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Dynamics of magnetic fluid drop’s shape in rotating and
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Abstract

A drop of magnetic fluid was experimentally studied in a rotating magnetic field Hr with the additional influence of a

stationary magnetic field Hs: The conditions of a drop break were studied with different values and directions of

intensities between rotating and static magnetic fields. The results of the experiment were theoretically well grounded.

r 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

There are some works dealing with the studies of a

magnetic drop’s shape in a static [1–3], and rotating [4–

6] magnetic field. The researches considered it interesting

to conduct similar experiments on simultaneous action

of rotating and stationary magnetic fields at different

angles to the directions of their intensities.

A drop of magnetic fluid such as magnetite in

kerosene with density 1.26� 103 kg/m3 was suspended

in glycerin in hydro-weightlessness (the inter-phase

surface tension for the magnetic fluid/glycerin was

3.7� 10�2N/m).

A glass vessel with drop (1) (Fig. 1) was placed at an

equal distance between two pairs of Helmholtz’s coils.

One pair (2) was mounted on a rotating platform (3).

The other one (4) was fixed, the vector of the stationary

field intensity Hs being either parallel or perpendicular

to the rotation plane of vector Hr:
Since in these fields the drop shape is close to the

ellipsoid of revolution, the eccentricity e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2=a2

p
(where a; b are the major and minor axis) was accepted

as a basic parameter. A video camera was employed to

record the evolution of the drop made with the obtained

data being subsequently processed. The size measure-

ment error was less than 10%.

2. The intensity vectors of both stationary and rotating

fields are oriented in the same plane

As found earlier [6], in the absence of constant

magnetizing field the eccentricity of the drop remains the

same during all the period of the drop rotation, provided

that the field rotates with a fixed frequency. In our case

(having applied the constant field), we observed fluctua-

tions similar to the fluctuations described in Ref. [7,8] (in

Ref. [7,8] the electrical field was applied along with the

rotating magnetic field). The eðtÞ curves resembled

ordinary cycloid (Fig. 2). But contrary to the observa-

tions of Ref. [7,8], the frequency of the eccentricity

oscillation coincided with the frequency of the field

rotation, while the amplitude of the oscillation grew as

Hs was intensified. Curve 1 in Fig. 2 corresponds to the

rotation frequency o ¼ 7 s�1 and the following field

intensities: Hr ¼ 6:4 kA/m, Hs ¼ 1:2kA/m. For curve 2,
the intensity of stationary field Hs was increased to 2 kA/

m(other parameters being the same).

When the stationary field was kept constant the

eccentricity decreased as the frequency of the rotating

field was increased.
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As established earlier [6], the major axis of the drop

lags behind the instant direction of the magnetic field Hr:
We denote the angle of lag as j: The value of j depends

on the viscosity of liquid, the rotation frequency and the

magnetic field intensity. As we found from our experi-

ments, angle j did not remain constant during the

rotation period of Hr if the additional stationary

magnetic field was applied. Its time dependence was

defined by intensities ratio of the stationary magnetic

field and rotating one. With Hr and the rotation

frequency being kept constant, the jðtÞ dependence

shifted from a sine-shaped wave to a non-sine function,

as Hs was increased (Fig. 3, curves 1 and 2). Curve 1 was

obtained at the following intensities: Hs ¼ 2 kA/m and

Hr ¼ 6:4 kA/m; curve 2, at Hs ¼ 2:4 kA/m and

Hr ¼ 1:3 kA/m. The further increase of the stationary

field resulted in the termination of the drop rotation.

Instead of rotation we observed the fluctuations of

drop’s major axis about the vector of a stationary

magnetic field. We experimentally investigated the Hr ¼
HrðHsÞ dependence at the rotation–oscillation transi-

tion. It turned to be linear with the proportionality

coefficient being dependent on the size of the drop

(Fig. 4). For all the frequencies (o ¼ 0220 s) and field

intensities (Hs ¼ 024 kA/m, Hs ¼ 029 kA/m) tried, the

additional stationary field proved to prevent the drop

from the break-up as reported in Ref. [6].
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Fig. 1. The experimental installation: (1) glass vessel with drop,

(2) the first pair of Helmholtz’s coils, (3) rotating platform, and

(4) second pair of Helmholtz’s coils.
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Fig. 2. The dependence of drop’s eccentricity from time during

one rotation period (rotation frequency was o ¼ 7 s�1): (1)

Hr ¼ 6:4 kA/m, Hs ¼ 1:2 kA/m, (2) Hr ¼ 6:4 kA/m, Hs ¼ 2 kA/

m, and (3) the theoretical curve.
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Fig. 3. The dependence of a corner of backlog j of a drop from

the intensity of a rotating field from time: (1) Hs ¼ 2 kA/m,

Hr ¼ 6:4 kA/m, (2) Hs ¼ 2:4 kA/m and the intensity

Hr ¼ 1:3 kA/m, and (3) the theoretical curve.
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Fig. 4. The dependence the intensity of a rotating field on the

intensity of a stationary field at the moment when a drop passed

from oscillatory movement to rotary movement: (1) d ¼ 2:5mm
and (2) d ¼ 8mm.

Y.I. Dikansky et al. / Journal of Magnetism and Magnetic Materials 252 (2002) 276–279 277



3. The intensity vectors of the stationary and rotating

fields lie on perpendicular planes

When the Hs vector was directed perpendicularly to

the rotation plane of the Hr vector, the superposition of

these fields at every moment gave a conical rotary

resulting field. Under the latter the magnetic fluid drop

deformed and started a precession rotation about the

axis through the mass center with the ends of the major

axis describing circles on parallel horizontal planes

(Fig. 5).

If the intensity of the resulting magnetic field H ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

s þ H2
r

p
was smaller than some critical value H�; the

increase in the field rotation frequency lead to reduction

of deformation of the drop (it approached a spherical

shape). The similar phenomenon was observed earlier [6]

at zero stationary magnetic field. The H� value in turn

depended on the size of the drop and rotation frequency.

At HXH� the deformation of the drop progressed

and at a certain frequency of rotation it broke into 2 or 3

unequal drops. The H�ðHsÞ dependence at break-up was
obtained for different drop sizes intensities from the

intensities of stationary field Hs at the moments of

drop’s break were received. They were obtained for

different drop’s sizes (Fig. 6, curves 1, 2 and 3

correspond to drop diameters d ¼ 5; 6 and 7mm,

respectively). As may be seen from Fig. 6, at the fixed

frequency the position of the curves’ minim shifted

towards higher field intensities, while the drop size

decreased.

Introducing angle b between the major axis of the

drop and the rotation plane of the Hr vector

(tg b ¼ Hs=Hr), we also obtained the b dependence for

the drop rotation frequency at break-up (Fig. 7). The

value of the resulting magnetic field was being kept

constant H ¼ 3:1 kA/m. Three curves were plotted for

various drop diameters d (curve 1 corresponds to

d ¼ 0:55 sm; curve 2 to d ¼ 0:7 sm and curve 3 to

d ¼ 0:8 sm). At bXb� the drop breaks up, where b� is

the critical angle. If b was kept constant and the

resulting field intensity H was varied instead, the H

dependence for the rotation frequency at break-up

turned to be linear. In Fig. 8 this dependence is

presented at different angles b (d ¼ 0:9 sm): for curve 1
b ¼ 451; for curve2, b ¼ 301 and for curve3, b ¼ 01:
The theoretical analysis of the observable phenomena

is carried out similarly to Ref. [7] using the model of

absolutely elastic ellipsoid of revolution. In the present

article we only consider the case of the stationary field

vector Hs lying in the rotation plane of the vector Hr:
The general case will be reported elsewhere.

We analyze the energy of a magnetic fluid drop in a

rotating magnetic field. It takes the form

W ¼ Wp � Wm � Wr; ð1Þ

where Wp is the superficial energy of the drop given as

Wp ¼ 2pr2sð1� e2Þ1=3 1þ
arcsin e

e
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
 !

; ð2Þ

r is the radius of the unperturbed drop, Wk is the kinetic

energy of rotating ellipsoid

Wk ¼
4prr5

15

2� e2

ð1� e2Þ2=3
o2: ð3Þ

Wm is the magnetic energy of ellipsoidal drop,

Wm ¼ wH2V
cos2 j
1þ wn

þ
2 sin2 j

2þ w� wn

� �
ð4Þ
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Fig. 6. The dependence of intensity of a magnetic field H*

when a drop broke from intensity of a stationary magnetic field:

(1) d ¼ 5mm; (2) d ¼ 6mm; (3) d ¼ 7mm.

Fig. 5. Precession rotation of a magnetic fluid drop when the

intensity of stationary field was perpendicular to the intensity of

rotating field.
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with

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

s þ H2
r � 2HrHs cosot

q
: ð5Þ

The necessary conditions of the energy minimum for a

stable eccentricity may be expressed by the following

system of the equations:

qW

qe
¼ 0;

qW

qj
¼ Kmp: ð6Þ

In order to solve system (6) it is necessary to know the

eccentricity dependence for the angle of lag, which can

be found from the equation

Km sin 2j� Kt ¼ 0; ð7Þ

where Kt is the viscous torque exerted on a drop [9], Km

is the maximal moment of magnetic forces exerted on an

ellipsoidal drop, determined by the expression

Km ¼ m0
VH2w2ð1� 3nÞ

2ð1þ wnÞð2þ w� wnÞ
: ð8Þ

Solving Eq. (7) gives

j ¼
1

2
arcsin

Kt

Km
: ð9Þ

Numerical solution of system (6) gives the time

dependence of the eccentricity (curve 3 in Fig. 2). This

dependence is close to cycloid with the period equal to

the rotation period of the magnetic field, which is

consistent with our experimental results (curves 1 and 2,

Fig. 2).

Substituting the obtained eccentricity-time depen-

dence into Eq. (9) enables us to derive the time

dependence of the angle of lag. From Eq. (7) one can

see that the angle of lag fluctuates about zero (curve 3,

Fig. 3), if the maximal moment of the magnetic force is

not less than the viscous friction torque, which is in a

good agreement with the experimental data (curves 1

and 2, Fig. 3). Otherwise, the fluctuations occur about

the direction of the stationary magnetic field, which is

also in accordance with the experimental evidence.

Thus, our research demonstrated that supervision of

the stationary magnetic field enables one to operate the

stability of a magnetic drop, in applied rotating

magnetic field.
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Fig. 8. The dependences of rotation frequency at which the

drop was broken off from of intensity of a resulting magnetic

field: (1) b ¼ 451; (2) b ¼ 301; (3) b ¼ 01:
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Fig. 7. The dependences of rotation frequency of a drop at the

moment of drop’s break from a corner b between large axis of a
drop and plane of rotation Hr: (1) d ¼ 5:5mm; (2) d ¼ 7mm;

(3) d ¼ 8mm.
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