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Abstract

In this article it is investigated the nonlinear response of an oscillatory bubble suspended in an incompressible

magnetic fluid. After an appropriate non-dimensionalization of the governing equation, it is found that the most

relevant physical parameters of the system are: the Reynolds number, the Weber number, the magnetic pressure

coefficient and the magnetic permeability ratio bubble-fluid governing equation. The integration of the nonlinear

differential equation governing the bubble motion is performed analytically by using a regular expansion and

numerically by using a fourth-order Runge–Kutta scheme. Unstable configurations of the bubble motion are shown for

different values of the magnetic pressure coefficient. An important consequence of magnetic colloidal particles in the

flow is that it may drastically attenuate instabilities, avoiding bubble against collapse. The present findings have

implications for acoustic cavitation in cryogenic liquids.

r 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In transient cavitation the transformation of low-

energy density sound wave into a high-energy density

collapsing bubble occurs due to the motion is nonlinear.

A collapsing bubble concentrating energy into very

small volumes may produce very high pressures and

temperatures which can erode solids like vanes of a

turbine in a hydroelectric plant and produce sonolumi-

nescence [1,2]. The cooling process of high-power

electric transformer by natural circulation of a polarized

fluid under the action of magnetic field is a related

problem. A first study of the phenomenon of bubble

collapse in fluid was proposed by Rayleigh [3]. In the

limit where an imposed acoustic field has a small Mach

number and the wavelength of the sound field is large

compared to the bubble radius, one is led to the leading

order nonlinear Rayleigh–Plesset equation [4–7]. Acous-

tic cavitation has provided a strong incentive for the

study of the dynamics of gas bubbles in oscillating

pressure field, but the understanding of the correspond-

ing problem for gas bubbles in a magnetic fluid is,

relatively speaking, less developed. The purpose of this

work is to extend the Rayleigh–Plesset model to

accounting for the magnetic effects on the nonlinear

response of an oscillating bubble in a magnetic fluid.

The model accounts in detail for the magnetic-fluid-

mechanic processes in the bubble interface.

2. Continuum formulation

The complete problem of a gas bubble undergoing

nonlinear radial pulsations in a ferrofluid is a complex

problem, as its solution requires a consideration of the

equations of conservation of mass, momentum in the

magnetic liquid and in the gas, magnetostatic limit of

Maxwell’s equations coupled by suitable inter-

face conditions. The problem falls naturally into two
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parts: that of finding the magnetic field and that of

determining the fluid motion with appropriated boundary

conditions on the bubble interface. It is considered a

bubble of initial radius a oscillating in an incompressible

continuummagnetic fluid of viscosity Z and density r: The
fluid within the bubble is considered to be a perfect gas

describing a politropic process pbVn ¼ C; where pb is the

internal absolute pressure of the bubble, V is the bubble

volume at any time and n is the politropic coefficient.

The magnetic fluid is subject to an acoustic perturbation

like pNðtÞ ¼ p0ð1� e sinotÞ; where p0 is the static

pressure, e the acoustic pressure amplitude and o the

sound angular frequency. An imposed uniform magnetic

field H0k with small intensity H0 is also assumed so

that the bubble remains slightly spherical and thus

its surface r ¼ RðtÞ develops a pure radial motion (i.e.

the bubble elongation along the field direction is

smooth and the bubble shape has just a small

disturbance in the surface curvature). The magnetic

permeability of the gas m2 is much smaller than the

permeability m1 of the magnetic fluid surrounding

the bubble. In this limit H within the bubble is zero,

and the field lines incident on the sphere are purely

radial [8–10].

One considers the situation of flows with slowly

shifting orientation of magnetic field relative to translat-

ing and rotating fluid particles. So, magnetization M is

parallel to the magnetic field H, and antisymmetric

stresses and couples may be neglected. MagnetizationM

is defined in B ¼ m0ðHþMÞ; where m0 is the magnetic

permeability of free space and B is the magnetic

induction. H and B satisfy the magnetostatic limit of

Maxwell equations in the absence of electric currents,

r�H ¼ 0 and r � B ¼ 0 [8]. H may be expressed

in terms of a magnetic potential H ¼ rc; satisfying
r2c ¼ 0:
The balance of mass and momentum for the fluid flow

are given, respectively, by

r � u ¼ 0; r
qu

qt
þ u � ru

� �
¼ r � r þ rg; ð1Þ

where r is the fluid stress tensor, u is the velocity

field and g is the gravity acceleration. For a polarized

fluid the magnetic contribution for the stress

tensor takes into account a magnetic pressure and an

extra stress in the direction of the magnetic field [8],

namely

r ¼ �ðp þ p	ÞIþ 2ZEþ m0ð1þ wÞH2ss; xAD1: ð2Þ

Here p denotes the mechanical pressure, p	 ¼
ð1=2Þm0H

2ð1þ 2%wÞ is the magnetic pressure for an

incompressible and isothermal media, I is the isotropic

unity tensor, H is the magnitude of the field acting in

direction of the unit vector s, %w ¼ %M=H is the field

averaged susceptibility based on the averaged magneti-

zation, w ¼ M=H is the susceptibility, E ¼ ð1
2
Þðruþ

ruTÞ is the rate of strain tensor. Subscript T denotes

transpose tensor and D1 and D2 the region occupied by

ambient ferrofluid and bubble, respectively (see sche-

matic in Fig 1). As the gas inside the bubble is

considered inviscid and non-magnetic Eq. (2) reduces

simply to r ¼ �pI if xAD2:
At lowest order elongation the bubble surface S may

here be taken as r ¼ RðtÞ: If the bubble permeability

becomes small, the magnetic field within the drop

becomes small. In particular, the tangential stress

becomes small. Thus, the boundary conditions require

a continuous velocity at the bubble interface u1 ¼ u2 and

a balance between the net normal surface traction and

surface tension forces. For a clean interface the jump of

normal traction calculated by using Eq. (2) is given by

snn ¼ ðn � s � nÞ1 � ðn � s � nÞ2 ¼ 2ks; where n is the unit

normal vector to S and k is the surface mean curvature.

Also, the normal component of B and the tangential

component of magnetic field H are continuous across

the bubble interface.

Now making use of the balance and the constitutive

Eqs. (1) and (2) and applying the boundary conditions

on the bubble interface for a constant susceptibility

magnetic fluid with m1bm2; after an appropriate non-

dimensionalization the dimensionless governing equa-

tion for describing the bubble interface motion have the

form

R .R þ
4

Re
þ
3

2
R ’R

� �
’R

R
¼ �Fðt;RÞ; ð3Þ

where the function Fðt;RÞ is given by

F ðt;RÞ ¼ 1þ e sinot þ
2

We

1

R
� 1þ

2

We

� �
1

R3n

þ Cpm 1þ
2

w

� �
; ð4Þ

where Re ¼ raUc=Z (i.e. ratio of inertia force to viscous

force), We ¼ raU2
c =s (i.e. ratio of inertia force to

interfacial force) and Cpm ¼ ð1=2Þm0w
2H2

0=ðrU2
c Þ (i.e.

ratio of magnetic force to inertia force) are, respectively,

the Reynolds number, Weber number and the magnetic
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Fig. 1. Schematic representation of a bubble undergoing non-

linear pulsations in a polarized fluid.
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pressure coefficient. These physical parameters are

defined after a scaling analysis of the problem by

considering a the characteristic length scale and Uc ¼
ðp0r�1Þ

1=2 the characteristic velocity of the motion. The

nonlinear Eq. (3) is numerically integrated for an initial

dimensionless radius Rð0Þ ¼ 1 and an interfacial velocity
’Rð0Þ ¼ 0:

3. Results and discussion

The nonlinear governing Eq. (4) is integrated by using

a fourth-order Runge–Kutta scheme to find the bubble

radius evolution and the pressure history of the gas

inside the bubble. The bubble is forcing by a time-

varying pressure as a sinusoidal standing wave. As a

preliminary test, the dimensionless collapse time

tB0:915 predict by the exact solution of Rayleigh [1]

was recovered by the simulation with a dimensionless

time step of 10–3. The error between exact and numerical

solutions was smaller than 0.1%. We have also validated

our calculations by repeating them many times with

different values of the numerical parameters such as the

time step, always with the same results at least up to

several cycles. A regular asymptotic expansion for small

amplitude of the pressure forcing has been also

developed [11] to capture the first-order solution of the

nonlinear governing Eq. (4).

A typical sequence of bifurcations in the nonlinear

response of the bubble is shown in Figs. 2,3 and 4 for

e ¼ 1; Re ¼ 100; We ¼ 10 and Cpm ¼ 0; 0.4 and 1.0,

respectively. Fig. 2 shows that in the absence of the

magnetic field the bubble collapses after a relatively

short time of oscillations. For a dimensionless time

about 4, the bubble radius starts growing immediately.

The bubble wall reaches a limit size (E3a) at time about

32. The bubble radius then starts to decrease and the

pressure increases drastically (see Fig. 2b) until the

bubble collapses when it reaches its hard core. The

opened phase diagram shown in Fig. 2c corresponds to

the dynamic condition of collapse. Fig. 3 shows the same

plots in the presence of a magnetic field for Cpm ¼ 0:4: It
can be seen a nonlinear response of the bubble without

collapse. Comparing the behavior of the internal

pressure of the bubble and bubble radius, it is observed

that when the radius reaches a minimum the pressure

takes the high amplitude. At this point the bubble

interface cannot hold the pressure and it starts growing

until the pressure reaches a minimum again. The period

of oscillations may form closed deformed curves at the

phase diagram (see Fig. 3) depending on the degree of

nonlinearity in the bubble motion. A drastic change in

the bubble nonlinear motion is shown in Fig. 4 for

Cpm ¼ 1: As can be seen from the phase diagram in

Fig. 4, even a small effect of a magnetic field may

dynamically stabilize a bubble motion from a config-

uration of collapse to one just weakly unstable. A key

finding of the present investigation was that the

oscillatory motion of a gas bubble in a ferrofluid

induced by a sufficiently large acoustic pressure might
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Fig. 2. Bubble motion for Re ¼ 100; We ¼ 10; e ¼ 1 and

Cpm ¼ 0: (a) Bubble radius as a function of time, (b) pressure

inside the bubble and (c) phase diagram.

F.R. Cunha et al. / Journal of Magnetism and Magnetic Materials 252 (2002) 271–275 273



be significantly attenuated without exhibiting a chaotic

response when the magnitude of the magnetic pressure is

comparable to the inertia force acting on the bubble

interface. This magnetic effect is a direct consequence of

an extra normal stress produced in the surrounding

polarized fluid under the action of a field. This process

could have implications for preventing bubbles against

collapse and consequently cavitation in turbo-machines.

Experimental results are required to obtain more definite

answers.
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Fig. 3. Same caption of Fig. 2 for Cpm ¼ 0:4:
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Fig. 4. Same caption of Fig. 2 for Cpm ¼ 1:0:
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