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Kelvin force in a layer of magnetic fluid
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Abstract

The Kelvin force in a layer of magnetic fluid subjected to a homogeneous magnetic field and local heating is studied.

The study is motivated by the question about the corresponding Kelvin force density (Phys. Rev. Lett. 84 (2000) 2762).

It is shown that the usual and the newly proposed formulation of the Kelvin force are entirely equivalent. It is only

when approximations are introduced that differences arise. r 2002 Elsevier Science B.V. All rights reserved.
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Two prominent directions of interest can be
identified among the present studies of phenomena
occurring in magnetic fluids (MFs). These are the
study of unconventional fluid dynamics phenom-
ena such as the ‘‘negative viscosity’’ effect and the
Weissenberg effect (for a review see Ref. [1]) and
the proposal of new theoretical concepts [2]. Both
directions are interwoven in the observation of a
novel convective instability in a horizontal MF
layer [3,4] and in the subsequent discussion about
the correct form of the magnetic (or Kelvin) force
density [5,6].
This first discussion about the range of validity

of the Kelvin force was followed by a second one
[7,8] triggered by a paper announcing that a
pendulum experiment had confirmed the invalida-
tion of the Kelvin force in MFs [9]. The claim was
not accomplished according to Ref. [7] and the
resulting need for a clarification entailed an
extended paper [10]. A clarification as in the

pendulum experiment is lacking for the convection
experiment. The aim of the present paper is to
show that the usual and the proposed formulation
of the Kelvin force are entirely equivalent. It is
only when one introduces approximations that
differences arise.
In Refs. [3,4] a horizontal layer of MF (stable

colloidal suspension of magnetite nanoparticles
dispersed in kerosene) between two glass plates is
locally heated by a focused laser beam. It passes
perpendicularly through the layer in the presence
of a homogeneous vertical magnetic field. The
absorption of the light by the fluid generates a
temperature gradient and subsequently a refractive
index gradient. This gradient is optically equiva-
lent to a diverging lens, leading to an enhancement
of the beam divergence. As a result, depending on
the strength of the magnetic field different diffrac-
tion patterns appear [4].
To explain the observed phenomena, the form

of the magnetic force inside the fluid has to be
known. Therefore, a horizontal layer of MF is
considered which is subjected to a homogeneous
vertical magnetic induction. Since the temperature
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and the concentration of the fluid may vary, the
magnetic field in the fluid is inhomogeneous and
give rise to a finite Kelvin force density, fK: It can
be derived from the Helmholtz force [11]

fK ¼ m0 grad
H2
int

2
r
qw
qr

� �
� m0

H2
int

2
grad w; ð1Þ

where w ¼ arð1þ b1arÞ is the susceptibility of the
MF, r its density, Hint the absolute value of the
magnetic field inside the fluid, and m0 ¼ 4p�
10�7 H=m: Higher-order terms in r are included in
w in order to determine the Kelvin force be-
yond the dilute limit. This limit is given by b1 �
0; i.e. w ¼ wL which is the susceptibility accord-
ing to Langevins theory which assumes noninter-
acting particles. In this approximation wL de-
pends linearly on the density, wL ¼ ar ¼
m0m

2r=ð3kTmeff Þ; where meff is the effective mass
of a ferromagnetic particle with its ‘attached’
carrier liquid molecules [12], m the magnitude of
the magnetic moment of the particles, T the
temperature, and k the Boltzmann constant. The
coefficient b1 of the quadratic term in r was
determined in different microscopic models [13–
15], all of which provide the same value b1 ¼ 1=3:
In the presence of a uniform external magnetic
induction Bext; the internal field is given by Hint ¼
Bext=ðm0ð1þ wÞÞ: Inserting all expressions in
Eq. (1), the Kelvin force follows as

fKðwÞ ¼ �
B2ext
m0

w2Lf1þ b1½3wLð1þ b1wLÞ � 1
g

ð1þ wÞ3

�
grad wL

wL
: ð2Þ

In Ref. [5] a variant form for the Kelvin force is
proposed. By defining a different susceptibility %w
via M ¼ ð%w=m0ÞBint with %w ¼ w=ð1þ wÞ the Helm-
holtz force has now the variant form [5]

fV ¼ grad
B2int
2m0

r
q%w
qr

� �
�

B2int
2m0

grad %w

¼
B2int
2m0

grad r
q%w
qr

� %w
� �

þ
r
2m0

q%w
qr
grad B2int: ð3Þ

Bint (M) is the magnetic induction (magnetization)
in the fluid and Bint its absolute value. Due to the
uniform form of the external induction and the
continuity of the magnetic induction across the

interface, the last term is zero and the first term
gives with the definition of %w

fVðwÞ ¼
B2ext
2m0

grad
b1a

2r2 � w2

ð1þ wÞ2

� �
: ð4Þ

Executing the differentiation in Eq. (4) leads
exactly to the same result as in Eq. (2). Therefore,
both formulations are indeed physically equivalent
under the inclusion of a quadratic term in r: The
equivalence is true also for higher terms in r
provided that the susceptibility can be written as
w ¼ ar½1þ

P
N

i¼1 biðarÞ
i
: Thus there is no a priori

reason to prefer Eq. (3) over Eq. (1) because both
formulations lead to the same result as long as the
definition of %w is used in Eq. (3). This very basic
fact independent on the relation of w on r has to be
emphasized since it recedes in the wake of the
discussion [5,6].
The discussion about the range of validity of fK

in Ref. [5] is based on the simultaneous approx-
imation that wBr and %wBr: The concurrent
correctness of both relations has to be checked
very cautiously. Since r ¼ wL=a with constant a;
the proportionality to the density r is equivalent
with the proportionality to the Langevin suscept-
ibility wL: Restricting the dependence of the
susceptibilities on wL up to the third order, one has

w ¼ wL½1þ b1wL þ b2w
2
L
 þ Oðw4LÞ ð5Þ

and

%wCwð1� wþ w2 �?Þ

¼ wL½1þ ðb1 � 1ÞwL þ ðb2 þ 1� 2b1Þw
2
L
 þ Oðw4LÞ;

ð6Þ

where expansion (6) is valid for w51 only.
Assuming a linear dependence of w on wL; i.e. b1 ¼
b2 ¼ 0; expansion (6) implies necessarily that %w
depends on higher-order terms of wL: Fig. 1 shows
the linear behaviour of w ¼ wL (dashed line) and
the nonlinear behaviour of %w ¼ wLð1� wL þ w2LÞ
(solid line) for 0pwLp0:5: A nonlinear depen-
dence of %w on wL in the region, where wBwL holds,
is confirmed also by measurements (see Fig. 1(b) in
Ref. [6]).
From Fig. 1 it becomes evident that in the

region w ¼ wL a subregion wLp0:06 exists, where
additionally %w ¼ wL is fulfilled. Inserting w ¼ wL in
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Eqs. (2) and (4), the resulting force density

fKðwÞ ¼ fVðwÞ ¼ �
B2ext
m0

wL grad wL
ð1þ wLÞ

3
ð7Þ

is nonzero. This agreement confirms the above
general statement that the usual and the variant
form of the Kelvin force density are equivalent
provided they are functions of w (see Eqs. (2) and
(4)). But inserting w ¼ wL; M ¼ wHint in Eq. (1)
and %w ¼ wL; M ¼ ð%w=m0ÞBint in Eq. (3), respec-
tively, one gets

fK ¼ m0ðM gradÞHint ð8Þ

versus

fV ¼ ðM gradÞBint; ð9Þ

where the first expression gives a nonzero force
density equal to (7), it is zero in the second case.
The reason for the difference between the nonzero
result of Eq. (7) and the zero one of Eq. (9) is the
following: the variant form of the Helmholtz force
(3) is a direct function of any approximation of %w
whereas the correct definition of %w was incorpo-
rated into fVðwÞ (see Eq. (4)). That is the deeper
reason why approximations cause differences if the
two formulae for the Helmholtz force are used. It
has to be noted that this discrepancy is limited to a
small subregion w ¼ wLp0:06 which is outside the

usual experimental fluids. The lowest susceptibility
of commercially available fluids is 0.131.
For w ¼ wL > 0:06 a truncation in the expansion

of %w after the linear order is deficient (see Fig. 1). If
one inserts instead the entire term %w ¼ wLð1� wL þ
w2LÞ in Eq. (3), one obtains a nonzero force density
also for fV;

fV ¼ �
B2ext
m0

ð1� 3wLÞwL grad wL; ð10Þ

which is a good approximation of Eq. (7) for small
wL:
These theoretical calculations as well as the

experimental measurements in Ref. [6] show
apparently that (i) a linear dependence of w on
the density results not necessarily in a linear
dependence of %w on the density, and (ii) nonlinear
contributions of r are relevant for %w even in the
region w51: (iii) The two formulae for the
Helmholtz force are entirely equivalent. It is only
when one introduces approximations that differ-
ences arise in a small subregion, w ¼ %w ¼ wLp0:06:
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Fig. 1. Nonlinear dependence of the susceptibility %w ¼ wLð1�
wL þ w2LÞ (solid line) on the Langevin susceptibility wL: The
dashed line shows the linear function w ¼ wL:

1Data sheets of Ferrofluidics Corporation.
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