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Sphere caging by a random �bre network
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Abstract

We analyse the remarkable e�ciency of a random distribution of rigid thin rods (with diameter
�) to ‘cage’ a test sphere (with diameter D/�) by purely geometric hindrance due to rod–sphere
contacts. The average number of random contacts which traps a sphere in three dimensions
corresponds to a volume fraction �c = 7(D=�)2 of very long rods or �bres. Some implications
for con�nements and dynamics of (colloidal) particles in �bre structures are discussed. c© 1999
Elsevier Science B.V. All rights reserved.
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1. Introduction

The Brownian motion of a tracer particle in a static porous medium is, among
other possible causes, always hindered by the exclusion of the tracer from the hard
obstacles forming the medium. This geometrical hindrance is a modest e�ect for point
di�usion, i.e. the thermal motion of particles which are much smaller than typical
pore dimensions. For larger tracer particles, however, the geometrical hindrance may
dominate the dynamics, even up to the extent that the tracer is completely immobilized
by the surrounding static obstacles. We will refer to the latter situation as the caging of
a tracer at a certain caging volume fraction �c of obstacles. Caging e�ects have been
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invoked earlier, for example, to visualize hindered self-di�usion in colloidal suspensions
[1]. Instead of Brownian host particles in a liquid, we consider �xed obstacles without
any hydrodynamics, which makes the caging e�ect a purely geometrical problem.
In this study the static obstacle is a randomly oriented, rigid thin rod (a ‘�bre’).

Even a very thin �bre is a large obstacle for a tracer sphere. Thin rods are therefore
very e�ective ‘cage formers’ at low rod volume fractions. At the same time the caging
of a sphere by random thin rods is relatively easy to analyse, because the rod–sphere
contacts which form the cage are only weakly correlated for su�ciently thin rods.
A practical motivation for us is also the fact that a static collection of random �-
bres models a variety of �brous structures, such as paper, gels of colloidal rods
(boehmite, imogolite) [2], �bres in random rod packings [3,4] and �brous biostructures
[5]. A random �bre network may also be seen as a special case of a polymer solution
in which the polymers are sti� and highly entangled.
In Sections 2 and 3 we present the statistical geometry required to calculate the

caging density �c. The main steps are the evaluation of the average number of blocking
points (contacts) which traps a sphere (Section 3) and the conversion of this number
to a rod volume fraction �c (Section 2) making use of the excluded volume of a
rod–sphere pair. The available pore space for the sphere and its mean free path is also
described. Some consequences of our caging model for real �bre systems (and practical
�ltration of small particles) are discussed in Section 4.

2. Thin-rod contacts with a sphere

We evaluate the number of intersections (or contacts) between static, randomly ori-
ented rods and a single test sphere. This is essentially an excluded volume problem.
The orientationally averaged excluded volume of two randomly oriented spherocylin-
ders with respective diameters �; D and lengths ‘; L is given by Onsager [6]:

Vex = (�=6)(� + D)3 + (�=4)(� + D)2(‘ + L) + (�=4)(� + D)‘L : (1)

If one spherocylinder is a sphere (‘ = 0) and the other spherocylinder is a thin rod
with a diameter D.�, the excluded volume reduces to:

Vex = (�=4)�2L+ (�=6)�3 for
�
D
/1 : (2)

Note that the excluded volume in Eq. (2) is a spherocylinder formed by translation of
the sphere with diameter � over the length L of the thin rod (see Fig. 1). When the
sphere centre is located inside the excluded volume, the thin rod intersects the sphere.
The number Ns of such intersections experienced by a test sphere is therefore:

Ns = �Vex

= �(�=4)�2L(1 + (23 )�=L) ; (3)

where � is the average rod number density. Eq. (3) neglects all contact correlations:
the intersections (or contacts) of rods with the sphere are taken to be statistically
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Fig. 1. (a) Schematic of a test sphere (diameter �) in a structure of random thin rods. (b) Excluded volume
Vex (2) of the sphere and one rod. Note that Vex is independent of the rod orientation.

independent. Such random contacts will probably only occur for very thin, high-aspect
ratio rods. Two limiting cases are the number of intersections or contacts for very long
rods

Ns = �(�=4)�2L for
L
�
/1 (4)

and the number of contacts for very short rods:

Ns = �(�=6)�3 for
L
�
.1 : (5)

The latter limit is only reached for small rods which are point particles with respect
to the large test sphere. For thin rods, without end e�ects, the solid volume fraction is

�= �(�=4)D2L for
L
D
/1 (6)
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which modi�es Eq. (3) to

Ns =�
( �
D

)2
(1 + (2=3)�=L);

=�
( �
D

)2
for

L
�
/1 : (7)

Obviously, an increase in average contact number Ns reduces the mobility of the sphere.
Before we deal with a completely caged sphere (Section 3) we describe the reduced
mobility of an uncaged sphere in terms of a mean free path traversed by a ballistic
sphere until it hits a �bre. This path is calculated as follows. After travelling a distance
‘, the sphere has swept a spherocylinder with length ‘ and diameter �. The average
number of rods, N , which intersects this spherocylinder is the rod number density �
times the orientationally averaged exclude volume for this cylinder and a thin rod (see
Eq. (1)):

N = �[(�=6)�3 + (�=4)�2(‘ + L) + (�=4)�‘L] : (8)

The mean free path is

��= ‘=N : (9)

For a small displacement, the free path length depends on ‘. For the long-distance
limit where ‘ is larger than both the sphere diameter � and the rod length L, Eqs. (8)
and (9) lead to:

��= ‘=�(�=4)[�2‘ + �‘L]

≈ 1=�(�=4)�L for
L
�
/1 : (10)

In terms of the thin-rod volume fraction � in Eq. (6) we obtain

��
�
=
1
�

(
D
�

)2
=
1
Ns

for
L
�
/1 (11)

with Ns given by Eq. (7). Eq. (10) is veri�ed by simulations on ballistic sphere trans-
port in Ref. [7].

3. Sphere caging

Each of the Ns contacts of the thin rigid rods in Eq. (7) with the test sphere is
considered as a blocking point for the sphere. Since these contacts are taken to be
uncorrelated we ask for the average number 〈N 〉 of randomly placed, static contacts
which cage the sphere, i.e. which prohibit all translational motions of the sphere. Sup-
pose contacts are placed one by one at random positions on the sphere surface until
they form a cage. Let Nc be the number of contacts in this cage and P(Nc = k) the
probability that Nc has a particular value k. One can also place a given number of
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n random contacts on the sphere surface and evaluate the probability pn that these n
contacts form a cage. The probabilities are related as [8]

1− pn = P(Nc¿n) =
∞∑

k=n+1

P(Nc = k) : (12)

The average number of contacts in a cage follows from

〈N 〉=
∞∑
k=0

kP(N = k)

=
∞∑
n=0

∞∑
k=n+1

kP(Nc = k) =
∞∑
n=0

(1− pn) : (13)

The caging probability pn, and thus the average size 〈N 〉 of a cage, depends on the
dimensionality of the problem. To illustrate the caging concept we �rst consider the
one-dimensional case which can be easily solved. Suppose a sphere can only move
in one dimension, for example because it is con�ned in a straight cylinder. A plane
perpendicular to the cylinder axis divides the sphere into two hemispheres. At least
Nmin = 2 contacts are required to immobilize the sphere, with each contact blocking
a hemisphere. If n contacts are all located on the same hemisphere they do not form
a cage, because the sphere can escape. The probability for this situation is

1− pn =
(
1
2

)n−1
for n¿2 : (14)

It is clear that

1− pn = 1 for n61 : (15)

Hence the average number of caging contacts in Eq. (13) is

〈N 〉= 2 +
∞∑
n=2

(
1
2

)n−1
= 3 : (16)

For a sphere which can only move in a plane, the caging problem is the same as for
a disc which is immobilized by contacts on its circumference. Here one needs at least
a triangular con�guration of Nmin = 3 contacts to form a cage. The average cage size
for a sphere in 2-D in Eq. (13) turns out to be 〈N 〉 = 5, a result which is derived
elsewhere [8]. The network of random �bres in this study (and usually in practice)
is a 3-D structure so we have to address sphere caging in three dimensions. We use
the following numerical procedure to evaluate 〈N 〉. The minimal number of contacts
to cage a sphere in three dimensions is a tetraeder of four contacts, so we start with
four points placed at random on the sphere surface. Each point is the origin of a force
F directed to the sphere centre. The sphere is caged when the moduli of the forces
can be chosen such that �F = 0. For n¿5 it su�ces to show that there is at least
one combination of four points (or equivalently forces) that �x the sphere. For each n,
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Fig. 2. Probability 1 − pn that a sphere is uncaged (i.e. free to translate) as function of the number of
random contacts Ns, simulated for a three-dimensional sphere.

Table 1
Contact number for sphere caging in d dimensions

Dimension d Minimum Nmin Average 〈N 〉
1 2 3
2 3 5
3 4 7

10 000 sets of randomly placed contacts are generated. The numerical analysis
(see Fig. 2) yields for the average cage size:

〈N 〉=
∞∑
n=0

(1− pn) = 7:0 : (17)

4. Results and discussion

Table 1 summarizes the results for the caging of a sphere. The minimal and average
amount of (�bre) contacts (in Table 1) needed to cage a sphere in d=1; 2; 3 dimensions
are generated by

Nmin = d+ 1; 〈N 〉= 2d+ 1 : (18)

This result for 〈N 〉 has only been veri�ed analytically for d=1 (Eq. (16)) and d=2 (in
Ref. [8]). We note here that the method followed for d=1; 2 (i.e the direct counting of
caging con�gurations) is di�cult to extend to higher dimensions. Work is in progress,
however, to give a general proof of 〈N 〉= 2d+ 1 using a geometrical analysis which
will be discussed elsewhere [9].
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The average number of contacts in Eq. (7) equals Ns = 〈N 〉= 7 at the �bre volume
fraction �c. Our �nal result for the caging density is therefore:

�c =
7(D=�)2

1 + (2=3)�=L

= 7
(
D
�

)2
for

L
�
/1 : (19)

This result con�rms our expectation that thin rigid �bres or rods are very e�cient
to cage or trap a test sphere. The reason for this e�ciency is that even for rods of
vanishing thickness, the excluded volume experienced by the test sphere, and therefore
the contact probability, is large. (Not that the rod caging volume fraction �c goes
to zero when the rod thickness D→ 0.) At rod densities �¿�c the majority of test
spheres will be unable to translate, which makes the static rod network at the same
time a reection boundary for free spheres outside the network. In the language of
separation techniques the network is an e�cient �brous porous medium [10] in a
�ltration process. (Perhaps blood clothing is also a case in point, where structures of
�brin �bres e�ciently capture blood platelets.)
Eq. (19) possibly suggests that the rod aspect ratio L=D is not a relevant parameter

for the present caging problem. However, in a dense structure of randomly oriented
thin rods, the rod volume fraction may be �xed by the rod aspect ratio. For the random
dense rod packing, for example, it has been found [3,4,11]:

�
L
D

≈ 5:4± 0:2; L
D
/1 : (20)

Suppose a sphere with diameter � = �c will be caged in this packing. In view of
Eqs. (19) and (20):

�c
D

≈ 1:1
√
L=D ; (21)

which gives an indication for the sphere size which will be unable to enter a random
rod packing.
The decrease in caging density for larger values of �=D is illustrated in Fig. 3. This

�gure shows the probability (from Fig. 2) that n=Ns contacts with rods (see Eq. (3))
will trap the sphere. The �gure illustrates the rapid increase of the caging probability
for a large sphere above a threshold volume fraction corresponding to an average of
Ns =4 rod sphere contacts; the minimal number needed to form a cage which traps the
sphere. At the caging density �c in Fig. 3 obtained from Eq. (19), the average number
of contacts equals the average number 〈N 〉= 7 for a cage. At this density about 20%
of spheres in the �bre network still has some mobility; only for Ns¿ 10 virtually all
spheres are trapped.
The pore space in the �bre network in which an untrapped particle can move, can

be characterized in various manners. One can probe ‘cylindrical pores’ by translating
spheres over a certain distance until they hit a �bre. The average length of such a
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Fig. 3. Sphere-caging probability versus rod volume fraction � for rod–sphere diameter ratio’s �=D= 5 and
30. The dashed vertical line is the caging density �c de�ned in Eq. (19). The drawn line indicates the
random close packing density �rcp [3] for rods with aspect ratio L=D = 10.

pore is the mean free path in Eqs. (9)–(11). Another way of probing the pore space
is by inating smallest test spheres until they touch one �bre [7]. Ogston [11,12] has
studied the resulting distribution of ‘spherical pores’. The mean free ination diameter
in a network of long straight �bres is according to Ogston [11,12]:

�� =
D
2

√
�
�
: (22)

This result, con�rmed by simulations [7], obviously di�ers from the mean free path
in Eq. (11), and actually should be compared to the average diameter, ��, of a sphere
which has one intersection with a �bre. Substitution of Ns = 1 in Eq. (7) yields

�� =
D
2

√
4
�
: (23)

This diameter is slightly larger than Ogston’s result (22), because we allow intersections
of the sphere by a �bre whereas Ogston [11,12] assumes that the �bre is at least a
distance �=2 removed from the sphere centre.
The origin of the scaling �� ∼ �−1=2 in Ogston’s more elaborate approach [12] is not

quite clear. We �nd here that the scaling is simply a consequence of the rod–sphere
excluded volume. Our analysis also emphasizes that Eq. (22) underestimates the size
of a sphere which will be trapped by randomly oriented �bres, because one contact
cannot cage a sphere.
For a static isotropic thin-rod collection the assumption of random contacts has been

made [3,4] in analogy with Onsager’s second virial approximation [6] for thermal
rods. One argument is that the surface fraction of contact area vanishes for L=D→ ∞,
so contact areas reduce to point contacts. Whether such point contacts are indeed
uncorrelated however, has not been rigorously proven yet. It should be noted that the
experimentally observed [3,4,11] invariance in Eq. (20) strongly suggests that contact
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correlations for thin rods are weak, otherwise higher-order � terms would be noticeble
in experiments [3,4]. For such thin rods, intersections with a sphere as in Fig. 1A
would be weakly correlated as well.

5. Conclusions

The density of random, rigid thin rods which cage a sphere in three dimensions can
be obtained from the rod–sphere excluded volume, in combination with a numerical
analysis of the contact distribution on the sphere. One prediction is that the caging
density of �bres is proportional to the square of the �bre diameter. The essential
assumption of random sphere-�bre contacts in our approach is probably only strictly
justi�ed in the limit of in�nite rod aspect ratio. The model, nevertheless, illustrates the
possibility of quantifying the trapping (‘freezing’) of spheres by a rigid �bre network.
As such it may be a reference for studies on more complicated �brous media found
in, for example, suspensions of colloidal rods [7,13] or structures of bipolymers [14]
and microtubules [15].
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