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Study of ferrofluids by Mössbauer spectroscopy
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The parameters of the log-normal size distribution of a MnFe2O4 ferrofluid powder
sample have been determined by X-ray diffraction. The mean blocking temperature was
determined from the maximum of χi(T ). Mössbauer spectra at 4.2–300 K are interpreted by
a new simple theory of superparamagnetism and taking a reduction of the internal magnetic
field for small particles, a size dependence of the anisotropy constant, the size distribution
and collective excitations into account.

1. Introduction

Ferrofluids consist of stable colloidal suspensions of nanometer-sized magnetic
particles (ionic type or coated with surfactant layers) in a non-magnetic carrier liquid.
Due to their unique properties they find numerous technological applications, e.g., as
printer ink, rotary vacuum-seals, loudspeaker cooling, drug-carrier in chemotherapy,
etc. Besides that, ferrofluids or powders of their constituents (normally monodomain
ultra-fine particles of spinel-type ferrites) are interesting in fundamental research be-
cause of their nano-scale dimensions. In their magnetic behaviour phenomena like
superparamagnetism or even spin-tunneling [1,2] may be involved.

Besides other methods, like small angle neutron scattering, magnetic resonance
and optical methods, studies of the magnetic properties of ferrofluids are advanta-
geously realized by Mössbauer spectroscopy (see, e.g., [3–7]), which may also give
information on valence states, site occupations and internal magnetic fields, and dc-
or ac-magnetometry (see, e.g., [7,8]). The two methods differ in their characteristic
times which are approximately 100 s or 10−3–10−4 s for dc- or ac-magnetometry,
respectively, and 10−9 s for Mössbauer spectroscopy. We present here results on dc-
magnetometry and Mössbauer spectroscopy of Mn-ferrite. The Mössbauer results are
interpreted by a new simple model of superparamagnetism.

2. Experimental

Ferrofluids of Mn-ferrite (MnFe2O4) and other ferrites have been produced by
chemical synthesis (coprecipitation of MnCl2, Co(NO3)2 and NiCl2 with FeCl3 in
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alkaline medium) of the corresponding nanoparticles with subsequent peptization by
an appropriate particle surface treatment [9]. Thus water-based ionic ferrofluids with
different average particle diameters, depending on the coprecipitation conditions, are
obtained. Here we report only on Mn-ferrite based samples (powder sample and the
corresponding ferrofluid). Results of the investigation of Co-, and Ni-ferrites will be
reported elsewhere.

Powder samples as obtained before the peptization and frozen ferrofluids have
been analyzed by X-ray diffraction (Rigaku Geigerflex powder diffractometer, Cu-
radiation, graphite monochromator between sample and detector), vibrating sample
magnetometry (VSM, PAR 4500 with Janis cryostat and superconducting magnet,
0–90 kOe, 2–300 K), differential scanning calorimetry (DSC, Mettler 3000) and
Mössbauer spectroscopy (constant acceleration spectrometer, source: 57Co in Rh).

3. Results

3.1. X-ray diffraction

Part of an X-ray diffraction pattern of the Mn-ferrite powder sample is shown
in figure 1. All main peaks of the patterns could be identified and there was no
indication of the presence of other compounds. The lattice constant was determined
to (8.400 ± 0.001) Å.

From electron micrographs of identically prepared samples [5,9] was concluded
that the particles are approximately spherical and that their size distribution p(D) obeys
a log-normal relation

p(D) =
1

(2π)1/2σD
exp

(
− (ln(D/D0))2

2σ2

)
, (1)

where D is the particle diameter, D0 the median D and σ the standard deviation of
ln(D/D0). From the width of the main (3 1 1)-line of the X-ray diffraction pattern,
comparing to a Si-standard, we calculated D0 = 9.045 nm (cf. figure 1).

Figure 1. X-ray diffraction pattern of Mn-ferrite and Si-standard.
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3.2. Magnetic measurements

From M (H)-measurements (H = 0–20 kOe) at constant temperatures T = 4.2–
300 K the reduced magnetization M/Ms as function of H/T has been derived. The
curves for T = 250 K and 300 K superimpose and could be successfully fitted by a
Langevin function L(y) weighted with the particle size distribution using D0 = 8.0 nm
and σ = 0.28 according to

M (H/T ) ∝
∫
µL(y)p(µ) dµ, (2)

where µ = MsV , y = µH/kBT , kB is Boltzmann’s constant, V = πD3/6 is the
volume of a particle and the saturation magnetization Ms has been obtained by extrap-
olating M (1/H)-curves to 1/H = 0. The superposition of the curves clearly indicates
superparamagnetic behavior within the time window of the VSM method.

In figure 2 the dependence of the initial susceptibility χi on temperature is shown.
A broad maximum at a temperature of Tg ≈ 75 K can be observed. Tg is related to
the mean blocking temperature 〈TB〉 defined by

〈TB〉 = (KV0/kB) ln(τ/τ0), (3)

where τ is the characteristic time of the measuring method (here ≈ 100 s), τ0 ≈ 10−9 s,
V0 = πD3

0/6 and K the magnetic anisotropy constant of the particles, here assumed
to possess uniaxial anisotropy and size independent K. 〈TB〉 is proportional to Tg and
the proportionality constant depends on the size distribution p(D). The proportionality
constant is unity for unique particle size and 2 for a rectangular distribution [10]. We
calculated it from the log-normal distribution with D0 = 8.0 nm and σ = 0.28 and
obtained a value of 1.58 and thus from the susceptibility maximum 〈TB〉 ≈ 48 K.

Figure 2. Initial susceptibility as function of temperature.
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3.3. Mössbauer spectroscopy

Mössbauer spectra of the powder sample at temperatures in the range of 4.2–
295 K are shown in figure 3(d). The corresponding ferrofluid with smaller particle
concentration exhibits similar spectra. The upper spectrum at T = 340 K, shown for
comparison with simulations, was taken from [5] and refers to a similar sample as ours
but with D0 = 10 nm.

The spectrum at 4.2 K can be satisfactorily fitted with two magnetic subspec-
tra with internal fields Hint of 49.9 kOe and 52.3 kOe and an area ratio of 0.9 : 1,

(a) (b) (c) (d)

Figure 3. Simulated (a)–(c) and experimental (d) spectra. See text.
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respectively. In the frame of a simple cation distribution model (Mn2+
1−xFe3+

x )[Mn2+
x

Fe3+
2−x]O4 with tetrahedral (A)-sites and octahedral [B]-sites, respectively, and ascrib-

ing the lower field to (A)-sites this area ratio would mean x = 0.9, i.e., nearly complete
inverse spinel. However this fit model is highly oversimplified [3]. At higher temper-
atures asymmetric line broadening and a broad background and central peak appear
due to the effects discussed below.

It is not easy to fit consistently the spectra of figure 3(d). Assuming a simple
superparamagnetic relaxation model leads to great discrepancies between experimental
data and simulated spectra in the inner part of the spectral pattern (velocities of≈ (−4)–
(+4) mm s−1). Similar simulation defects can be observed, e.g., in [7,12].

4. Discussion

4.1. New model for superparamagnetism

In view of the discrepancies between the experimental spectra and simulations
using collective excitations [4] and

τ = τ0 exp(KV/kBT ) (4)

for the superparamagnetic relaxation time τ and considering that Brown’s theory [11]
is a phenomenological theory relying on statistical mechanics, we tried a simple mi-
croscopic approach based on spin-Hamiltonians. We assume that the thermally excited
turnover of the magnetization in monodomain fine particles happens by coherent rota-
tion of the spins because of predominant exchange interaction (Stoner–Wohlfarth model
[13]). Thus the magnetization can be considered as due to a large spin (S = 102–104).
This spin interacts with the thermal vibrations via spin–phonon coupling. This has
already been proposed by Jones and Srivastava [14], however they did not present a
corresponding calculation.

When no external magnetic field is present and with the assumption of uniaxial
anisotropy the minima of the anisotropy energy correspond to spin states |m〉 = |−S〉
or |+S〉 belonging to the same eigenenergy. Superparamagnetic relaxation consists
then in exciting the spin S from state |+S〉 until it comes up to |0〉 with subsequent
downward transitions until it reaches |−S〉. The classical anisotropy energy E(Θ) =
KV sin2 Θ (Θ = angle between spontaneous magnetization and anisotropy direction)
corresponds to a Hamiltonian HS = −dS2

z , where d = KV/S2 = ∆/S2 (barrier height
∆ = dS2) with eigenvalues Em = −dm2 and eigenstates |m〉. The spin–phonon
interaction is described by a simplified dynamical spin-Hamiltonian. We introduce
the Debye-model in the long-wavelength limit, calculate the transition probabilities
Wm,n for a transition |m〉 → |n〉 and establish the corresponding master equation for
the population of the mth level in the stationary case (for details see [15,16]). In
contrary to [15,16] we admit transitions |S〉 → |S − n〉 → |S − 2n〉 → · · · where n
can be 1, 2, . . . ,S. This corresponds to highly non-linear terms in the spin–phonon
interaction and long-wavelength phonons with sufficiently long correlation times [17].
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For superparamagnetic relaxation the processes with n ∼ S may be relatively probable
at T > TB, in contrast to paramagnetic relaxation where n = 1, 2. Similarly as in
[15,16] we obtain for the probabilities pS and p−S to find a particle in the state |S〉
or |−S〉, respectively, the rate equation

d
dt

(pS − p−S) = −pS − p−S
τn

with the relaxation time

τn =
1
2

2S−n∑
q=0

exp((ES−q −ES)/kBT )
WS−q,S−q−n

≈ exp((E0 −ES)/kBT )
W0,−n

, (5)

where the approximation holds for n ∼ S. We use the expression

Wm,n =
3C2

2π~4ρv5 (Em −En)3 1
1− exp(−(Em −En)/kBT )

, (6)

which is valid for phonon creation (spin transition from |m〉 → |n〉). C is a spin–
phonon coupling constant and ρ and v are the density and sound velocity, respectively,
of the particle. With this we obtain

τn ≈
2πρv5~4

3C2kB

S4

n4∆2

1
T

exp(∆/kBT ) = τ0n exp(∆/kBT ). (7)

τn exhibits the typical exponential dependence of superparamagnetic relaxation. The
prefactor differs by n−4 from the prefactor calculated in [16] where only transitions
|S〉 → |S − 1〉 → |S − 2〉 → · · · have been taken into account. In a first tentative we
take n = S and for reasonable values of the parameters involved (∆ = 2.9× 10−20 J,
ρ = 5 g cm−3, v = 3000 m s−1, T = 300 K and C = 0.5 cm−1) we obtain τ0n ≈
9.1 × 10−10 s in accordance with the usual range. The prefactor τ0 as calculated by
Brown depends on temperature as T 1/2, which seems to be unphysical in the limit
T → 0, whereas ours as T−1.

4.2. Simulation of spectra

The experimental spectra collapse very rapidly in the range of 250–340 K without
showing initially a pronounced central peak. There should be another cause of internal
field reduction besides increasing relaxation frequency.

DSC measurements of our sample exhibit a broad peak at ≈ 350 K which may be
related to its mean Néel temperature TN. For an inversion degree of x = 0.9 a value of
TN ≈ 400 K for D = 15.5 nm is given in [18]. We adopted a linear dependence of TN

on the particle diameter (cf. figure 4) given by (TN [K]) = 8.75(D [nm])+264, where
TN(9.05 nm) = 343 K and TN(15.5 nm) = 400 K (the bulk value is 573 K). For each
diameter D we obtain TN and from this and the actual temperature T we get an internal
magnetic field value corresponding to the variation of the internal field dependence
shown in figure 5 which was obtained from the hyperfine field dependence given in [3].
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Figure 4. Néel temperature TN and anisotropy constant K vs. diameter used in the simulations.

Figure 5. Reduced internal hyperfine field as function of reduced temperature [3].

We simulated Mössbauer spectra using a stochastic Clauser–Blume formalism where
τ−1 enters as relaxation frequency. We take also a size dependence of the anisotropy
constant as

K =
(
4× 103 [J m−3]

)
+

98 × 106

((D [nm]) + 30)2

into account (see figure 4). This dependence tends to the bulk value for D →∞ and
follows the same power law as can be extracted from data given for Fe particles in [19].
Figure 3(a) shows simulations using eq. (4) with τ0 = 10−9 s, K(D0) = 6.8×104 J m−3

and eq. (1) with D0 = 9.045 nm, σ = 0.35 and constant Hint as well as collective
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excitations. For simplification we used only a single internal field Hint = 50.4 kOe and
line widths of 0.6 mm s−1 (T = 4.2 K), 0.8 mm s−1 (T = 82, 103 K) and 1 mm s−1

(T > 135 K) to take the crossover of the various Hint [3,6] in the whole temperature
region into account. The relative line intensities have been chosen according to the
4.2 K spectrum and fixed for all temperatures.

Due to the appearance of a strong central peak when using other parameters it
was not possible to obtain a better agreement of the simulations with the experimental
spectra. In figure 3(b) the reduction of Hint according to figures 4 and 5 and a
prefactor (T/T0)1/2 according to Brown [11] is included, where T0 = 4.2 K is chosen
to obtain a good simulation of the static spectrum. However one clearly remarks
that the simulations in the temperature range 200–295 K do not reproduce well the
experimental spectra. Figure 3(c) shows simulations using the same parameters as in
figure 3(b) and a prefactor ((4.2 [K])/T ) × 10−9 s according to our model. A good
correspondence with the experimental spectra in the whole temperature range with one
unique consistent set of τ0, D0, σ, TN(D) and K(D) is observed.

Using eq. (4) with the prefactor τ0 = ((4.2 [K])/T ) × 10−9 s, a medium K =
6.8×104 J m−3 and τ = 100 s for the magnetic measurements we obtain D0 = 8.02 nm
for T = 〈TB〉 = 48 K, consistent with that derived from magnetic measurements. The
smaller D0 may indicate that spin-pinning occurs in the surface region of the particles,
resulting in a smaller “magnetic volume” [20].
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