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Abstract

To describe the dynamics of a single peak of the Rosensweig instability a model is proposed which approximates the peak
by a half-ellipsoid atop a layer of magnetic fluid. The resulting nonlinear equation for the height of the peak leads to the correct
subcritical character of the bifurcation for static induction. For a time-dependent induction the effects of inertia and damping
are incorporated. The results of the model show qualitative agreement with the experimental findings, as in the appearance of
period doubling, trebling, and higher multiples of the driving period. Furthermore, a quantitative agreement is also found for
the parameter ranges of frequency and induction in which these phenomena occur. © 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Magnetic fluids (MF) are stable colloidal suspen-
sions of ferromagnetic nanoparticles (typically mag-
netite or cobalt) dispersed in a carrier liquid (typically
oil or water). The nanoparticles are coated with a layer
of chemically adsorbed surfactants to avoid agglom-
eration. The behaviour of MF is characterized by the
complex interaction of their hydrodynamic and mag-
netic properties with external forces. Magnetic fluids
have a wide range of applications [1] and show many
fascinating effects [2], as the labyrinthine instability
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or the Rosensweig instability. The latter instability
occurs when a layer of MF with a free surface is
subjected to a uniform and vertically oriented mag-
netic field. Above a certain threshold of the magnetic
field that surface becomes unstable, giving rise to a
hexagonal pattern of peaks [3]. Superimposing the
static magnetic field with oscillating external forces
leads to nonlinear surface oscillations. Experimen-
tally, either vertical vibrations [4–6] or magnetic fields
[7–11] have been investigated as alternating external
forces.

For free surface phenomena the fluid motion
strongly depends on the shape of the surface and vice
versa. Additionally for MF, the shape of the surface is
determined by the magnetic field configuration which
contributes via the Kelvin force to the Navier–Stokes
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equation the solution of which gives the flow field.
Thus the dynamics of MF is inherently governed by
the nonlinear interaction between the flow field, the
surface shape, and the magnetic field configuration.

For that reason one attempts to study simple systems
of MF which nevertheless show the essential features.
The nonlinear dynamics of a single peak of magnetic
fluid, i.e., the dynamics of a zero-dimensional system
in a vertically oscillating magnetic field was studied
exemplarily in [10]. By varying the amplitude and the
frequency of the alternating field and the strength of
the static field, the peak response can be harmonic,
subharmonic (twice the driving period) or higher mul-
tiples of the driving period. For suitable choices of
the parameters, non-periodic chaotic peak oscillations
were observed.

Taking the above described circumstances into ac-
count for a theoretical approach, a sound model should
be analytically tractable as well as capable of showing
all essential features. Beyond these primary demands,
the model may also predict new phenomena of peak
oscillations. The aspiration to confirm such new phe-
nomena experimentally motivates a simple and robust
model to guide the design of the experimental setup.

Such a model is proposed for the dynamics of a
single peak of MF. It is based on the approximation
of the peak by a half-ellipsoid with the same height
and radius as the peak. The resulting equation giving
the dependence of the height of the peak on the ap-
plied induction is derived in Section 2. The charac-
ter of the bifurcation is analysed in Section 3 for the
case of a static induction. In Section 4, the dynamics
of the peak is studied and the results are compared
with the experimental behaviour for different frequen-
cies of a time-dependent induction. Section 5 summa-
rizes the results and outlines two aspects for further
experiments.

2. Model

The complex and nonlinear interactions in MF with
a free surface formed by a peak (see Fig. 1) present a
formidable problem, since the form of the peak is not
known analytically. The aim of our model is an ana-

Fig. 1. Approximation of the MF peak by a half-ellipsoid with
the vertical semiprincipal axish and the horizontal semiprincipal
axis R. The shape of the peak was measured in a setup used in
[10] with the MF EMG 901 atB = 115.63× 10−4 T (courtesy of
A. Tiefenau). The height of the peak is∼ 8.2 mm.

lytical equation for the height of the peak at its centre
r = (x, y) = 0. The shape of the peak, particularly
the form at the tip of the peak is beyond the potential
of this model. The equation will thus neglect the in-
fluence of the surface regions away from the peak tip
and of the boundaries.

A layer of an incompressible, nonconducting, and
inviscid MF of half-infinite thickness betweenz =
0 and z → −∞ is considered with a free surface
described byz = ζ(x, y, t). It is assumed that the
magnetizationM of the MF depends linearly on the
applied magnetic fieldH, M = χH, whereχ is the
susceptibility of the MF. The system is governed by
the equation of continuity, divv = 0, and the Euler
equation for MF in the presence of gravity

ρ[∂tv + (v grad)v] = −gradp + µ0 M gradH + ρg,

(1)

where the magnetostriction is neglected and the
co-linearity of the magnetization and the field is ex-
ploited for the magnetic force term. In Eq. (1) the
velocity field is denoted byv, the density of the MF
by ρ, the pressure byp, the permeability of free space
by µ0 and the acceleration due to gravity byg. M, H ,
and B are the absolute values of the magnetization,
the magnetic field and the inductionB in the fluid. In
the static case,v = 0, the integral of the equation of
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motion (1) may be calculated to give

p = −ρ g z + µ0

∫ H

0
M dH ′ + const. (2)

The remaining boundary condition in the static case,
the continuity of the normal stress across the free sur-
face, gives

p = σ K − µ0

2
(M n )2 at z = ζ, (3)

where the pressure in the non-magnetic medium above
the MF was set to zero. The surface tension between
the magnetic and non-magnetic medium is denoted by
σ , the curvature of the surface byK = div n, and the
unit vector normal to the surface byn. By inserting
Eq. (2) atz = ζ into Eq. (3), the balance of pressure
results in an equation for the surfaceζ

ρ g ζ − µ0

(
M2

n

2
+
∫ H(ζ)

0
M dH ′

)
+ σ K = const

(4)

with Mn = M n . After the peak is formed, the equi-
librium is characterized by the equality of the pressure
along the surface. Motivated by our aim of an analyt-
ically tractable model, we choose the two reference
points r = 0, the centre of the peak, and|r | � 0,
the flat interface far away from the peak, where the
pressure equality is evaluated. The magnetization is
related to the induction by

M = χ

µ0(χ + 1)
B(r ). (5)

Applying Eq. (4) at(r = 0, ζ = h) and(|r | � 0,

ζ = 0) leads to

−ρgh− σ K(h)

+ χ

2µ0(χ + 1)
B2

ext

{[
B(h)

Bext

]2

− 1

}
= 0, (6)

whereBext is the external applied induction. The re-
maining two unknown quantities, the curvatureK(h)

and the inductionB(h) at the tip of the peak, are de-
termined by an approximation. We model the peak,
which is assumed to be rotationally symmetric, by
a half-ellipsoid with the same height and radius as

the peak (see Fig. 1). Thus one can make use of the
analytical results for a rotational ellipsoid with the
vertical (horizontal) semiprincipal axish(R) with the
curvature given by

K|z=h = h

R2
(7)

and the induction [12]

B|z=h = Bell = χ + 1

1 + χβ
Bext (8)

with

β =




1+ε2

ε3 (ε − arctanε), ε =
√(

R
h

)2 − 1
for R > h,

1−ε2

ε3 (arctanhε − ε), ε =
√

1 − (
R
h

)2
for R < h.

(9)

It is emphasized that an applied inductionBext results
in a uniform inductionBell within the ellipsoid. The
demagnetization factorβ is a purely geometrical quan-
tity because it relates the dimensions of the major and
minor semiprincipal axes by means of the eccentric-
ity ε. Whereas Eq. (7) can be substituted directly into
Eq. (6), the result (8) has to be modified to the case
of a half-ellipsoid atop the layer of MF. The proposed
modification is

B|z=h = 1 + χ(1 + λβ)

1 + χβ(1 + λβ)
Bext, (10)

where a parameterλ is introduced, which mimics the
influence of the magnetic field of the layer on the field
at the tip of the peak. The form of (10) ensures that
in the limits of a magnetically impermeable material
(χ = 0), of a ‘magnetic conductor’(χ → ∞), of
a very oblate ellipsoid(β ' 1), and of a very pro-
late ellipsoid(β ' 0) the results are the same as in
Eq. (8). As long as the height of the half-ellipsoid is
large compared to its diameter, the influence of the
magnetic layer on the magnetic field at the tip of the
peak is small. This is obviously not the case if the
half-ellipsoid becomes disk-shaped, i.e.,h < R. For
this case (10) is expanded up to the first-order inh/R,

B|z=h,h�R '
[
1 + χ(1 + λ)πh

[1 + χ(1 + λ)]2R

]
Bext (11)
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Fig. 2. Sketch of an ellipsoid inscribed into the crest of a sinusoidal
surface wave with the wavelength 4R.

and compared to the analytical result forB at the crest
of a sinusoidal surface wave (SW) (p. 178 in [2]) with
the wavelength 4R (Fig. 2)

B|z=h,SW =
[
1 + χ π h

(χ + 2)2R

]
Bext. (12)

The condition that both values ofB should coincide,
leads to an equation for the parameterλ

λ = −1
2. (13)

The determination ofλ adjusts the radius, since the
critical wave number for surface waves is the capil-
lary wave number,kc = (2π/λc) = √

ρ g/σ . There-
fore, the radius of the half-ellipsoid is fixed toR =
1
4λc = π/(2kc). By inserting (7) into (6) and intro-
ducing dimensionless quantities for all lengths and the
induction

h̄ =
√

ρ g

σ
h,

B̄ = χ√
2µ0(χ + 1)(χ + 2)

√
ρσg

B, (14)

we obtain anonlinearequation for the dependence of
the peak height̄h on the applied induction̄Bext (the
bars are omitted for the rest of the paper)

B2
ext

[(
B(h)

Bext

)2

− 1

]
− h

[
1 + 1

R2

]
χ

(χ + 2)

= 0. (15)

The nonlinear behaviour enters into the equation
throughB(h)/Bext which is determined by (9), (10)
and (13). Eq. (15) presents the fundamental equation
of the model in which the height of the peak depends
on the properties of the applied induction only. The
quality of the approximation is tested in the static case

for which (15) was derived. It forms the starting point
for the description of the peak dynamics, where the
effects of inertia and damping have to be taken into
account.

3. Static peak

For a layer of MF with a free surface subjected to
a vertical magnetic field there are three different en-
ergies which contribute to the total energyEtot. The
potential energy and the surface energy increaseEtot

with increasingh, whereas the magnetic field energy
decreasesEtot with increasingh. The plane surface
corresponds to a minimum of the total energy ath =
0. If the surface is perturbed, the magnetic flux is con-
centrated in the peaks of the disturbances. The result-
ing force tends to increase the modulations, while sur-
face tension and gravitational forces tend to decrease
the disturbances. When the increasing field passes a
certain strengthHc, the destabilizing force will win
over the stabilizing ones. The resulting peaks are en-
ergetically favourable because forH > Hc the total
energy has now a second minimum ath > 0 which
is deeper than the first one ath = 0. The transition
from the first to the second minimum corresponds to
the sudden jump fromh = 0 to h > 0. If the peaks
are established, a decreasing field results in smaller
heights of the peak up to a second critical fieldHs,
the saddle-node field, where the peaks suddenly break
down. With respect to the total energy this means a
transition back to the first minimum ath = 0 because
it is now energetically more favourable.

Such a dependence of the height of the peak on the
variation of the magnetic field is typified as a hys-
teresis. The difference between the two critical fields
defines the width of the hysteresis. For a MF with
χ = 1.15 the width was measured to 6% of the critical
field and the critical height atHc is given by 2.1 mm
[10]. The corresponding critical inductions areBc =
µ0[Hc + M(Hc)] andBs = µ0[Hs + M(Hs)].

For a static induction,Bext = B0, the solution
of Eq. (15) is determined for two susceptibilities,
χ = 1.15 andχ = 2.5. The former value is given
in [10] for a mixture of EMG 901 and EMG 909
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Fig. 3. (a) Height of the peakh versus the strength of the static
external inductionB0 as solution of Eq. (15) forχ = 0.01 (dashed
line), χ = 1.15 (long-dashed line), and 2.5 (solid line). The
critical induction for the subcritical bifurcation is independent of
χ , whereas the width of the hysteresis increases with increasing
susceptibility. (b) The width of the hysteresis,Bc − Bs, is plotted
versus the susceptibilityχ of the magnetic fluid.

(both Ferrofluidics Corporation) in a ratio of 7 to 3,
whereas the latter value was measured in a recent
experiment for the same mixture [13]. For both sus-
ceptibilities a distinct hysteresis appears, whose width
increases with increasing susceptibility. Correspond-
ingly, in the limit χ → 0 the hysteresis disappears
(Fig. 3a). Forχ = 1.15 the width is 5% of the crit-
ical inductionBc and the critical height of the peak
is hc ' 2.0/kc ' 2.9 mm. The material parameters
ρ = 1377 kg m−3 and σ = 2.86 × 10−2 kg s−2 as
given in [10] were used. For the other chosen sus-
ceptibility, χ = 2.5, the width is 13% of the critical
induction Bc and the critical height ishc ' 6.9/kc

' 10.0 mm.

Fig. 3b shows the dependence of the width of the
hysteresis on the susceptibility of the magnetic fluid.
Whereas for small susceptibilities a fair increase of the
width can be detected, a tendency towards a saturation
in the growth can be seen for larger susceptibilities. No
systematic measurements of the width of the hysteresis
have yet been undertaken. Therefore any experimental
test which would determine the range of validity of
the model is pending on subsequent measurements.

Despite the simplicity of the proposed approxima-
tion, the model describes the generic static behaviour
of the height of the peak very well, i.e., the appearance
of a hysteresis for increasing and decreasing induc-
tion at non-zero susceptibilities as it is observed in ex-
periments [10,14,15]. Note in this connection that for
λ = 0, i.e., when neglecting the difference in the mag-
netic field of an ellipsoid and a half-ellipsoid, no hys-
teresis is found. Note also that in a one-dimensional
system one finds asupercriticalbifurcation forχ <

2.53 [16–18] whereas our simplified two-dimensional
model yields a subcritical bifurcation for all values of
χ in accordance with experiment. Beyond the quali-
tative agreement, the quantitative values for the width
of the hysteresis and the critical height are in satis-
fying agreement with the measurements in [10] for
χ = 1.15. This agreement is achieved without any
fit-parameter since the fixed value of the parameterλ

applies for any MF.
The fact that the critical induction is not equal to

1 (cf. (15)) is a consequence of the evaluation of the
introduced parameterλ, which determines the radius.
The imposed value of the radius ensures the equality of
the magnetic induction at the top of the oblate ellipsoid
and the crest of the surface wave. But the curvature is
different: h/R2 at the top of the ellipsoid is smaller
than the valueπ2h/4R2 it takes at the crest of the
surface wave. Thus the expansion of (15) for smallh

with R = π/2,

h

[
B2

0
π

R
− 1 − 1

R2

]
= 0 (16)

leads to a critical induction smaller than 1, Bc =√
1/2 + 2/π2 ' 0.84. The half-ellipsoid approxima-

tion (10) with λ = −1
2 was quantitatively compared

to a numerically exact determination of the magnetic
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Fig. 4. The induction at the top of the peakBh versus the height
of the peakh. Bh(h) is scaled with respect to the external static
induction B0 (the radius of the half-ellipsoidR). The solid line
gives the solution of the approximation (10) withλ = − 1

2 and the
filled squares indicate the results of the fully three-dimensional
calculations [19] (courtesy of Matthies). The induction at the tip
of the peak is approximated with an accuracy of 1.7%.

field of a rotational half-ellipsoid atop of a horizontal
layer by solving the Laplace equation for the magnetic
potential (Fig. 4). For 0.5 ≤ h/R ≤ 6.5 the magnetic
induction at the tip of the peak is approximated with
an accuracy of 1.7%. The comparison shows that the
modification of the magnetic field at the tip of the peak
through the magnetic field of the layer is rather weak
even for small heights. This supports our assumption
that the field at the tip of the peak is the essential
feature to describe its behaviour.

Therefore, Eq. (10) describesB directly at the
height of the peak fairly accurately. Furthermore, Eq.
(15) leads to the correct character of the bifurcation,
i.e., a subcritical instability, and gives the right width
of the hysteresis compared with the experimental
results [10]. With this level of confirmation, the dy-
namics of a single peak of MF is studied in Section 4.

4. Oscillating peak

4.1. Inertia and damping

The induction is chosen to be a superposition
of a static part,B0, and a time-dependent part,
1B cos(ω t). The amplitude of the oscillating part is

denoted by1B and the frequency byω = 2πf =
2π/T . In correspondence with the experiments [10],
the response-period of the peak is studied in depen-
dence on the three parameters, the strength of the static
part, the amplitude of the alternating part, and the
driving frequency. If the last two parameters are kept
constant, one distinguishes between three different
regimes for the behaviour ofh(t) with increasingB0.
For smallB0 the surface remains flat, i.e.,h(t) ≡ 0.
Beyond a first, lower thresholdh(t) oscillates between
zero and a maximumhmax whereas beyond a second,
higher threshold it alternates between two positive
extrema, 0< hmin < hmax (see Fig. 5). The behaviour
in the second regime will be the focus of our study
since it was analysed experimentally in detail in [10].

In order to formulate a differential equation for the
peak dynamics, the effects of inertia and damping have
to be incorporated into Eq. (15). Since each term in
(15) stems from the equation of pressure balance, the
inertial term may be written as

force

area
= m

A

d2h

dt2
∼ ρ|h|A

A

d2h

dt2
= ρ|h|d

2h

dt2
. (17)

The sign of proportionality indicates that in the frame
of our model the mass and the area of the peak can-
not be precisely determined. For these quantities the
knowledge of the complete surface and the flow field
are necessary. For this reason we choose the simple
relation of a linear dependence of the mass of the peak
on its height.

The implementation of the damping is difficult. In
the experiment one observes that the peak periodically
arises up to a maximal height and collapses to zero
height. This behaviour leads to the assumption that
the system is endowed with a dissipation mechanism
which acts particularly strongly when the collapsing
peak approachesz = 0. Since such a mechanism can-
not be derived in the frame of the present model, the
idea of an impact oscillator [20,21] is used. The impact
oscillator is an externally excited oscillator, where the
oscillating mass impacts on a fixed boundary. From
this boundary the mass is reflected with a velocity

dh

dt

∣∣∣∣
t0+

= −τ
dh

dt

∣∣∣∣
t0−

, (18)
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Fig. 5. Three different regimes for the temporal behaviour of the height of the peak at constant frequency and constant amplitude of the
alternating part of the applied induction. For small values of the static induction the height is zero (left), for moderate strengths the height
oscillates between zero and a maximum (middle), and for large values the height alternates between a minimum and maximum both larger
than zero (right). Only the second regime is analysed in detail.

whereτ is the coefficient of restitution andt0 is the
time of the impact,h(t0) = 0. Consequently, there are
oscillations between 0≤ h < ∞ only. For a weakly
damped impact oscillator it is known [20] that infinite
series of transitions from period 1 to periodN (N =
3, 4, . . . ) can appear. This phenomenological resem-
blance to the observations in [10] also motivates the
use of the idea of an impact oscillator. It is emphasized
that the chosen special form of damping applies only
to the second regime, whereh(t) oscillates between
zero and a maximumhmax.

In our model an impact withz = 0 occurs whenever
h(t) reaches zero. The height and the velocity after
the impact are fixed and independent of the behaviour
before the impact. We choose

h = 10−6,
dh

dt
= 0 at t = t0+ , (19)

which corresponds to a nearly complete dissipation
of the energy at every impact. A similar choice was
made for a model proposed in [10]. The choice of fixed
values is obviously an oversimplification because it
does not make any difference whether a large peak
with a high velocity rushes towardsz = 0 or whether
a small peak slowly approachesz = 0.

The resulting differential equation for this cut-off
mechanism in dimensionless quantities is (the time is
scaled byg3/4ρ1/4σ−1/4)

d2h

dt2
= B2

ext

h

[(
B(h)

Bext

)2

− 1

]
(χ + 2)

χ
− 1 − 1

R2

(20)

with Bext = B0 + 1B cos(ω t). Eq. (20) is solved
by means of the forth-order Runge–Kutta integra-

tion method with a standard time step ofT/200000.
The other standard parameters for the integration are
h(0) = 10−6 and dt h(0) = 0 as initial conditions and
a total time of 200T over which the solution is calcu-
lated. The first 100 periods are considered as transient
time for the system to relax to a response-behaviour
independent of the initial conditions. The last 100
periods are analysed with respect to a periodic be-
haviour ofh(t) by means of a Poincaré section. For
our one-dimensional dynamics a Poincaré section
means to compareh at a certain time, saytm = mT,
with h at times, which areN periods (N = 1, 2, . . . )
later with respect totm

h(tm)
?= h(tm + T ),

h(tm)
?= h(tm + 2T ),

. . .

h(tm)
?= h(tm + N T ).

(21)

Those equations which are fulfilled give the periodN

(and any higher multiples ofN ) of the peak response.
The chosen 100 periods of analysis ensure a good
reliability of the estimated periods up to 30.

4.2. Results and discussion

The results of the Poincaré sections are plotted as
period diagrams in theB0–1B plane at a fixed fre-
quencyf and for two different susceptibilities (see
Figs. 6, 7 and 9). The constant part,B0, is sampled in
steps of 0.01. The amplitude of the alternating part,
1B, is increased in steps of 0.025 with an initial value
of 0.05. The different periods in the interesting sec-
ond regime, 0≤ h(t) ≤ hmax, are coded by colours.
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Fig. 6. Periods of the peak oscillations in dependence of the static
inductionB0 and the amplitude of the alternating induction1B at
a small frequency off = 0.03 (' 2.5 Hz) for the susceptibilities
χ = 1.15 (a) andχ = 2.5 (b). The peak oscillates harmonically
almost everywhere in theB0 − 1B plane. The area of harmonic
response is cone-like shaped. The limit to the left is given by
1B = Bc − B0 for B0 ≤ Bc (solid line) and the limit to the right
is given by 1B = B0 − Bc for B0 ≥ Bc (dashed line). Slight
deviations from these features appear forχ = 1.15 (a). The colour
code for the periods 1–30 is given in the legend. Periods above
30 and non-period behaviour are displayed in grey.

The periods 1–10 are encoded by a chart of distinctive
colours starting with green, red, blue, and ending with
orange. The higher periods from 11 to 30 are encoded
by a continuous colour chart. Periods above 30 or a
non-periodic behaviour ofh(t) are noted by grey. This
selection of colours is guided by the choice of colours
in [10]. White areas inside and right of the coloured
horizontal stripes indicate regions, whereh(t) oscil-
lates between two positive extrema. White areas left
of the coloured stripes denote the regimeh(t) ≡ 0.

Fig. 7. Periods of the peak oscillations in dependence of the static
inductionB0 and the amplitude of the alternating induction1B at
a medium frequency off = 0.1 (' 8.2 Hz) for the susceptibilities
χ = 1.15 (a) andχ = 2.5 (b). (a) Two disjoint parts appear,
where for smaller values ofB0 the peaks oscillates harmonically
and for higher values ofB0 the period-2 state emerges. (b) For
high amplitudes1B harmonic oscillations and period doubling
are only present. For smaller amplitudes of1B a tongue of high
periodic (2< N < 19) and non-period oscillations appears. The
solid line indicates1B = Bc − B0 for B0 ≤ Bc and the dashed
line marks 1B = B0 − Bc for B0 ≥ Bc. The colour code for
the periods 1–30 is given in the legend. Periods above 30 and
non-period behaviour are displayed in grey.

The period diagram for a low frequency off =
0.03 (' 2.5 Hz) is displayed in Fig. 6. In accordance
with the experimental results for 2.5 Hz (see Fig. 5a in
[10]) the response of the peak is harmonic almost ev-
erywhere in theB0–1B plane. Responses with higher
periods are detected only at the edge towards the third
regime. The area of harmonic response is cone-like
shaped, where the limit to the left is given by1B =
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Bc − B0 for B0 ≤ Bc (solid line) and the limit to the
right is given by1B = B0 − Bc for B0 ≥ Bc (dashed
line). These strict limits apply particularly to the MF
with χ = 2.5 (Fig. 6b), whereas the right limit is more
frayed for the MF withχ = 1.15 (Fig. 6a). The fea-
ture of a cone-like shape is also found in the experi-
ment, but with a slight asymmetry at very small am-
plitudes of the alternating field. An asymmetry could
not be found with our simple model. Another differ-
ence is that our right limit is too large compared to
the experimental data.

The appearance of only harmonic responses is
caused by the low frequency. The corresponding char-
acteristic time of the excitation,T , is large enough
for the peak to follow the slow modulations of the
external field. Therefore the peak oscillates with the
same frequency as the external excitation. By consid-
ering the quasi-static limitf → 0 (see Fig. 3), the
boundaries of the second regime can be understood
as follows: as long asB0 is smaller thanBc − 1B,
the resulting external induction varies over a range
where at its lower boundh1 = 0 is stable. At its up-
per bound eitherh2 = 0 is stable ifB0 + 1B < Bs,
or h2 = 0 andh2 > 0 are stable ifB0 + 1B > Bs.
Because of the greater attraction of zero height in the
bistable area due to the strong damping ath = 0, the
dynamics ofh(t) is bounded by zero in both cases. If
B0 is larger thanBc + 1B, the resulting external in-
duction varies over a range where at its lower bound
h1 > 0 is stable and at its upper boundh2 > h1

is stable. Thus the dynamics ofh(t) is bounded be-
tweenh1 andh2. Consequently, for low frequencies
the peak alternates in the second regime as long as
Bc − 1B ≤ B0 ≤ Bc + 1B. The fact thath(t) re-
mains at zero even when for a certain time a non-zero
height is stable (but not attractive enough to win over
h = 0) was observed in the experiment, too. In our
dynamics the zero height is always more attractive
than the non-zero height. This is not the case in the
experiment, which explains the observed lower limit
to the right.

Fig. 7 shows the results for a medium frequency of
f = 0.1 (' 8.2 Hz). For the MF with the low suscep-
tibility of χ = 1.15, the second regime splits into two
disjoint parts. For smaller values ofB0 we find only

harmonic responses, whereas for higher values ofB0

we observe the periodN = 2. The second regime is
separated from the first regime by1B = Bc − B0 for
B0 ≤ Bc (solid line). The limit to the right is given
by 1B = B0 −Bc for B0 ≥ Bc (dashed line) only for
amplitudes1B above 0.15 (Fig. 7a). For the MF with
the high susceptibility ofχ = 2.5, the second regime
forms a compact region, which is separated from the
first regime by1B = Bc − B0 for B0 ≤ Bc (solid
line). In contrast to the low frequency behaviour, the
whole structure of periods shows a specific compo-
sition. For a fixed amplitude1B the peak starts to
oscillate harmonically. For1B > 0.25 and increas-
ing B0 the period-1 state is replaced by the period-2
state which lasts up to the right limit of the second
regime. This clear two-state picture changes if1B is
decreased. For1B ≤ 0.25 a tongue of high periodic
(N > 2) and non-period oscillations appears (Fig. 7b).
For 0.175 ≤ 1B ≤ 0.25 the tongue is embedded in
the period-2 state. For1B < 0.175 the tongue fol-
lows directly the harmonic oscillations. In this tongue
we find odd number periods of 3, 5, and 9 and even
number periods of 4, 8, 14, 16, and 18 (see Fig. 8).

The structure of periods in Fig. 7b displays generic
features which are also observed in the experiment for
12.5 Hz (see Fig. 6a in [10]). Beside the agreement in
the generic features, there are three major quantitative
differences. The period-2 state area between the har-
monic response and the tongue is much thinner than
in the experiment. An extended area of periodN = 3
could not be found and the right limit of the period-2
state is too low compared to the experimental results.

For a frequency off = 0.2 (' 16.4 Hz) the results
are shown in Fig. 9. For a low susceptibility ofχ =
1.15 the peak starts to oscillate harmonically indepen-
dently of the strength of1B. With increasingB0 the
period-1 state is followed by a period ofN = 4 for
1B ≤ 0.125. For1B > 0.125 the harmonic response
is mainly replaced by the period-2 state, which is then
replaced by the period-3. One notes the appearance of
oscillations between two positive extrema inside the
second regime for the low susceptibility case (Fig. 9a).
For a high susceptibility ofχ = 2.5 the whole period
diagram displays a band-like structure (Fig. 9b). For
a fixed amplitude1B and increasingB0, the period
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Fig. 8. Oscillations of the height of the peak with a periodN = 5
(a) andN = 16 (b) at a driving frequency off = 0.1 (' 8.2 Hz)
for a MF with a susceptibility ofχ = 2.5. The other parameters are:
(a) 1B = 0.15 andB0 = 0.74; (b) 1B = 0.225 andB0 = 0.74.
Note the different scales at the axes.

N = 1 appears first. Then either the periodN = 6 fol-
lows for1B ≤ 0.15 or the periodsN = 2 andN = 6
follow for 1B > 0.15. The whole structure of peri-
odic orbits ends with a broad band of periodN = 5.
This lastnovelfeature is remarkable because no simi-
lar phenomenon has been observed in the experiment.
For all tested frequencies in [10], the second regime
gives way to the third regime by a period ofN = 1 or
N = 2.

The comparison between the experimental and the-
oretical data generally shows a qualitative and partly a
quantitative agreement with the dynamics of the peak.
This agreement is achieved with a certain choice for
the mass of the peak (17) and for the strength of the im-
pact (19). The results shown are robust against modifi-
cations of (17) and (19) by a constant of O(1). It is not
necessary to fit parameters as the damping constant,
the driving period, the critical field, and the resolution

Fig. 9. Periods of the peak oscillations in dependence of the static
induction B0 and the amplitude of the alternating induction1B

at a frequency off = 0.2 (' 16.4 Hz) for the susceptibilities
χ = 1.15 (a) andχ = 2.5 (b). (a) The peak starts to oscillate
harmonically independent of the strength of1B. With increasing
B0 the period-1 state is followed by a period ofN = 4 (small1B)
or N = 2 and 3 (large1B). (b) The whole period diagram displays
a band-like structure formed by areas of periodN = 1, 2, 5, and
6. The solid line indicates1B = Bc−B0 for B0 ≤ Bc. The colour
code for the periods 1–30 is given in the legend. Periods above
30 and non-period behaviour are displayed in grey.

limit of the height in contrast to the minimal model
in [10]. The other improvements are a more realistic
nonlinear force term and the multiplicative character
of the driving. Our results at low and medium frequen-
cies forχ = 2.5 support the presumption that the MF
used for the measurements of the dynamical behaviour
has a higher susceptibility than given in [10]. The ex-
perimental results at a high frequency of 23.5 Hz (see
Fig. 7a in [10]) could not be found in our tested range
of frequencies, 0.01 ≤ f ≤ 0.5.
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5. Summary

In order to describe the complex and nonlinear dy-
namics of a single peak of the Rosensweig instability
in an oscillatory magnetic field, we propose a model
aiming at an analytical equation for the height of the
peak at its centre. Our model approximates the peak
by a half-ellipsoid atop a layer of magnetic fluid. By
exploiting the Euler equation for magnetic fluids and
the analytical results for a rotational ellipsoid, we ob-
tain a nonlinear equation for the dependence of the
peak height on the applied induction (15). For static
induction the quality of our proposed model is tested.
It leads to the correct subcritical character of the bi-
furcation and gives the right width of the hysteresis
compared with experimental results.

For a time-dependent induction the effects of in-
ertia and damping are incorporated into Eq. (15). In
correspondence with the experiments the dynamics is
studied in a region, where the peak alternates between
zero and a maximal heighthmax. Our model shows
not only qualitative agreement with the experimental
results, as in the appearance of period doubling, tre-
bling, and higher multiples of the driving period. Also
a quantitative agreement is found for the parameter
ranges of frequency and induction in which these phe-
nomena occur.

For low frequencies the response of the peak is
harmonic for nearly any strength of the external ex-
citation which is a superposition of a static part and
an oscillatory part. The whole area of harmonic re-
sponse is cone-like shaped in accordance with the
experiment. For a medium frequency a structure of
periods is found, where a tongue of high periodic
and non-periodic oscillations appears. For low values
of the amplitude of the alternating induction, the
tongue directly follows the period-1 state. For higher
values of the amplitude the tongue is embedded in the
period-2 state. The appearance and the location inside
the parameter plane of an area of high periodic and
non-periodic oscillations agree with the experimental
data in the same frequency range.

Beside the agreement with the generic features
observed in the experiment at low and medium fre-
quencies, the model predicts a novel phenomenon.

For a frequency of about 16.4 Hz the peak oscillates
with the periodN = 5 as the final period before the
oscillations between zero andhmax end (see Fig. 9b).
It would be challenging to seek a final period greater
than 2 in the experiment, because for the studied
frequencies in [10] the final oscillations have only
periods ofN = 1 or N = 2.

In the dynamics of a magnetic fluid with a low sus-
ceptibility a mixing of areas with different types of
oscillations is found. For frequencies which are not
too low, areas with oscillations between two positive
extrema appear regularly inside areas with oscillations
between zero andhmax. It would be interesting to test
in experiments whether such a mixing can be observed
for MF with low susceptibilities.
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