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Abstract. Hexagonal and labyrinthine patterns appear in thin ferrofluid films after application of a mag-
netic field perpendicular to the film. The pattern size and the stability of the hexagonal and labyrinthine
structures can be predicted by free energy approaches. Several approximations are used in the literature
to accelerate the calculation of the magnetic energy. They are usually based on the use of a uniform,
average or constant magnetization. In the uniform approximation the magnetization at all points in the
pattern is assumed to be equal to its value at the center of the stripes or cylinders in the labyrinthine
or hexagonal patterns. Recent papers indicate that this approximation gives qualitatively wrong results.
This is corroborated here by a comparison with accurate results. When a volume-averaged magnetization
is used during the calculation of the demagnetization field, from which the magnetic energy is evaluated,
the theoretical results are only slightly modified with respect to the accurate results. Thus, we can propose
a new method which gives results in good agreement with the accurate values and accelerates the calcula-
tions by a factor of 1000. The influence of the approximations is explained by a study of the evolution of
the demagnetization field in the patterns. This study indicates that the volume-averaged approximation
might only be reliable for patterns with a homogeneously distributed magnetic fluid. Another approxima-
tion of a constant magnetization, which is widely used in the literature, assumes that the magnetization
does not change during the pattern formation in contrast to the uniform and average approximations. A
different way of computing the constant magnetization than that usually employed markedly improves the
agreement with the accurate results. This is explained by the derivation of a direct relationship between
the approximations of a constant and an average magnetization.

PACS. 47.54.+r Pattern selection; pattern formation – 47.65.+a Magnetohydrodynamics and
electrohydrodynamics – 77.84.Nh Liquids, emulsions, and suspensions; liquid crystals

1 Introduction

The formation of patterns is observed in a large variety
of physical and chemical systems [1]. In general, simple
morphologies of some degree of regularity predominate
in two-dimensional systems, e.g., labyrinthine patterns of
stripes or hexagonal arrays of bubbles. These patterns
appear in type I superconductors subjected to a mag-
netic field [2] and in micrometric films of ferromagnetic
garnets [3]. Stripe and bubble morphologies also arise in
Langmuir monolayers [4,5], di-block copolymers [6,7] and
physicosorbed monolayers on solid surfaces [8]. Similar
patterns appear in ferrofluid films, in which we are in-
terested. Thus, labyrinthine patterns made of stripes and
hexagonal arrays of cylinders were observed, when a mag-
netic fluid is confined with a non-magnetic liquid between
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two glass plates and a field perpendicular to the plates is
applied [9–14]. Recently, we discovered that similar, but
solid mesostructures of cobalt nanocrystals are produced,
when a solution of these nanocrystals is evaporated while
applying a magnetic field [15]. The universality of the ob-
served morphologies arises because, for all systems men-
tioned, the organized structures are due to a competition
of short-range attractive and long-range repulsive forces.

The theoretical study of the patterns in ferrofluid films
has attracted much interest [16–22]. Usually, the geometry
and dynamics of the pattern formation are studied using
free energy approaches. The energy terms for the patterns
are now well established and the parameters controlling
the structures are known. However, an accurate computa-
tion of the free energy is still a difficult task mainly due to
the non-uniform magnetization within the ferrofluid pat-
tern. In fact, the magnetization depends on the strength of
the demagnetization field, which varies within the pattern.
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In order to avoid the complicated calculations due to
a non-uniform magnetization, two approximations have
been widely used in the literature:

• The magnetization is replaced by a constant value de-
termined from the applied external field as proposed
by Cebers [10]. The variation of the magnetization
due to the change in the demagnetization field during
the pattern formation is neglected.

• The magnetization at all points in the ferrofluid is cal-
culated from the field at the center of the cylinder or
stripe (uniform approximation) [11].

Recently, we have shown that the second approximation
of a uniform magnetization, accurate at a relatively low
applied field intensity, is less able to correctly describe
the experimental decay of the pattern size as the field is
increased to high values [23]. Moreover, the uniform ap-
proximation predicts that increasing the applied field can
lead to a transition between hexagonal and labyrinthine
patterns, when the applied field is increased. This is not
confirmed by more accurate methods presented in the fol-
lowing. Obviously, an approximate calculation of the mag-
netic energy can even qualitatively change the theoretical
results. It is therefore important to develop reliable, but
still efficient methods of computing the magnetic energy.
We would like to note that the transition between hexago-
nal and labyrinthine patterns was experimentally observed
by varying the external field [12,14]. The origin of these
transitions is not yet completely understood (see discus-
sion in Ref. [24]).

In a previous paper [24], we developed an approach to
calculating the magnetic energy using a non-uniform mag-
netization (called method A). The only approximation is
the use of the magnetization averaged in the direction of
the applied field during the evaluation of the demagnetiza-
tion field. The magnetization and the magnetic energy are
calculated from the approximate demagnetization field.

The aim of this paper is to develop more efficient meth-
ods of computing the magnetic energy of ferrofluid pat-
terns. Therefore, we need to understand the influence of
the approximations on the theoretical results. Two major
approximations are tested:

• an average magnetization used during the calculation
of the demagnetization field (methods A and A’),

• a constant magnetization assumed during the pattern
formation (methods C and C’).

In methods A, A’, C, and C’, different ways of calculat-
ing the average or constant magnetization are used. Thus,
the influence of the way of computing the magnetization
on the theoretical results can be studied. Moreover, this
will help us to establish a relationship between both ap-
proximation schemes. The results of methods A and C are
shown in reference [24] and are presented here for the sake
of comparison.

In order to check the quality of the results obtained
by the approximate methods, we develop a calculation
of the magnetic energy for an idealized labyrinthine pat-
tern without approximations (method A∗). To the best
of our knowledge, this is the first exact computation of

Table 1. Characteristics of the methods of computing the
magnetic energy used in this paper. The approximation of the
magnetization used to compute the demagnetization field and
the equations for the magnetic energy are indicated. The ac-
curacy of the methods is expected to decrease from top to
bottom.

method magnetization used energy equation
A∗ no approximation Eqs. (1) or (2)
A averaged in the field direction Eqs. (1) or (2)
A’ averaged in all directions Eqs. (1) or (2)
B at the center of stripe or cylinder Eqs. (1) or (2)
C value before pattern formation Eq. (9) in [24]
C’ calculated from external field Eq. (9) in [24]

magnetic energies for idealized striped patterns. To pro-
vide a comparison, the results obtained by the uniform
approximation from reference [24] (called method B) are
also shown. The differences in the six methods are pre-
sented in Table 1. The calculations were carried out using
a home–made FORTRAN package [25].

This paper is structured as follows. In Section 2, we
explain the different ways of computing the magnetic en-
ergies. In Section 3, we compare the theoretical trends
of the pattern size as a function of the applied field pre-
dicted by the different methods. The theoretical results are
compared to experimental data obtained by Rosensweig
et al. [11]. In Section 3.4, the observed differences are in-
terpreted by a study of the spatial evolution of the demag-
netization field within the pattern found by the different
methods.

2 Theory

2.1 Models of the magnetic pattern

Following the previous study [24], the labyrinth is de-
scribed by a repeating pattern of infinitely long parallel
stripes. The hexagonal pattern is idealized as a hexagonal
array of cylinders consisting of the magnetic fluid. In the
selected laboratory frame, the x axis is parallel to the di-
rection of the external magnetic field and for the striped
pattern, the stripes are along the y axis. The radius of a
cylinder is denoted by r0, while wf is the width of the
labyrinthine stripes. The values of r0 and wf correspond-
ing to the free energy minimum are completely determined
by the following parameters: the external field H0, the
pattern height L, the magnetic susceptibility χ, the inter-
facial tension σ and the volume fraction φ of the magnetic
fluid. The χ and σ values used in the following correspond
to the system studied by Rosensweig et al. [11] (χ = 1.6
and σ = 0.0043 Nm−1). The volume fraction and the cell
height are fixed at the values employed in the experiments
(φ = 0.5 and L = 0.9 mm).

2.2 Free energy functionals of patterns in ferrofluids

In a recent paper [24], we derived the free energy per
surface area of hexagonal and labyrinthine patterns in
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magnetic fluids:

fh = φ

{
2

L

r0
σ − 1

2
µ0L〈M〉hH0

}
, (1)

fl = φ

{
2

L

wf
σ − 1

2
µ0L〈M〉lH0

}
. (2)

The first term on the right side represents the surface
energy. The second term in equations (1, 2) corresponds to
the magnetic energy, where 〈M〉h and 〈M〉l are the volume
averaged magnetization in the hexagonal and labyrinthine
patterns, respectively. The derived free energy functionals
hold only for a magnetic fluid with a linear relationship
between the magnetization and the total field.

2.3 The calculation of the magnetization

From equations (1, 2) it follows that the volume-averaged
magnetization must be known to obtain estimates of the
free energy. Three methods (A, B, and C) have been pre-
sented elsewhere [24]. They mainly differ in the way of
computing the magnetic energy (Tab. 1). In the following,
we restrict ourselves to the new methods A∗, A’ and C’.

2.3.1 Method A∗: accurate approach

The magnetization is calculated by an iterative procedure
for a given set of φ, χ, H0, L and σ. It starts with the
choice of an arbitrary initial magnetization M(r). From
M(r) the demagnetization field is calculated using:

Hi(r) =
∫

Vm

dr’
1

4π(r’ − r)3

{
− M(r’)

+
3[M(r’) · (r’ − r)](r’ − r)

(r’ − r)2

}
, (3)

Hd(r) =
∑

i

Hi(r − ri), (4)

where Hi(r) are the fields due to a single stripe or cylinder.
ri is the position of the center of a stripe or cylinder. Vm

denotes the volume occupied by the ferrofluid. A sum of
the applied field and the demagnetization field gives the
total field

H(r) = H0 + Hd(r). (5)

A new estimate of the magnetization can be calculated
from the equation

M’(r) = χH(r). (6)

The mixture of M’ and M is necessary to assure the
convergence of the iterative procedure:

M”(r) = αM(r) + (1 − α)M’(r), (7)

where a mixture parameter α of about 0.5 has been em-
ployed. If M’(r) differs from M(r), the iterative procedure

restarts with the calculation of the demagnetization field
replacing M(r) by M”(r).

The main difficulty is the calculation of the fields Hi(r)
in equation (3). Due to the complex dependence of M(r)
upon r, no analytical form can be obtained for the in-
tegrals of equation (3). Moreover, the integrals have an
integrable singularity in equation (3) if r = r’. This singu-
larity can be removed as follows. Two fields Hdiff

i (r) and
Hcorr

i (r) are obtained by replacing M(r) in equation (3)
either by M(r’) − M(r) or by M(r), respectively.

Hdiff
i (r) =

∫
Vm

dr’
1

4π(r’ − r)3

{
− (M(r’) − M(r))

+
3[(M(r’) − M(r)) · (r’ − r)](r’ − r)

(r’ − r)2

}
(8)

Hcorr
i (r) =

∫
Vm

dr’
1

4π(r’ − r)3

{
− M(r)

+
3[M(r) · (r’ − r)](r’ − r)

(r’ − r)2

}
. (9)

The sum of Hdiff
i (r) and Hcorr

i (r) gives Hi(r). The
integrals of Hdiff

i (r) are free from singularities, since
M(r’)−M(r) goes rapidly to zero as r’ goes to r. In order
to control this, the values of the integrand in equation (8)
have been numerically calculated. The values indicate that
the integrand actually goes to zero as r’ goes to r and the
singularity disappears.

The new integrals in equation (8) can therefore be cal-
culated by numerical techniques as explained below. The
integrals of Hcorr(r), for which M(r’) is replaced by the
constant M(r) can be solved analytically, which gives, in
the case of the striped pattern, e.g., for Hcorr

i,x :

Hcorr
i,x (r) =

Mx (r)
2π

{
arctan

(
xu

zu

)
− arctan

(
xu

zl

)

− arctan
(

xl

zu

)
+ arctan

(
xl

zl

)}

− Mz (r)
4π

{
ln

(
x2

u + z2
u

) (
x2

l + z2
l

)
(x2

u + z2
l ) (x2

l + z2
u)

}
(10)

where xu = L/2 − x, xl = −L/2 − x, zu = wf/2 − z and
zl = −wf/2 − z.

Due to the symmetry of the labyrinthine patterns, we
can restrict ourselves to the calculation of Hi(r) for vary-
ing x and z keeping y/L = 0. Moreover, the y elements
of Hi(r) are zero and, therefore, need not be computed.
Nevertheless, we have to calculate the three-dimensional
integrals of equation (3) in the two dimensions x and z,
which is very time-consuming. The computing time was
drastically reduced with the help of two numerical tech-
niques [27]. First, an exponential grid is used in the z di-
rection, which greatly reduces the number of points at
which the fields must be calculated. Second, the integrals
were calculated using the Romberg method [27]. This is
an extrapolation method based upon the trapezoidal rule.
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Thus, the number of integration steps is adapted for ev-
ery integral to reach an initially fixed numerical precision.
This technique allows very precise evaluations of the inte-
grals at low computational costs. An alternative method
would be the use of the Fourier transform to handle the
convolution integrals of equation (3). However, a gain in
computing time implies the use of the Fast-Fourier trans-
form method, which is based upon a trapezoidal rule. In
contrast to the Romberg method, the use of the trape-
zoidal rule does not include a control of the numerical
precision for the calculated integrals. As we aim at high
accuracy, the application of the Fourier transform is not
possible in our case.

Due to the long range of dipolar interactions, the sum
in equation (4) cannot be simply cut off at a large distance.
In paper [24] we derived a correct treatment of these long-
range interactions, which is used here.

2.3.2 Method A’: volume-averaged magnetization

Method A’ is similar to approach A (average magneti-
zation in the field direction) presented in article [24]. It
is introduced with the aim of obtaining a faster method
than A with still reliable results. As in method A, its only
approximation is the use of an average magnetization in
calculating the demagnetization field within the pattern.
But in contrast to method A, the magnetization is aver-
aged in all directions. Therefore, method A’ is expected
to be less accurate than method A∗ (no averaging) and A
(averaging only in the field direction).

The volume-averaged value 〈M〉 is used to replace
M(r) in the computation of Hi(r) in equation (3). Due
to the symmetry of the idealized patterns, the y and z
elements of 〈M〉 are zero and all terms depending on My

or Mz vanish. Moreover, 〈Mx〉 does not depend on r and
can be excluded from the integrals in equation (3). The
calculation of the demagnetization field in equations (3, 4)
can then be largely simplified:

Ii,x(r) =
∫

Vm

dr’
4π(r’ − r)3

{
−1 +

3(x′ − x)2

(r’ − r)2

}
, (11)

D = −
〈∑

i

Ii,x(r − ri)

〉
, (12)

〈Hd〉 = −D 〈M〉 . (13)

where D is the demagnetization factor.
Using equations (5, 6), we arrive at the following rela-

tionship for the average magnetization:

〈M〉 =
χH0

1 + χD
. (14)

The integrals in equation (11) can be solved analyti-
cally in all three directions. In the case of the hexagonal
pattern, this leads to ellipsoidal functions [3]. D depends
only on the pattern size r0 or wf and on the volume frac-
tion φ. For given values of φ and r0 or wf , D can be

calculated and stored. Then, during the iterative proce-
dure and for different field strengths, the new magnetiza-
tion can be evaluated from the stored values of D using
equation (14). Therefore, this approximation is computa-
tionally extremely fast.

2.3.3 Method C’: constant magnetization

Method C is explained in detail in our previous paper [24].
The difference between the two methods (C and C’) is
the way of computing the constant magnetization. In
method C, the magnetization is calculated from its value
observed before the pattern formation.

M =
Minit

φ
=

χH0

1 + χφ
, (15)

where Minit = χinit(H0+Hd,init), χinit = φχ and Hd,init =
−Minit.

In method C’, the magnetization is evaluated as pro-
posed in the literature [10]

M = χH0. (16)

We study methods C and C’, because they have been
widely used [18–21].

The magnetic terms in equations (1, 2) are only valid
when the magnetization varies with the change in the de-
magnetization field caused by the pattern formation. Due
to the assumption of a constant magnetization, this is not
the case in methods C and C’. Therefore, the magnetic
energy must be calculated from the repulsion between the
aligned magnetic dipoles as explained in detail in refer-
ence [24].

3 Results

3.1 Agreement between experiment and the accurate
results

In Figure 1, the energetically favorable stripe width in a
labyrinthine pattern is plotted as a function of the applied
field according to methods A∗, A and A’. The dots are
the experimental data points obtained from reference [11]
(see details in Ref. [23]). At low field, the calculated pat-
tern size obtained by the accurate method A∗ is too large
in comparison with experiment. At higher field strengths,
method A∗ correctly reproduces the experimental decay
of the stripe width. It is somewhat surprising that an ap-
proach based upon a linear relationship between the mag-
netization and the field yields correct predictions even at
high fields. In order to understand this, we carried out a
study modeling the magnetization curve by a non-linear
Langevin curve. The magnetic energy cannot be calcu-
lated using the second term in equations (1, 2), since it is
valid only in the linear case. The general equation for the
magnetic energy must be used. Details of the calculations



J. Richardi and M.P. Pileni: Towards efficient methods for the study of pattern formation in ferrofluid films 103

Fig. 1. Dependence of the normalized stripe width wf/L in
labyrinths on the external field H0. The theoretical results of
methods A∗, A, A’ and B are compared to experimental data.
The cell height and volume fraction are fixed at L = 0.9 mm
and at φ = 0.5. The experimental points were obtained from
reference [11].

are published elsewhere [28]. The preliminary results indi-
cate that the agreement between the linear and the non-
linear curves markedly depends on the particle size. For
a particle diameter of 10 nm the non-linear curve devi-
ates from the linear one for field strengths larger than
0.05 tesla. In contrast, for a smaller particle diameter
of 6 nm the linear and nonlinear curves coincide. Since
Rosensweig et al. did not mention the size of particles
used, it is difficult to explain why the linear theory gives
results in agreement with the experimental data.

3.2 The influence of the approximation of an average
magnetization on the theoretical results

The curves obtained by methods A and A’ deviate only
slightly from that calculated by the accurate approach.
Obviously, the use of an average magnetization during the
evaluation of the demagnetization field does not markedly
affect the theoretical results. This can be understood by
comparing the magnetic energies obtained by the different
methods. The magnetic energies calculated by methods A
and A’ deviate by about 1% from the exact values. This
should be compared to the energy differences of about
5% caused by the approximations of method B. Indeed,
B gives stripe widths which are quite different from ap-
proach A∗ (see Fig. 1). To understand the good agreement
between methods A∗, A, and A’ and the deviations caused
by method B, we have to consider the spatial evolution
of the demagnetization field calculated from the different
methods (see Sect. 3.4). The demagnetization field is used
to calculate the magnetization, which gives the magnetic
energy according to equations (1, 2). Thus, a comparison
of the demagnetization fields can explain the differences
in the magnetic energies observed for the various approx-
imations.

In paper [24], we compared the transitions between
hexagonal and striped patterns predicted by methods A,

Fig. 2. Dependence of the normalized stripe width wf/L in
labyrinths on the external field B0. The results of the meth-
ods A∗, A’, C and C’ are compared to experimental data ob-
tained from reference [11]. The parameters correspond to those
used for Figure 1.

B, and C. For this purpose, the evolution of the energy
difference between both patterns with the field strength
and the phase ratios has been calculated. The energy dif-
ferences obtained by method A’ are very close to those of
A, although a different way of averaging the magnetiza-
tion was employed. We conclude that the use of an average
magnetization during the evaluation of the demagnetiza-
tion fields does not markedly affect the theoretical results.

3.3 The influence of the approximation of a constant
magnetization on the theoretical results

The curve in Figure 2 calculated by method C is close to
that of the exact method (A∗). At first sight, this agree-
ment is surprising, because method C explains the pat-
tern formation by a different mechanism (see article [24]).
We can explain the agreement by establishing a relation-
ship between methods A’ and C. Using equation (14), the
magnetic energy per surface area for method A’ can be
written as:

fm,A′ = −µ0

2
χH2

0

1 + χD
φL. (17)

In method C, the magnetic energy is given by [24]:

Fm,C =
µ0

2

∫
Hd(r) · Hd(r)dr = −µ0

2

∫
Vm

MHd(r)dr.

(18)
Using equations (13) and (15), we arrive at the following
expressions for the magnetic energy per surface area:

fm,C =
µ0

2
χ2H2

0

(1 + χφ)2
DφL. (19)

For the minimization of the energy, equations (17)
and (19) must be derived with respect to the pattern size.
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In the labyrinthine case, we obtain

∂fm,A′

∂wf
=

µ0

2
χ2H2

0

(1 + χD)2
∂D

∂wf
φL, (20)

∂fm,C

∂wf
=

µ0

2
χ2H2

0

(1 + χφ)2
∂D

∂wf
φL. (21)

Obviously, the only difference between methods A’ and C
is that the factor D is replaced by φ in the numerator.
D ranges between φ and 1.0, where D = 1.0 corresponds to
a closed ferrofluid film (wf = ∞). For the limit wf −→ 0,
the demagnetization coefficient D should be equal to that
of a hypothetical homogeneous mixture of the magnetic
and the non-magnetic fluids, which can be computed from
D = φ [23]. Therefore, methods C and A’ are expected to
give the same results at large pattern size (high field),
while these should deviate at smaller wf . This is observed
in Figure 2. The same arguments also apply in the hexag-
onal case (Fig. 3). The comparison of the values obtained
by methods C and C’ shows that the way of comput-
ing M can completely change the results. In particular,
method C’, widely used in the literature, is not able to
reproduce the accurate results. The deviations between
the results of C and C’ are due to large differences in
the magnetic energies. A comparison of equations (15, 16)
explains these differences. For φ = 0.5 and χ = 1.6, the
magnetization calculated by method C’ is larger than that
of method C by a factor 1+ χφ = 1.8. Since the magnetic
energy increases with M2, the fm obtained by method C’
are 3.2 times larger than the values of C. As shown above,
the way of computing the magnetization in method C can
be justified by a comparison with approach A’, which is
not the case for method C’.

The evolution of the stripe width as a function of H0

has also been studied for a value of φ = 0.2. In this case,
we can draw the same general conclusions as before.

We have also compared the calculated pattern size ob-
tained by the different methods for the hexagonal case.
Due to the lower symmetry of this structure with re-
spect to the striped case, the calculations for the accurate
methods are extremely time-consuming. Therefore, we re-
stricted the comparisons to methods A, A’, B, C and C’.
Figure 3 shows the evolution of the reduced cylinder ra-
dius r0/L with the applied field. We can draw the same
conclusion as in the striped case. Therefore, we expect the
results of methods A and A’ to be close to the accurate
values as in Figure 1. The similarity between the calcu-
lated results for the hexagonal and striped cases was noted
in the previous paper [24], where it was attributed to the
same form of the free energy found for both patterns (see
Eqs. (1, 2)).

3.4 Study of the demagnetization field

In order to understand the influence of the various approx-
imations upon the calculated results, we compare the de-
magnetization field calculated by the different approaches.
First, the spatial evolution of the demagnetization field in

Fig. 3. Dependence of the normalized cylinder radius r0/L in
hexagonal patterns on the external field B0. The theoretical re-
sults of methods A, A’, B, C and C’ are compared. The param-
eters are: χ = 1.6, φ = 0.5, L = 1 mm, and σ = 0.0043 Nm−1.

(a)

(b)

Fig. 4. Evolution of the demagnetization field in a labyrinthine
stripe. (a) x element and (b) z element of Hd. (method A∗,
χ = 1.6, φ = 0.5, B0 = 0.03 tesla and wf/L = 0.5).

a labyrinthine stripe is interpreted using classical magne-
tostatics. Figures 4a and 4b present the x and z elements
of the demagnetization field calculated by the iterative
method without any approximation corresponding to ap-
proach A∗. As explained above, the demagnetization field
does not depend on y. Due to the symmetry, the plot can
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Fig. 5. Sketch of the field lines between two charged planes.

be restricted to the upper left quarter of the x-z plane.
The point (x = 0, z = 0) is the center of the stripe. The
side of the stripe is at z/L = 0.25, while the points at
x/L = 0.5 correspond to the top of the stripe. The discon-
tinuities of Hd,x and Hd,z at the boundaries of the stripe
can be explained by the condition of a continuous normal
component for B at the interface between two magnetic
media (see Jackson [26], page 213). To understand the
overall spatial evolution of Hd,x and Hd,z, we study the
simplified case of a uniform magnetization. The magneti-
zation can be represented as monopoles at the ends of the
stripe with the surface charge µ0M , as shown in Figure 5.
The lines in Figure 5 present the direction of the magnetic
field induced by the magnetic charges at both ends of the
stripe. From this sketch, we expect Hd,z to be large in the
stripe corners, whereas it should vanish for x/L = 0 or
z/L = 0. This intuitive picture is confirmed by Figure 4b,
which shows a peak in Hd,z at the corner of the stripe.
Also the fact that Hd,x is less negative in the corners is in
good agreement with our sketch in Figure 5.

The fields Hd,x calculated by methods A∗ and A’
are compared in Figure 6. The parameters correspond
to Figure 4. The fields are presented for three different
heights x/L. In Section 3.2 we have shown that meth-
ods A∗ and A’ give very similar theoretical results. This
is caused by the small differences between the average
magnetizations calculated by both approaches (for Fig. 6:
〈M〉 = 20191 Am−1 for method A∗, 20016 Am−1 for A’
and 20714 Am−1 for B). The average magnetization is
calculated from

〈M〉 =
1

Vm

∫
Vm

Mx(r)dr, (22)

Mx(r) = χ(H0 + Hd,x(r)). (23)

According to these equations, the agreement of 〈M〉
obtained by methods A∗ and A’ can have two different
reasons. It might be due to the fact that the demagneti-
zation field calculated using an average magnetization is
close to the accurate results. This is in contradiction with
the curves in Figure 6, which show large differences be-
tween the Hd,x of both approaches. In particular, close to

Fig. 6. Field Hd,x calculated by methods A∗ and A’.

the top of the stripe (x/L = 0.47), approach A’ under-
estimates the demagnetization field by about 10%. The
agreement between approaches A∗ and A’ is obviously
due to a fortuitous compensation of errors in Hd,x dur-
ing the averaging in equation (22). Indeed, Figure 6 shows
that the demagnetization field obtained by method A’ is
larger than the accurate results in the center of the stripe
(x/L = 0), whereas it is more negative close to the top
(x/L = 0.47). The differences between Hd,x calculated by
both methods can be explained as follows. Let us examine
Hd,x close to the top of the stripe. The demagnetization
field is more negative than in the rest of the stripe. Ac-
cording to equation (23), this leads locally to a decrease in
the magnetization with respect to its average value. The
locally smaller magnetization gives a less negative Hd,x at
x/L = 0.47 than the values calculated from the larger av-
erage magnetization. This agrees with the results shown
in Figure 6. In the center of the stripe, the differences in
Hd,x are interpreted by the inverse effect, which leads to
the cancellation of errors mentioned above. Figure 6 helps
to understand the failure of method B. The demagneti-
zation field in the center is less negative than the values
in the rest of the stripe. Using Hd,x(0) to calculate 〈Mx〉
cannot give reasonable results, because no compensation
occurs as in methods A’ or A.

4 Conclusions

In a previous paper [24] we found that the approxima-
tion of a uniform magnetization can lead to qualitatively
wrong theoretical results. In a recently published paper,
we also show that this approximation predicts the wrong
order of transition for the pattern formation at low field
strength [29]. Here, the failure of this approach is related
to the use of the demagnetization field at the center to cal-
culate the average magnetization. In contrast, an average
magnetization can be used to calculate the demagnetiza-
tion field as in methods A’ and A. In particular, the new
approach A’, which is based on a volume averaged mag-
netization, is much faster than the accurate calculation
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(method A�) . Thus, the calculation of one energy value is
reduced from one hour to a few seconds by the approxima-
tion of an average magnetization. The good performance
of this approach is due to a compensation of errors in the
demagnetization field. However, it is very risky to use this
approximation under conditions, where a compensation of
errors does not operate correctly. This might occur for sys-
tems where the magnetic fluid is not homogeneously dis-
tributed between the plates. Such systems were studied,
e.g., in references [16–19]. For the study of these systems a
constant magnetization was assumed (method C’). Our re-
sults indicate that this approximation does not correctly
reproduce the size of pattern due to an incorrect calcu-
lation of the magnetization. However, the results do not
show qualitatively wrong behavior such as the use of a
uniform magnetization (method B), which confirms the
results obtained using a constant magnetization in the lit-
erature. We suggest using equation (15) which gives a bet-
ter agreement with the accurate results (method C). This
has been explained by establishing a relationship between
methods using an average and a constant magnetization.
However, the use of a constant magnetization is also based
on the approximation of a uniform magnetization which
should fail for in-homogeneously distributed systems stud-
ied in references [16–19]. Therefore, further investigations
would be of interest to see if the dynamic results published
using a constant magnetization are still valid using more
accurate methods of calculating the magnetic energy.

The authors gratefully acknowledge the contribution of David
Portehault to this work. We also like to thank Dr. D. Ingert
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