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E-mail: rolf.pelster@uni-koeln.de

Received 12 August 2003
Published 14 January 2004
Online at stacks.iop.org/JPhysD/37/307 (DOI: 10.1088/0022-3727/37/3/001)

Abstract
We have studied the correlation between microstructure and effective
material properties using colloidal dispersions of magnetic nanoparticles in
a carrier liquid (ferrofluids). Their microstructure can be altered in a
continuous and reversible way via an external magnetic field.
Two-dimensional small angle x-ray scattering and Monte Carlo simulations
show that field-induced structural anisotropy develops due to the formation
of anisometric particle clusters having a preferred orientation parallel to the
field. In this polydisperse system particles of all sizes take part in cluster
formation. The structural data are compared with results of dielectric
measurements in the frequency range from 5 Hz to 1 GHz. We show that
dielectric anisotropy is correlated with the shape anisometry of oriented
clusters.

1. Introduction

The request for materials with specific mechanical, electrical
and chemical properties has led to the development of
composite materials combining the diverse characteristics
of their components. Carbon fibre reinforced plastics, for
example, that are used for building the outer structure of
modern aircraft, combine low weight and high mechanical
stability. In addition, their high conductivity results in good
electromagnetic shielding and thus limits possible interference
with electronic equipment [1]. But a straightforward
prediction of effective material properties is only possible for
rather simple microstructures. For example, consider a binary
mixture, i.e. a material of permittivity εp dispersed in a matrix
of permittivity εm. It can be considered as a so-called effective
medium with homogeneous material properties as long as the
wavelength of an applied electric field E is large compared with
the length scale of its structural inhomogenities (e.g. particle
diameters and interparticle distances). The measured effective
permittivity is defined in terms of the average electric fields
in the respective components. For an isotropic material this

1 Present address: Laboratory of dielectric spectroscopy, Department of
Applied Mathematics and Physics, National Technical University of Athens,
Zografou Campus 15780, Greece.

definition reads [2, 3]

εeff = (1 − f )εm + f εp〈E〉p/〈E〉m

(1 − f ) + f 〈E〉p/〈E〉m
, (1)

where f = Vp/Vtotal denotes the volume filling factor of
the dispersed component. Every change of microstructure
leads to a change of the field distribution and thus of
〈E〉p/〈E〉m (see figure 1). Note that heterogeneity affects not
only permittivity values but also determines the observable
characteristic frequencies of polarization processes [4] and
of molecular relaxations [5]. On the other hand, effective
medium theory does not describe additional interface-induced
mechanisms, such as altered molecular interactions at internal
surfaces or confinement effects. But of course, such deviations
can be detected [5].

There is a multiplicity of approximate effective medium
formulas applying to different geometries [6, 7], whereas it is
sometimes difficult to assess the respective range of validity. In
the following, we focus on particles dispersed in a continuous
host matrix (matrix inclusion or cermet topology). There are a
few exact solutions of the so-called effective medium problem
for simple systems like perfectly ordered arrangements of
equal sized spheres or spheroidal particles [8–10]. An exact
analytical solution for an arbitrary spatial configuration of
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well-separated spheres has been formulated in [11]. On
its basis we have performed three-dimensional-computer
simulations and were able to show that two of the well-known
effective medium formulas for randomly dispersed particles
describe the limits of very narrow and very broad particle
size distributions, at least up to filling factors of about 30%:
for monodisperse spheres the Maxwell–Garnet formula holds,
while for polydisperse systems with a sufficiently broad size
distribution the Hanai–Bruggeman formula applies [12]. The
latter is often successfully applied to describe experimental
data since most real systems are polydisperse (see, e.g. [5]).
But of course, depending on the degree of agglomeration
real systems can show more complicated non-random spatial
arrangements (see, e.g. figure 1 in [4]).

A better knowledge of the above correlation between
structure and effective properties is indispensable for both
correct interpretation of macroscopic measurements and
tailoring of composite materials. Experiments on systems
of dispersed particles can help, but it is difficult to compare
samples that differ regarding the spatial arrangement as well
as shape and size distribution of particles. For this reason
we have chosen a model system: ferrofluids consisting of
magnetic nanoparticles in a carrier liquid. Their microstructure
can be altered in a continuous and reversible way via
an external magnetic field, while components and mixture
ratio remain unchanged. We have studied the field-induced
orientation/formation of anisometric particle clusters by means
of two-dimensional small angle x-ray scattering (2D-SAXS)
and Monte Carlo simulations [13, 14]. The structural data
are now compared with results of dielectric measurements in
the frequency range from 5 Hz to 1 GHz in order to correlate
structural and dielectric anisotropy.

2. Ferrofluids

2.1. A short overview

Ferrofluids are colloidal dispersions of magnetic monodomain
nanoparticles in a carrier liquid [15, 16]. The particles are
either charged or coated with a surfactant layer to prevent
the formation of permanet agglomerates (so-called ionic and
surfacted ferrofluids). In a magnetic field, the magnetic
moments of the particles tend to orient themselves parallel

mε
pε

Figure 1. Qualitative raw sketch of inhomogeneous field
distribution in a system of particles dispersed in a matrix (respective
permittivities εp and εm). Shape and size distribution of particles as
well as their spatial arrangement affect the field distribution and thus
the measured effective permittivity (see equation (1)).

to the field direction. When an external magnetic field
is applied, ferrofluids develop anisotropic properties, e.g.
dielectric [17–19] or optical [20, 21] anisotropy. It is
evident that this must be due to a field-induced anisotropic
microstructure, i.e. due to the presence of non-spherical units
(single particles or clusters) having an orientation parallel to
the applied magnetic field. In fact, anisometric clusters have
been observed in x-ray studies [13, 22] as well as in computer
simulations of monodisperse systems [23].

2.2. Samples

We purchased surfacted ferrofluids from Ferrofluidics GmbH
(Nürtingen, Germany). They contain magnetite (Fe3O4)
particles dispersed in Isopar-m, an oil. The particles have a
mean diameter of about 10 nm. TEM investigations show that
they deviate only little from spherical shape [24], a result that is
confirmed by 2D-SAXS measurements revealing an effective
axis ratio of 1.05 [13, 25]. The particles are covered with
a surfactant layer consisting of oleic acid spacer molecules
having a chain length of about 2 nm. The samples studied are
listed in table 1. The volume fraction, f , of magnetite particles
has been calculated directly from density measurements using
a standard procedure.

Let us denote the respective volume filling factors and
densities of our three-component system as f , ρ (magnetite
particles), fs, ρs (surfactant) and fc, ρc (carrier liquid). Then,
for the density of the ferrofluid ρFF = f · ρ + fs · ρs + fc · ρc

holds. With f + fs + fc = 1 we thus obtain

f = ρFF − ρc

ρ − ρc
+

(
fs · ρs − ρc

ρ − ρc

)
︸ ︷︷ ︸

<0.01

. (2)

This equation is also valid when the carrier liquid contains a
certain amount of excess surfactant (fs denotes the volume
filling factor of all surfactant molecules in the sample). The
second term on the right side can be neglected since the
densities of surfactant and carrier liquid are similar. With ρs �
0.895 g cm−3, ρc = 0.78 g cm−3, ρ = 5 ± 0.1 g cm−3 [26, 27]
and an upper limit of fs < 0.5, we can estimate that it only
yields a contribution of at most 0.01. As a consequence, it is
possible to evaluate the particle filling factor, f , even when the
exact amount of surfactant is not known, e.g. when the carrier
liquid contains some excess surfactant. We have measured
both the density of the carrier liquid, ρc, and the overall

Table 1. Saturation magnetization, MS (specified by Ferrofluidics),
and volume fraction, f , of magnetite as determined by density
measurements (the values in parenthesis are the producer’s
specification, yielding too low values, see text).

Ferrofluid samples (Ferrofluidics GmbH)

Sample MS (mT) f (%)

Isopar-m 0 0.0 (0.0)
EMG 912 5 0.9 (0.9)
EMG 911 10 2.4 (1.7)
EMG 909 20 4.8 (3.6)
EMG 905 40 9.9 (7.1)
EMG 901 60 13.0 (10.7)
EMG 901a 60 15.0 (10.7)
EMG 900 90 19.0 (16.3)
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Figure 2. The volume-weighted size distribution of the magnetite
particles as a function of particle radius.

density of the ferrofluid, ρFF (for details see [13]). Using
the literature value for the density of magnetite, ρ, we obtain
filler fractions in the range from 0% to 19% for our samples
(see table 1). Note that the manufacturer’s specification gives
too low values since they are calculated as the ratio of the
sample’s saturation magnetization MS = (B − µ0H)s to that
of bulk magnetite, f = MS/Mbulk. This procedure is only
correct in cases where the mean saturation magnetization of a
particle, Mp, equals that of the bulk material. But it is known
that for nanoparticles Mp < Mbulk holds, probably due to non-
magnetizable surface layers [28] or lattice tensions [29]. We
can confirm this observation: using our f -values we obtain
a mean particle saturation magnetization of Mp = MS/f =
0.4025 T compared with Mbulk = 0.56 T [15].

For four of the samples we have also determined the size
distribution of the particles via x-ray scattering and using the
structure interference method [30, 31] (for details see [13]).
Figure 2 shows rather broad size distributions with a maximum
at a radius of about 4.5–5 nm and a half-width of about 4–5 nm.

3. 2D-SAXS: field-induced anisotropy and cluster
composition

Four of the samples were selected for an x-ray study (EMG911,
909, 905 and 901a corresponding to filling factors f = 2.4%,
4.8%, 9.9% and 15%, see table 1). The SAXS experiments
took place at the JUSIFA beamline at Hazylab, DEZY,
Hamburg [32] at energy E = 7.09 keV (0.174 nm). The set-up
for the two-dimensional experiments is sketched in figure 3.
The samples were placed in capillary tubes and exposed to
magnetic inductions, B, from 0 to 0.3 T, whereas the field
direction, x̂, was perpendicular to the beam direction, −ẑ.
All measurements were conducted at room temperature. For
more details we refer to [13, 25]. Figure 4 shows the two-
dimensional scattered intensities at different magnetic fields
for the sample EMG 905 (f = 2.4%). At B = 0 the intensity
pattern is isotropic; i.e. it does not depend on the direction of the
scattering vector, �h (see figure 3). With increasing magnetic
field the intensity in the direction �h ‖ �B decreases, while it
increases in the perpendicular direction. Above a saturation
induction of B = 0.3 T the intensity pattern does not change
any more. The observed anisotropy I�h‖ �B < I�h⊥ �B reflects a
change in microstructure that is reversible.

x y(h  ,h  )=h(cos   ,sin   α α)

Bx

z

y

x
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ρ

Figure 3. The geometry of the 2D-SAXS measurements, where the
samples are exposed to a homogeneous magnetic field. For the
spatial coordinates we use both a Cartesian and a cylindrical system
[(x, y, z) and (x, ρ, �)].
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Figure 4. Field-dependent intensity pattern for sample EMG 905.
There are no data at small scattering vectors, |h| < 0.15 nm−1, since
in this region the intensity of the primary beam dominates.

In order to get further information on these field-induced
particle re-arrangements, we proceed with a quantitative
analysis of the intensity patterns. Let Ie be the scattering
intensity of a single electron. The intensity scattered in a
volume V of a sample,

IB;h�=0 = Ie

∫
γB(�r) cos(hxx) cos(hyy) dV, (3)

depends on the electron density contrast between magnetite
particles and carrier liquid: the characteristic function or
autocorrelation function γ (�r) = ��e(�r) ∗ ��e(−�r) is
the convolution of the electron density contrast, i.e. of
the difference between local electron density at a point
�r and its volume average, ��e = �e(�r) − �̄e. The
autocorrelation function contains information on characteristic
particle distances. Above all, autocorrelation of next
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neighbours is important in disordered systems such as
ferrofluids. Note that γ is a two-dimensional function of
cylindrical coordinates x and ρ =

√
y2 + z2 (see figure 3):

at B = 0 the intensity pattern is isotropic, i.e. γ only depends
on |�r| =

√
x2 + ρ2. On application of a homogeneous

magnetic field, the intensity pattern becomes anisotropic since
γ develops a cylindrical symmetry along the field axis, x̂ (for
details we refer to [13]).

We are interested in field-induced changes such as cluster
formation and anisotropy. For this reason we evaluate the
quantity �γB = γB − γB=0: we calculate the difference of the
measured two-dimensional intensity patterns with and without
applied field, IB − IB=0 = Ie

∫
�γB cos(hxx) cos(hyy) dV ,

and invert the integral using a two-dimensional equidistant
discretization of the (x̂,ρ̂) space. The result is displayed in
figure 5. For B > 0 we observe peaks located on the field
axis at x � 10 nm and ρ = 0. They indicate the existence of
particle clusters having a preferred orientation parallel to the
applied field. In order to show more clearly the development of
anisotropy we divide �γ into an isotropic and an anisotropic
part, whereas the latter one only contributes along the field
direction: �γB(x, ρ) = �γ iso

B (
√

x2 + ρ2) + γ aniso
B (x, 0) (since

the autocorrelation function at zero field, γB=0, is isotropic,
γ aniso is also the anisotropic part of γB = γ iso

B + γ aniso
B ). We

have evaluated the anisotropic part γ aniso
B (x, 0) = �γB(x, 0)−

�γB(0, x) and display it in figure 5(b) for different field
strengths. With increasing magnetic field, anisotropy becomes
stronger, i.e. there is an increasing number of clusters aligned
parallel to the field. Either randomly orientated clusters orient
themselves or new clusters form. For all field strengths and
all samples we observe maximum autocorrelation at a distance
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Figure 5. (a) Difference of characteristic functions with and
without field, �γ = γB − γB=0, for sample EMG911 and
B = 0.3 T. (b) Its anisotropic part along the field axis,
γ aniso

B (x, 0) = �γB(x, 0) − �γB(0, x).

of x � 10 nm. As mentioned above, the autocorrelation of
next neighbours dominates in disordered systems, so that we
can interpret the above value as mean centre-to-centre particle
distance in oriented clusters, d̄C � 10 nm. As a consequence,
for the mean radius of clustered particles

R̄C � d̄C

2
� 5 nm (4)

holds. The inequality is due to the finite surface-to-surface
distance: it is caused by partially inter-penetrating surfactant
layers and can be as small as 1 nm (see TEM studies in [24]).
Surprisingly, this radius is of the order of the overall mean
particle radius in the ferrofluid (see figure 2). Apparently
particles of all sizes contribute to cluster formation. At
first glance, this seems a contradiction, since the magnetic
dipole–dipole interaction energy is size dependent (see below,
equation (7)), so that mainly larger particles should form
clusters [33,34]. But our result shows that the picture of large
agglomerating particles and small single particles is too simple.
Obviously, a sufficiently large fraction of small particles takes
part in cluster formation (for a detailed discussion of size
dependent agglomeration probabilities we refer to [14]). There
is another indication that there must be an additional energy
involved: the dipole–dipole interaction energy of such small
particles with R̄C � 5 nm would not be sufficient to guarantee
thermal stability at room temperature [13]. Of course, there is
no other comparable long-range interaction energy. But in a
cluster, at surface-to-surface distances of the order of 1 nm, the
short-range van der Waals energy (see equation (8)) can even
exceed the dipole–dipole energy [13].

Summarizing, an analysis of our 2D-SAXS data shows
a field-dependent change of microstructure due to orientation
and/or formation of polydisperse clusters. These are composed
of nanoparticles at short distances, so that both the magnetic
dipole–dipole and the van der Waals energy contribute to
thermal stability.

4. Monte Carlo simulations of polydisperse
ferrofluids: the shape anisometry of clusters

Computer simulations of monodisperse systems [35] indicate
that agglomeration behaviour strongly depends on the strength
of dipole–dipole interaction and thus on particle size. But there
are only a few studies of polydisperse systems [36]. To our
knowledge there are no simulations of polydisperse sytems in
the range f = 0–20% taking both the dipole–dipole and the
van der Waals energy into account.

In order to get information on the orientation
and/or formation of anisometric clusters that give rise to
the aforementioned anisotropic microstructure, we have
performed Monte Carlo simulations of four of our ferrofluids
at room temperature. We assume the same mean particle
magnetization Mp = 0.4025 T and use the respective filling
factors and particle size distributions of samples EMG911,
909, 905 and 901a (see table 1 and figure 2) (for further details
we refer to [14, 25]).

4.1. Model and algorithm

Depending on the concentration of the sample, 140–1300
particles are randomly distributed in a cubic cell of side length
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100–150 nm (this is 20–25 times the mean particle radius).
Following the Metropolis algorithm [37] the particles can
perform random translation as well as rotation of their magnetic
moments, as long as the probability for the corresponding
change of potential energy is sufficiently high (i.e. as long as
exp(−�Ei/(kBT ) � qi holds, where qi ∈ [0, 1] is a random
number). When the total potential energy of all particles
does not change significantly any more, thermal equilibrium
is reached and the simulation stops.

The resulting spatial distribution of particles (equilibrium
configuration) depends on their interaction, i.e. on (a) steric,
(b) long-range magnetic dipole–dipole and (c) short-range van
der Waals forces:

(a) Two particles of magnetic core radii Ri and Rj cannot
overlap, so that for their minimum centre-to-centre distance
at least rmin

ij � (Ri + Rj) holds. The smaller the particles,
the lower the value of rmin

ij . The surfactant layer prevents
permanent agglomeration, increasing this minimum distance.
The oleic acid molecules have a length of 2 nm but are not rigid
rods and can be tilted or entangled. In addition, the inverted
micelle structure of the surfactant layers leaves enough free
volume for a partial inter-penetration of adjacent layers [38].
This is sketched in a simplyfied way in figure 6: the smaller a
particle, the higher its surface curvature and the better the inter-
penetration of adjacent surfactant layers. Of course, the closest
approach will depend on the molecular details. Here we
chose the most simple picture: with regard to steric interaction
we model the particles as hard spheres of radius 1.1Ri , i.e. in
the simulation two particles are not allowed to approach closer
than to a centre-to-centre-distance of

rmin
ij = 1.1(Ri + Rj). (5)

With this choice, particles of mean radius 5 nm can approach
each other up to 1 nm, a value that is comparable with that
observed in TEM studies [24]. Thus, the corresponding
potential energy of steric interaction is

Es
ij (rij ) =

{ ∞ for rij < rmin
ij ,

0 otherwise.
(6)

(b) A particle i with magnetic moment �µi at position �ri will
interact with the dipole field produced by a second particle j at
�rj . At a centre-to-centre distance rij = |�rj − �ri | the magnetic
dipole–dipole interaction energy is

Edd
ij (rij ) = µ0

4π

(
�µi �µj

r3
ij

− 3
( �µi�rij )( �µj �rij )

r5
ij

)
. (7)

For the magnetic dipole moment of monodomain nanoparticles
| �µi | = (4/3)πR3

i Mp holds, where Mp = 0.4025 T denotes
the mean particle saturation magnetization (see section 2.2).

Ri Rj

Figure 6. Sketch of two clustered particles. The partial
inter-penetration of the surfactant layers defines a range of distances
for which particles can be considered as clustered (see
equation (13)).

Due to its size dependence, µi ∝ R3
i , polydispersity may

affect considerably the microstructure. In our simulations we
therefore use ensembles of particles with a size distribution
of log-normal shape fitting the actual size distributions of the
samples (see figure 2 and [13]). In order to obtain a good
statistical representation with a limited number of particles,
we set Rmax = 10 nm. These bigger particles make up about
10% of the volume. The above procedure also avoids artificial
giant dipole moments that do not exist in real ferrofluids since
huge particles would not be magnetically monodomain.

(c) At close surface approach the short-range van der
Waals interaction can be of the same order of magnitude as
the dipole–dipole interaction [39]:

Evd W
ij (rij ) = −AH

6
ln

(
r2
ij − (Ri + Rj)

2

r2
ij − (Ri − Rj)2

)

−AH

6

[
2RiRj

r2
ij − (Ri + Rj)2

+
2RiRj

r2
ij − (Ri − Rj)2

]
. (8)

Here AH denotes the Hamaker constant, the value of which
depends on the dielectric properties of particles, surfactant and
carrier liquid [40]. For Fe3O4 particles in kerosine (Isopar-m),
AH is of the order of magnitude of 10−19 J within an uncertainty
factor of 3 [15,41]. With AH = 0.5 × 10−19 J our simulations
reach convergence at the latest after ca 105 Monte Carlo steps
(for details see [14]). With this choice of AH the van der Waals
energy of two equal sized clustered particles at distance rmin

ij

equals their total kinetic energy at room temperature, 2kBT .

In an external magnetic field (uniform magnetic
induction B) the total potential energy of a particle i is

Etot
i (�ri, �µi) =

∑
j �=i

{Es
ij + Evd W

ij + Edd
ij } − �µi

�B. (9)

We have imposed periodic boundary conditions to avoid edge
effects, but the above energy can only be calculated for a finite
number of particles j . For the short-range van der Waals
interaction it is sufficient to take only particles at distances
rij � rC = 7Ri into account (a further increase did not change
the results, see also [42]). Dipole–dipole interaction, however,
is long-range and thus the interaction with particles at distances
rij > rC is evaluated using the so-called reaction field method
(at large distances the sample is treated as a homogeneous
medium interacting with all particles at rij < rC via a so-called
reaction field, BR). In this approach [43–45]

Etot
i �

∑
j �=i

rij <rC

{Es
ij + Evd W

ij + Edd
ij } − �µi( �Bi

R + �B) (10)

holds with

�Bi
R = 2(µeff − 1)

2µeff + 1
· µ0

4πr3
C

∑
j

rij <rC

�µj . (11)

The effective permeability, µeff , depends on the total
magnetization of the simulation cell of volume L3, so that

µeff = 1 +
µ0

B
· | ∑N

k=1 �µk|
L3

. (12)

The sum of all dipole moments is calculated self-consistently
in every Monte Carlo step, whereas at B = 0 we use an
extrapolated value.
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4.2. Size and shape of clusters

An example of an equilibrium configuration is shown in
figure 7. The data are consistent with 2D-SAXS results (not
shown, see [14]). Already at zero field there are clusters of
particles, but the microstructure is isotropic. Most of the larger
particles with high dipole moments are found to belong to
clusters. Nevertheless, clusters also contain small particles
(for a statistical analysis we refer to [14]). At saturation
magnetization, B = 0.3 T, chain-like structures are clearly
visible. These clusters are oriented with their longer axis
parallel to the applied field.

For a quantitative analysis we have to define at which
distance two particles can be considered as clustered. As

B=0T

B=0T

B=0.3T

B=0.3T

Figure 7. Monte Carlo simulation of a polydisperse ferrofluid
(EMG 911 with filling factor 2.4 vol.%). An external magnetic field
(B = 0.3 T) induces formation of anisometric clusters, i.e.
chain-like structures with a preferred orientation parallel to B.

described above, the surfactant molecules are not rigid rods
(section 4.1 and figure 6), so that particles can form clusters
in a range of distances, a fact that is confirmed by TEM
studies [24]. The minimum distance, rmin

ij , has been defined
above (equation (5)). The maximum distance of clustered
particles is limited by the length of the spacer molecules
forming the surfactant layer, i.e. rcluster

ij � (Ri + Rj) + 2 · 2 nm
holds. Once again, it will depend on the microscopic details
(tilt, entanglement, inter-penetration) below which distance
two particles can be considered as clustered (see the description
in section 4.1). In the following, we consider two particles as
clustered when for their centre-to-centre distance, rij ,

rmin
ij = 1.1(Ri + Rj) � rij � 1.2(Ri + Rj) = rcluster

ij (13)

holds. For the biggest particles in our simulation, Ri =
Rj = 10 nm this corresponds to a maximum surface-to-surface
distance of 4 nm, i.e. twice the length of the spacer molecules.
Small particles have a stronger surface curvature and thus a
lower average surface density, so that they can come closer to
each other. Note that the actual particle distances are found as
a result of many Monte Carlo steps involving all interaction
energies. Thus the above equation does not pre-determine
particle distances but is used only as a tool allowing us to count
clusters once an equilibrium configuration has been found.

With the above definition, we can perform a statistical
analysis of clusters. In order to guarantee a sufficiently
good statistical representation of particle size distribution and
spatial configuration, we average over an adequate number of
simulation cells, so that the total number of particles simulated
is about 3500, even at low filling factors. Depending on the
filling factor (2.4–15%) we find 20–80% of the particle mass in
clusters, whereas the agglomeration degree increases with the
particle concentration. There is only a small field dependence,
which we do not discuss here (for details see [14]). Most of
these clusters consist of only a few particles. This is shown
in figure 8, where we display the probability, p(s), that a
particle belongs to a cluster of s particles (s = 1, 2, . . . and∑

s p(s) = 1). It is evaluated by counting the number of
particles found in s-particle clusters, Ns, and dividing it by
the total number of all particles in a sample, N . The higher
the particle concentration (volume filling factor f ), the larger

s

p(s)

0.001

0.01

0.1

1

1 10 100

f=2.4% 4.8% 9.9% 15%

Figure 8. The probability that a particle belongs to a cluster of s
particles for B = 0.3 T. The case s = 1 corresponds to single
particles.

312



Microstructure and effective properties

y∆,∆x [nm]

B [T]

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 0.05 0.1 0.15 0.2 0.25 0.3

EMG 911
EMG 909
EMG 905

EMG 901ay∆     B

    B    Bx∆

f=15%
f=9.9%

f=2.4%
f=4.8%

Figure 9. Volume-weighted cluster elongations vs magnetic
induction. For every sample the respective upper curve corresponds
to elongations �x parallel to the applied field, B = Bx , while the
lower curve shows elongations �y perpendicular to B. With
increasing field shape anisometry develops: �x > �y. The higher
the particle concentration, the higher the cluster elongations.

the number of big the clusters that can form. At f = 15%
there are even clusters with more than 100 particles.

In order to characterize the average shape of clusters in
a simple way, we evaluate their elongation parallel (�x) and
perpendicular (�y) to the field axis. Since we have to take
the irregularity of cluster forms into account, the respective
contributions of clustered particles are volume-weighted. In
the field direction, this reads for a given cluster

�x =
∑s

j=1 |xj − xc|Vj∑s
j=1 Vj

, (14)

where s � 2 is the number of particles belonging to the
cluster, xj and Vj denote position and volume of particle j and
xc = ∑s

j=1 xjVj/
∑s

j=1 Vj is the coordinate of the cluster’s
centre of gravity along the field axis x̂. �y is calculated
correspondingly. These volume-weighted elongations are not
to be confused with the absolute extension of a cluster. In
figure 9 we display number-weighted average values �x and
�y for our samples. The higher the particle concentration
the bigger the clusters. At zero field �x = �y holds; i.e.
single clusters that are surely not isometric (perfectly spherical)
have a random orientation. With increasing magnetic field,
�x increases while �y decreases. This is partly due to an
alignment of clusters in the field direction. In addition, there
is a re-arrangement of particle positions in clusters.

5. Dielectric spectroscopy: structural changes and
dielectric anisotropy

5.1. A short discussion of spectra at zero magnetic field

Finally, we have performed dielectric measurements on the
samples listed in table 1 [19,46,47]. The complex permittivity
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Figure 10. Real and imaginary parts of permittivity vs frequency
for sample EMG 900 (f = 19%) at various temperatures (in steps of
20 K). (a) ε1: semi-log plot; (b) ε2: double-log plot.

ε = ε1 − iε2 was measured using a broadband transmission
method covering the frequency range from 5 Hz to 1 GHz with
a single sample holder [48]. The temperature was varied
between 93 and 293 K. Figure 10 shows typical spectra for
the ferrofluid with the highest particle concentration. At high
temperatures (213–293 K) and low frequencies, the imaginary
part reveals the ionic conductivity of the carrier liquid
(ε2 ∝ σ/ν). In addition, there is a corresponding electrode
polarization process (high values of ε1 below 10 kHz). When
the temperature is lowered the conductivity decreases and a
high-frequency process shifts into the accessible frequency
window. At temperatures between 193 and 213 K the carrier
liquid freezes. Therefore, the aforementioned low-frequency
losses disappear and only the high-frequency process remains
visible. This is more clearly shown in figure 11 for T = 98 K.
In the following, we want to discuss briefly the underlying
polarization mechanisms.

The ferrofluid samples consist of conductive magnetite
particles dispersed in a carrier liquid, Isopar-m. Additional
measurements on this liquid reveal a permittivity of εm �
2.28, but there are no losses at temperatures below 210 K.
The same holds for the surfactant layer of spacer molecules:
measurements on bulk oleic acid show a constant permittivity
εsurf � 2.8 but no losses. The low-frequency losses we
observe in the ferrofluids (see figure 10 below 105 Hz) are
not due to the bulk properties of liquid and surfactant. They
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are mainly caused by mobile ions in the carrier liquid.
Additional contributions might come from unknown additives
the manufacturer did not specify or from ions chemisorbed to
the surfactant shell (according to [49–51] the latter process
may lead to formation of an electric double layer). We
shall analyse these low-frequency losses in a further paper
since they are not relevant in the context of field-dependent
structure formation. In the following we only discuss either
complete spectra at low temperatures or high-frequency data
(ν � 105 Hz), i.e. the range where the aforementioned low-
frequency processes are not present. Since both the carrier
liquid and the surfactant have a similar dielectric response, we
cannot distinguish between them and treat them as a single
homogeneous and loss-free matrix.

e
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Figure 11. Real and imaginary parts of permittivity vs frequency
for sample EMG 900 (f = 19%) at T = 98 K. (a) ε1: semi-log plot;
(b) ε2: double-log plot. The insets refer to the respective
polarization mechanism: interfacial polarization of single particles
at high frequencies and additional cluster polarization at low
frequencies. The latter process is due to charge carrier hopping
between clustered particles.

According to the above remarks, we can expect that at low
temperatures all remaining significant polarization processes
are related to the fact that the dispersed particles are conductive.
In an electric field, the particles become polarized, resulting in
an enhanced permittivity compared with that of the pure matrix
(interfacial-polarization process or Maxwell–Wagner–Sillars
polarization). According to effective medium theory this holds
in the frequency range below a characteristic frequency, νpol,
characterizing a decay of polarization [6,7]. νpol is proportional
to the conductivity of the particles. An estimate yields for its
order of magnitude (see equation (11) of [4]):

O(νpol) = (1/3)(1 − f )σ

2πε0εm
=

(
6 · (1 − f )

εm
GHz

)
×(σ in S m−1). (15)

The dc-conductivity of bulk magnetite is about 100 S m−1, so
that νpol should be of the order of 1011 Hz. In other words, in
our measurement range up to 1 GHz, the polarization of single
particles can only yield a frequency-independent enhancement
of permittivity. Obviously, there is an additional mechanism
at lower frequencies (see figure 11). But at first, let us focus
on the single-particle polarization characterizing the high-
frequency limit of our spectra: there are various effective
medium approximations describing the increase of permittivity
with particle concentration (volume filling factor, f ) [6,7]. In
[12] we could show that for randomly distributed monodisperse
spheres the Maxwell–Garnett formula is not just a dilute limite
approximation but exact. In contrast, polydisperse spheres
having a sufficiently broad distribution of particle sizes (such
as our ferrofluids, see figure 2), are satisfactorily well described
by the Hanai–Bruggeman formula. At quasi-static frequency
it reads

ε1(ν � νpol) = εm

(1 − f )3
, (16)

where εm denotes the permittivity of the matrix (in our case
that of the carrier liquid, εm = 2.28). Figure 12 shows
that there is a good agreement between this model and the
experimental values εhf = ε1(ν = 1 GHz). This shows that at
high frequencies we indeed observe interfacial polarization of
single particles having a broad size distribution.

Consequently, the observed increase of ε1 at low
frequencies and the corresponding loss peak (see figure 11)
must be due to another transport mechanism that is still active
at low temperatures. As already mentioned, it has to be related

Figure 12. High-frequency permittivity vs volume filling factor f .
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to the fact that the particles are conductive. The strength
of the process, �ε = εstatic − εhf , increases with increasing
particle concentration. Below 110 K the thermal activation
of the peak frequency deviates from Arrhenius behaviour and
can be described using models for charge hopping (not shown;
for details we refer to [46]). Since the lowest interparticle
distances occur in clusters, it seems reasonable to interpret
the observed loss peak via charge carrier hopping between
clustered particles (see insets in figure 11). Thus, at low
frequencies polarization of both single particles and clusters
contribute to the measured permittivity. Note that effective
medium theories in general neglect charge hopping between
spatially separated particles (matrix inclusion topology).
Therefore, in ferrofluids a comparison of dielectric low-
frequency data with effective medium formulas is not possible.

Summarizing, at temperatures below 210 K the spectra
are governed by interfacial polarization of single particles and
charge hopping between clustered particles. Single particle
polarization determines the high-frequency permittivity, εhf ,
whereas the hopping process leads to an increase of
permittivity at low frequencies, εstatic = �ε + εhf .

5.2. Dielectric measurements for B > 0: the
magnetodielectric effect

As we have shown in sections 3 and 4, ferrofluids develop an
anisotropic microstructure when a magnetic field is applied.
In order to study the corresponding change of permittivity, we
have measured ε for two directions of the electric field, E, i.e.
parallel and perpendicular to the magnetic field (see figure 7).
Since the carrier liquid freezes below 210 K making field-
induced structural changes impossible, we have monitored
different cooling cycles with and without a magnetic field.
The result is displayed in figure 13, where we compare
measurements at B = 0 with those at saturation induction,
B = 0.3 T. We observe field-induced dielectric anisotropy, i.e.
an increase of ε for E ‖ B and a decrease of ε for E ⊥ B. The
anisotropy is stronger at low frequencies, reaching a relative
difference of permittivity (ε �E‖ �B − ε �E⊥ �B)/εB=0 of ca 22–23%
compared with ca 8–9% at high frequencies (for f = 19%).
This means that the field-induced change of microstructure
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Figure 13. Semi-log plot of ε1 vs frequency for sample EMG 900
(f = 19%) at T = 123 K.

affects both the interfacial polarization of particles as well as
the charge hopping between clustered particles.

Before continuing the analysis of experimental data, we
would like to get an estimate as to what extent the observed
anisotropy might be due to field-induced orientation of single
non-spherical particles. As already mentioned, the magnetite
particles are not perfect spheres but can be described on an
average as ellipsoids with an effective axis ratio of 1.05 (see
[13]). For oriented particles equation (16) changes to

ε1,i (ν � νpol) = εm

(1 − f )1/Ai
, (17)

where Ai denotes the corresponding depolarization factor in
direction i of the electric field (see equation (27a) in [3]
for |ε2| → ∞). An axis ratio of 1.05 corresponds to
A‖ � 0.32 for ε �E‖ �B , whereas A⊥ � 0.34 for ε �E⊥ �B [52].
For a random orientation at zero magnetic field the average
depolarization factor is A � 1

3 , i.e. it equals that for spheres
(1/A = 1

3 (2/A⊥ + 1/A‖), see [3]). Therefore, at f = 19%
single-particle orientation should yield a relative change of the
order of (ε �E‖ �B −ε �E⊥ �B)/εB=0 � 3.9%. A comparison with the
measured change of 8–9% in εhf clearly shows that there must
be an additional structural change, i.e. formation of anisometric
clusters. Moreover, the latter effect must be dominant at low
frequencies, where we have even measured an anisotropy of
22% (at f = 19%).

Next, we investigate the development of anisotropy
choosing a reference frequency of 1 MHz. At room
temperature this frequency is below the characteristic
frequency of the hopping process, so that we monitor quasi-
static low-frequency data in figure 14(a) (single particle and
cluster polarization). The field-dependence of permittivity is
similar to that of the cluster elongations determined by Monte
Carlo simulations (compare figures 14(a) and (b)). Obviously,
the oriented chain-like clusters contribute much more strongly
to the measured effective permittivity when the electric field is
parallel to their longer axis, �E ‖ x̂ (see figure 7). This can be
qualitatively explained using a rather simple model: (a) in terms
of single particle polarization—a series circuit of conducting
and insulating layers (particles separated by surfactant layers)
gives rise to a higher polarization and permittivity than a
parallel circuit; (b) in terms of cluster polarization due to
hopping—the probability that a particle has a neighbour in the
direction parallel (perpendicular) to the chain axis is higher
(lower) than in isometric clusters at B = 0.

Summarizing, field-induced structural anisotropy reflects
in dielectric anisotropy. According to figure 14 dielectric
measurements can be used to monitor the chain formation in
ferrofluids.

6. Conclusions

We have shown how an external magnetic field induces
anisotropy in ferrofluids containing polydisperse nanoparti-
cles. The change of microstructure is due to formation of
anisometric clusters having a preferred orientation parallel to
the field. 2D-SAXS reveals that particles of all sizes take part
in cluster formation. Since magnetic dipole–dipole interac-
tion is much stronger for large particles, this experimental re-
sult underlines the importance of van der Waals interaction
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Figure 14. (a) Measured real part of permittivity at ν = 1 MHz vs
magnetic induction at T = 293 K for samples EMG 905
(f = 9.9%) and EMG 901 (f = 13%). Values for electric fields
�E ‖ �B and �E ⊥ �B are displayed. (b) Monte Carlo-simulations of
volume-weighted cluster elongations in the direction of the applied
magnetic field (�x) and perpendicular to it (�y) for samples
EMG 905 and EMG 901a.

for the thermal stability of clusters. Monte Carlo simulations
have revealed size distribution and shape anisometry of the
clusters. We have compared the structural data with results
from broadband dielectric measurements. At low tempera-
tures the dielectric response is governed by interfacial polar-
ization of single particles and clusters. The aforementioned
field-induced changes of the spatial arrangement of particles
result in dielectric anisotropy, i.e. in an enhancement of permit-
tivity for �E ‖ �B and a decrease of permittivity for �E ⊥ �B. This
behaviour is correlated with the respective cluster elongations:
oriented chain-like clusters contribute much more strongly to
the measured effective permittivity when the electric field is
parallel to their longer axis, �E ‖ x̂, and vice versa. In addition,
the re-orientation of single non-spherical particles also yields
a small contribution to the observed anisotropy.
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