τ0 = Kb

2R2
0
≈ 10−8 Jm−2.

The radius of the cylindric tube at the equilibrium is
then related to the membrane tension by

R =

√
Kb

2τ
. (14)

3.4 Onset of pearling

For high enough applied fields, a pearling transition of the
phospholipid tube, analogous to the Rayleigh instability
of a liquid cylinder under surface tension, can be observed.
The instability here results from the competition between
the tension of the tube membrane induced by the deforma-
tion of the ending liposomes, and the bending modulus of
the phospholipid bilayer. In references [4–6,31] the thresh-
old of this pearling transition is modelized. It is given by

Fig. 7. Theoretical pearling threshold. Plot of τR2

Kb
as a func-

tion of kR. Thin dashed curves: equation (15) for various val-
ues of the parameter RC0 (from top to bottom RC0 = 0.1;
0.2; 0.3; 0.4; 0.5; 0.6; 0.65; 0.7; 0.75; 0.8; 0.85; 0.9; 0.95; 1).
Thick dashed curve: location of the minimum of the previous
curves. For RC0 	 0.5, this minimum corresponds to kR = 0

and 1.36 	 τR2

Kb
	 1.5.

a minimization of the parameter τR2

Kb
as a function of the

wave vector k, given by the following expression which
depends on the spontaneous curvature C0:

τR2

Kb
+

(C0R)2

2
=

3
2 − (kR)2

2 + (kR)4 − 2C0R (kR)2

1 − (kR)2
.

(15)
Figure 7 plots the variations of τR2

Kb
as a function of kR

for various C0R. If C0R 	 0.5, the instability is predicted
to occur at k = 0 (with an infinite wavelength) and for
1.36 	 τR2

Kb
	 1.5. For larger C0R values, the instability

may develop at a finite wavelength and at lower values
of τR2

Kb
. Beyond the static analysis, a finite wavelength

can also develop for kinetics reasons determined by the
hydrodynamic processes inside the tube with a varying
radius.

3.5 Unduloid

The shape assumed by the tube after the onset of pearling
should be still a solution of the general Helfrich varia-
tion problem (Eq. (3) without the magnetic term which
drops down for the tube). Delaunay’s surfaces [32] which
have a constant mean curvature, are solutions of this prob-
lem [33]. In particular, an unduloid is a Delaunay’s surface
with a constant mean curvature related to the spontaneous
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curvature by H = −C0
2 . Equation (3) then simplifies in

(pin − pout)
τ

= C0. (16)

The shape of the unduloid presents a peristaltic de-
formation and it could be here the shape selected by the
system in the “pearling regime”. Note that the shape, se-
lected among the family of unduloids, can be determined
by a rather complex hydrodynamical process —see Sec-
tion 4.4, reference [31] and references therein.

4 Experimental results and discussion

4.1 Determination of the experimental parameters A
and H∗ for each magnetoliposome

If the tube is a cylinder of uniform circular section, the ra-
tio R

R0
is, after equation (14), equal to

√
τ0
τ and thus, after

equation (9), equal to H∗ X0.25

H . The cylindrical tube being
at equilibrium, a plot of the two experimental quantities
Y = −4 ln H∗+A

(
1 − R

R0

)
= −4 ln H∗+A

(
1 − H∗ X0.25

H

)
versus X0.25

H is linear with a slope −AH∗ and an ordinate
at X0.25

H = 0 equal to Y0 = A − 4 ln H∗ (see Eq. (12)). A
deviation from such a linear behavior would mark that the
evolution of the tube is out of the mechanical equilibrium
of the cylindrical shape with a uniform circular section.

Two examples of experimental variations are presented
in Figure 8 which plots Y as a function of X0.25

H for two dif-
ferent magnetoliposomes, each one being connected to a
tube. Note that Y and X0.25

H are pure experimental pa-
rameters, fully determined by the field dependence of e
for a liposome connected to one tube and by the Kb

kT value
determined with isolated liposomes [19]. As the magnetic
field increases the tension increases, thus X0.25

H decreases
as Y increases, meaning that ∆S the surface of membrane
transferred from the tube to the vesicle increases as the
field increases (at least up to the onset of pearling). It cor-
responds to an increase of the projected area of the mag-
netoliposome due to the excess of membrane coming from
the tube. It is well described by the model proposed above
as, until the experimental transient onset of pearling, the
experimental values follow a linear behavior of negative
slope. For some magnetoliposomes this linear behaviour is
preserved after the transient onset of pearling, for some
others a deviation is observed (see Fig. 8).

From the experimental linear behaviour of Y versus
X0.25

H , it is possible to determine Y0 = A−4 ln H∗ and the
slope −AH∗. This then allows to get for each experiment
the two quantities H∗ and A.

– The parameter H∗ varies from 7 to 16 Oe as for iso-
lated magnetoliposomes.

– The parameter A varies from 150 for the largest mag-
netoliposomes up to 550 for the smallest, meaning after
equation (11) that the associated variation of the ratio
S0

tube
S0

ves
ranges from 13% up to 52%.

Fig. 8. Plot of Y as a function of X0.25/H for two liposomes
connected to a tube (same symbols as in Fig. 6). The full lines
are associated to the under-field equilibrium evolution for the
tube with a uniform radius as given by equations (9,12) and
(14). The two arrows point the experimental transient onset of
pearling for the two systems (see text and Fig. 5b).

We can then deduce for each magnetoliposome:

– the half-length L of the tube, which varies from 500
µm up to 1400 µm (see Tab. 1), those variations are
fully compatible with the direct optical observation;

– the reduced quantities R
R0

= 1− Y +4 ln H∗
A and

√
τ0
τ =

H∗
H X0.25 for each applied field, and in particular their
experimental values at the transient onset of pearling;
whatever the initial vesicle radius, this onset corre-
sponds to R

R0
≈ √

τ0
τ ≈ 0.6 ± 0.1.

Using the obtained values for R
R0

and S0
tube

S0
ves

, it is possi-
ble, from expression (11), to deduce for each measurement
(e, H) ∆S

S0
ves

= S0
tube

S0
ves

(
1 − R

R0

)
, the ratio of the excess of

membrane surface coming from the tube to the initial sur-
face of the magnetoliposome. It is also possible to calculate

the variation of volume ∆V
V 0

ves
= 3R0

2R0
ves

S0
tube

S0
ves

(
1 −

(
R
R0

)2
)

,

∆V being the variation of volume of the magnetoliposome.
The table gives an evaluation of the values of ∆S

S0
ves

and
∆Vtube

V 0
ves

at the pearling threshold. From Table 1, it is clear
that the hypothesis of constant volume (see Eqs. (A.2),
(A.3), (A.4), (A.5)) for the magnetoliposome during the
experiment is valid. In the whole experiment ∆V

V 0
ves

remains
always smaller than 5%. It confirms that the transfer of
liquid from the tube to the magnetoliposome can be ne-
glected.

On the contrary, the variation of surface of the magne-
toliposome can become large. If in the whole experiment
∆S
S0

ves
is always smaller than 1, it can reach a value of 40%
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in large fields for the smallest vesicles. The transfer of
membrane from the tube to the magnetoliposome is thus
significant. In the following we let aside the two smallest
vesicles (samples A and B) for which ∆Spearling

S0
ves


 15% (see
Tab. 1). Hereafter we analyze separately the experiments
performed with Rves > 40µm for which the hypothesis
∆S
S0

ves
� 1 (see Eq. (7)) can be considered as valid.

For each experiment the direction of the applied field
with respect to the tube is quoted in Table 1. We are not
able to point out any correlation between that direction
and our experimental results. It confirms that we can ne-
glect the magnetic term in equation (3) for the tube.

4.2 Balance of pressures: Determination of the
spontaneous curvature C0

Let us now look to the evolution of the balance of pres-
sures pin − pout all along the transformation. We assume
that the balance is the same for the magnetoliposome
and for the tube to which it is connected. We deduce
pin − pout from the magnetoliposome deformation un-
der field using equation (A.4). Figure 9a) is a plot of
f (e)−N(e)g(e)

2 = R0
ves
2

(pin−pout)
τ as a function of the applied

field H. For H < Hpearling,
R0

ves
2

(pin−pout)
τ is a decreasing

function of H. As long as the tube evolves with an equilib-
rium cylindrical shape, its radius R decreases (it is a lin-
ear decreasing function of Y —see Eq. (12)) and the ratio
(pin−pout)

τ decreases as well. As soon as pearls begin to ap-
pear, the ratio (pin−pout)

τ stops to decrease. Figure 9b) plots
(pin−pout)

τ in the “pearling regime” (H > Hpearling) for the
magnetoliposomes of R0

ves > 40µm. We find that this ratio
is a constant (almost independent of H) as for an unduloid
with a spontaneous curvature C0 = (pin−pout)

τ , according
to equation (16) and references [32,33]. The unduloid thus
appears as the shape selected by the tube in the “pearling
regime”. Moreover, the determination of (pin−pout)

τ is a di-
rect measurement of the spontaneous curvature C0 of the
liposome membrane. For 77.5µm 
 R0

ves 
 51µm, we
find 2 · 10−2 µm−1 	 C0 	 3 · 10−2 µm−1 (see Fig. 9 and
Tab. 1). Note that a dependence on R0

ves is here observed.
It can be considered as a residual influence of ∆S

S0
ves

, the
more accurate C0 values being those obtained with the
largest magnetoliposomes: C0 = 0.02 ± 0.005µm−1.

We can evaluate for R ≈ 2µm and C0 = 0.02µm−1,
RC0 ≈ 4 ·10−2 and 1

2KbC2
0 ≈ 2 ·10−11 � τ (see Eq. (13)).

Let us comment on the physical origin of the sponta-
neous curvature we measure here. In [18], the determined
C0 values are 60 to 100 times larger, with magnetolipo-
somes similar to those used here. In that work an asymme-
try of Debye length between the two sides of the membrane
is arising from the different electrolyte compositions inside
and outside the liposome. However, here the ionic strength
is two orders of magnitude larger and the contribution of
the nanoparticles to the Debye length is negligible with
respect to that of the small ions. Thus here, there is no

Fig. 9. a) Plot of f (e) − N(e)g(e)
2

as a function of H for the

magnetoliposomes of initial radius R0
ves 
 40 µm (same sym-

bols as in Fig. 6). b) Plot of the spontaneous curvature C0 as
a function of H in the pearling regime (H > Hpearling) for the
magnetoliposomes of initial radius R0

ves 
 40 µm (same sym-
bols as in Fig. 6). C0 is deduced from equations (A.5) and (16):

C0 = pin−pout
τ

= 2
R0

ves

(
f (e) − N(e)g(e)

2

)
.

asymmetry coming from the electrostatic interaction be-
tween the nanoparticles and the membrane.

The steric contribution of non-adhesive particles to
the spontaneous curvature is also negligible. Evaluat-
ing from [34] its order of magnitude gives here C0 ≈
10−4 µm−1 which is 100 times smaller than what we mea-
sure. Thus the C0 value obtained here is not related to
the presence of the nanoparticles inside the system. As is
pointed out in [35], even for a symmetric solution across
the membrane there is some asymmetry of the membrane
left. Our RvesC0 value (of the order of 1.5) is quite close to
that measured in [35] when there is no sugar asymmetry
across the membrane.
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Fig. 10. Reduced representation of R/R0 as a function of
(τ0/τ)0.5 for the tube-connected magnetoliposomes (same sym-
bols as in Fig. 6). The full line denotes the regime of evolution
of a cylindrical tube with a uniform radius R. The dashed line
corresponds to the theoretical onset of pearling given by equa-
tion (17).

4.3 Evolution of the radius of the tube and pearling
instability

Figure 10 plots for different magnetoliposomes on the
same graph the variations of R

R0
as a function of

√
τ0
τ .

In the range of equilibrium of the cylindrical shape with
a uniform circular section (that is for R

R0
and

√
τ0
τ larger

than 0.6 ± 0.1) the results more or less all superimpose
together along the first bisectrix R

R0
=

√
τ0
τ expressing the

decreasing of R as H increases. After the transient onset of
pearling (that is for R

R0
and

√
τ0
τ smaller than 0.6 ± 0.1)

the experimental data spread between the two straight
lines: i) R

R0
=

√
τ0
τ associated to the equilibrium of the

cylindrical shape of uniform circular section and ii) R
R0

=√
3 τ0

τ associated to the theoretical threshold of pearling
instability as deduced from equation (15) using our exper-
imental determination of C0 from Figure 9b. Indeed the
parameter RC0 is small (RC0 	 0.1) and following equa-
tion (15) the pearling instability may develop only if the
tension becomes larger than

τ 
 3Kb

2R2
. (17)

From expressions (7) and (8) it comes τ0 = Kb
2R2

0

and τpearling = 3Kb
2R2

pearling
thus the theoretical threshold of

pearling corresponds to
Rpearling

R0
=

√
3 τ0

τpearling
. It is plot-

ted as a dashed line in Figure 10. The experimental points
spread between R

R0
=

√
τ0
τ and R

R0
=

√
3 τ0

τ , conforting the
theoretical predictions [4–6,31]. However some dynamical

aspects seem to induce the pearling transition slightly be-
low the theoretical threshold predicted statically in refer-
ences [4–6,31]. Two arguments may support this point:

– the experimental wavelength λ of pearling is finite of
the order of 20 µm, for R ≈ 2 µm, we obtain kR ≈ 0.6,
to be compared to the theoretical prediction of Fig-
ure 7: kR = 0 for RC0 ≈ 0.1;

– close to Hpearling we transiently observe some precur-
sory deformations of the tube (see Fig. 5b) which fre-
quently disappear and are much less developed than
for larger fields (Fig. 5a).

Let us discuss now some dynamical aspects of the
process that can influence the experimental threshold of
pearling.

4.4 Dynamical aspects

There is a time delay between the response of the tube
to reach its equilibrium radius and the quasi-immediate
stress of the membrane produced by the field application.
We can roughly evaluate those two characteristic times.

4.4.1 Characteristic time of diffusion of the tension along
the membrane

The diffusion of the tension along the membrane of a tube
of radius R is given [31] by

∂τ

∂t
=

κR

4η

∂2τ

∂z2
,

κ being the compression modulus of the membrane and η
the viscosity of water. It leads to a diffusion time along
the tube

θτ =
4ηL2

κR
,

with κ ≈ 3 · 10−2 Jm−2, ηwater = 103 Pa s, R = 2 µm
and L ≈ 500 µm we obtain θτ ≈ 2 · 10−2 s which is much
smaller than the experimental characteristic time of field
increment (≈ 30 s).

4.4.2 Characteristic time of relaxation of the tube radius

The diffusion time of the tube radius over a distance d is
given by (see App. B)

θR =
d2

DR
=

24ηd2

5τRi
.

For d = λ = 20 µm the wavelength of pearling,
ηwater = 10−3 Pa s, Ri = 2 µm and varying τ from 3τ0

at the transient onset of pearling up to its maximal value
100τ0, we get a diffusion time θR ranging from 30 s down
to 1 s. This characteristic time is of the same order of
magnitude as the experimental characteristic time of field
increment. From a dynamical point of view, the limiting
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process for pearling instability is thus the relaxation of
the tube radius and not the tension relaxation. In the
pearling regime it may produce out-of-equilibrium situ-
ations. The hydrodynamical process of relaxation of the
tube radius together with the dynamics of evolution of
perturbations [31] determine the period of the selected
unduloid.

4.5 Thermal fluctuations of the tube

We investigate here the tube properties through the mea-
surements of the field-induced deformation of the magne-
toliposome connected to the tube. Our experiments sup-
port the model of a magnetoliposome fed by an excess
of membrane coming from the tube. This excess of tube
membrane comes from a decrease of the tube radius due to
an increase of the tension as the magnetic field increases.
Nevertheless, another mechanism can be involved. The ex-
cess of membrane could also come from the vanishing of
the thermal fluctuations of the tube membrane under field.
A tentative estimate of the importance of this mechanism
can be obtained with the simple model developed in Ap-
pendix C. It is clear that such a mechanism is largely
insufficient to explain the large liposome deformations ob-
served here.

5 Conclusion

We are dealing here with the shape stability of phospho-
lipid tubes, a few microns in diameter. We present a new
method to induce a pearling instability in such a phos-
pholipid tube, this one being filled up with a magnetic
liquid and connected to magnetoliposomes. An applied
magnetic field modifies the stress of the membrane and if
it exceeds a critical value it produces a peristaltic modula-
tion of the tube. This method has several advantages over
other methods. In particular, it provides a well-controlled
tension source, it is reversible, there is no disruption of
the membrane, by opposition to standard methods with
optical tweezers.

We measure experimentally the under-field varia-
tions of the magnetoliposome eccentricity. Our theoretical
model allows us to transform these experimental deter-
minations in the variations of the tube radius R and of
the pressure jump pin − pout, as a function of the applied
tension.

Our model correctly describes the observed phenom-
ena and provides us with determinations of membrane
characteristics, namely in zero field its tension τ0 ≈
10−8 Jm−2 and in the pearling regime its spontaneous cur-
vature C0 ≈ 0.02µm−1.

In a first regime of applied fields, the phospholipid
tube remains at equilibrium in a cylindrical conforma-
tion of uniform circular section and reduces its radius
under the external solicitation. Under a large membrane
tension, out-of-equilibrium situations are observed for the
tube which develops a pearling instability because hydro-
dynamical processes prevent its radius reduction. In that

second regime the ratio pin−pout
τ is found to be a constant.

The shape assumed by the tube is that of an unduloid of
mean curvature equal to the spontaneous curvature of the
membrane. This one can thus be determined here. The
pearling observation roughly agrees with the theoretical
predictions of references [4–6,31], the experimental deter-
mination of the threshold being here penalized by the dy-
namics of relaxation of the tube radius.

We thank Olivier Sandre for useful exchanges and encourage-
ments and Michel Lavergne who performed the electron micro-
graphs in the SIARE of University Paris 6. We are also very
grateful to the referees for their discerning and helpful com-
ments.

Appendix A. Isolated liposomes in the
general case of any eccentricity e

The deformation of a giant liposome due to tension follows
a relation of elasticity that is particular to its entropic
nature [23]:

(Sτ − Sτ0)
Sτ0

∼= kT

8πKb
ln

(
τ

τ0

)
. (A.1)

If we assimilate the elongated liposome to an ellipsoid of
eccentricity e and of constant volume, the projected area
writes:

Sτ = Sτ0f (e) (A.2)

with f(e) =
(√

1−e2 +
arcsin(e)

e

)
1

2 (1−e2)1/6
.

For small deformations, it reduces to equation (2).
Then equation (4) rewrites in the general case of any ec-
centricity e,

(µ − 1)2

16π

H2R0
ves

τ
=

g (e)
2

(A.3)

with g (e) =

(
3−2e2

e2 −
(
3 − 4e2

)
arcsin(e)

e3(1−e2)1/2

)
(
1 − e2

)2/3
(

(3−e2)
e5 ln( 1+e

1−e )− 6
e4

) .

As well, equation (5) rewrites, in the general case of
any eccentricity e,

pin − pout =
2τ

R0
ves

f (e) − (µ − 1)2

8π
N (e) H2 =

2τ

R0
ves

(
f (e) − 1

2
N (e) g (e)

)
, (A.4)

where the demagnetizing factor of the ellipsoid is given by

N (e) =

(
1 − e2

)
2e3

(
ln

(
1 + e

1 − e

)
− 2e

)
. (A.5)
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Equation (A.3) then simplifies in

45kT

32πKb

(τ0

τ

)2
(

H

H∗

)4

=
g (e)2

4
. (A.6)

For small eccentricities, expression (A.6) reduces to
equation (6).

Appendix B. Characteristic time of
relaxation of the tube radius

It is natural to suppose that the time response of the tube
radius relaxation to a small increment δτ of its tension is
governed by the hydrodynamic flow of the liquid inside the
tube, the more so for a tube with peristaltic deformations.
In the framework of the lubrication approximation, with a
tube of initial radius Ri aligned along the z-axis, it comes

R(z, t) = Ri + δR(z, t) ,

∂
(
πR2 (z, t)

)
∂t

+
∂Q

∂z
= 0 (B.1)

with Q = − 5π

24η
R4

i

∂pin

∂z
, where η is the viscosity of the

fluid inside the tube and pin its pressure. The increment
δpin of pressure inside the tube is linked to δR and δτ
by relation (3) with kG = 0, ∆BH = 0 and H = − 1

2R
through

δ (∆p) = δpin = δ

(
τ

R
− Kb

2R3

)
= −τ

δR

R2
i

+
δτ

Ri
+

3Kb

2R4
i

δR.

Using the equilibrium condition

τ =
Kb

2R2
i

gives δpin =
1
Ri

δτ +
2τ

R2
i

δR

and thus, neglecting the term in ∂δτ
∂z with respect to that

in ∂δR
∂z :

∂pin

∂z
=

∂δpin

∂z
≈ 2τ

R2
i

∂δR

∂z
.

Equation (B.1) then writes

∂ (δR)
∂t

= DR
∂2 (δR)

∂z2
with DR =

5τRi

24η

and leads to the diffusion time of the tube radius over a
distance d:

θR =
d2

DR
=

24ηd2

5τRi
.

Appendix C. Flattening of the thermal
fluctuations of the tube

The excess of membrane of the liposome connected to a
tube could come from the vanishing of the thermal fluctua-
tions of the tube membrane under field. A simple estimate
of the importance of such a mechanism is derived here. In
this model the tube of mean radius R0 is viewed like a
string with a tension 2πR0τ and a curvature elasticity
2πR0Kb as in reference [4]:

E = 2πR0

∫ [
τ +

Kb

2

(
∂2�u

∂z2

)2
]
·
√

1 +
(

d�u

dz

)2

dz ,

�u being the displacement of the membrane perpendicular
to its main axis Oz.

A decomposition in Fourier series

�u =
1
L

∑
k

�uk exp(ikz)

gives for the energy variation of the tube with length L

∆E =
πR0

L

∑
k

[
τk2 + Kbk4

]·|�uk|2 .

The theorem of energy equipartition allows to write the
fluctuations of the tube length as δl = 〈L〉 − L =
L kT

2π2R0

∫
k2dk

τk2+Kbk4 , the fluctuations along �Ox and �Oy
axes being independent. If we assume that the maximal
and minimal values of the wave number kmax and kmin are
such as kmin �

√
τ

Kb
� kmax, we can evaluate the area

of the tube δS absorbed in the thermal undulations:

δS = 2πR0δl = 2πR0L
kT

4πKb

√
2

√
τ0

τ
. (C.1)

In equation (C.1), the slope of δS versus
√

τ0
τ is

smaller by a factor kT
4
√

2πKb
≈ 3 · 10−3 than in our model

and in the experiment. The amount of lipid absorbed by
the liposome because of the flattening of the thermal fluc-
tuations of the tube is here negligible. In the presence of an
applied magnetic field the dominant effect is the diminu-
tion of the tube radius under the increase of the tension
of the membrane.
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