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Heating magnetic fluid with alternating magnetic field
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Abstract

This study develops analytical relationships and computations of power dissipation in magnetic fluid (ferrofluid)

subjected to alternating magnetic field. The dissipation results from the orientational relaxation of particles having

thermal fluctuations in a viscous medium.
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1. Introduction

It appears that heating of colloidal magnetic fluid

(ferrofluid) due to time-varying magnetic induction has

not been significantly studied. Heating ferrofluid to

achieve hyperthermia in medical treatments is an

emerging area of importance [1,2]. Heating effects in

ferrofluids may also be important in loudspeakers where

temperature rise adversely affects performance [3]. Other

applications exploit the ability to heat the fluid

magnetically, as in the thermal actuation of a polymer

gel in contact with a ferrofluid.

This work develops dissipation relationships based on

rotational relaxation of single domain magnetic particles

dispersed in a liquid matrix. Eddy current heating is

assumed negligible due to the small size of the particles

(o15 nm). The SI system of units is employed.

2. Power dissipation

From the first law of thermodynamics for a

constant density system of unit volume dU ¼ dQ þ
dW ; where U is the internal energy, Q the heat

added and W the magnetic work done on the system.

For an adiabatic process dQ ¼ 0 with the differential
magnetic work, given in general [4] by dW ¼ H � dB; the

result is

dU ¼ H � dB; ð1Þ

whereH (Am�1) is the magnetic field intensity and B (T)

the induction, both in the sample. Because the fields are

colinear the relationship reduces to dU ¼ H dB where

H and B are magnitudes. B ¼ m0ðH þ MÞ; where M

(Am�1) is the magnetization and m0 ¼ 4p� 10�7

(TmA�1) is the permeability of free space. Substitution

into Eq. (1) followed with integration by parts shows that

the cyclic increase of internal energy can be written as

DU ¼ �m0

I
M dH: ð2Þ

When magnetization lags the field, the integration yields

a positive result indicating conversion of magnetic work

to internal energy. It will be convenient to express the

magnetization in terms of the complex ferrofluid

susceptibility w ¼ w0 � iw00: Then with an applied mag-
netic field of the form

HðtÞ ¼ H0 cosot ¼ Re½H0e
iot
; ð3Þ

the resulting magnetization is

MðtÞ ¼ Re½wH0e
iot
 ¼ H0ðw0 cosot þ w00 sinotÞ; ð4Þ

where it is seen that w0is the in-phase component, and w00

the out-of-phase component of w. Substituting forM and

H in Eq. (2) from Eq. (4) leads to

DU ¼ 2m0H
2
0w

00
Z 2p=o

0
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where only the component w00 survives, hence its name,
the loss component. Integrating and multiplying the

result by the cyclic frequency f ¼ o=2p gives the

following expression for volumetric power dissipation:

P ¼ f DU ¼ m0pw
00fH2

0 : ð6Þ

To make use of this result w00must be related to material
parameters of the ferrofluid.

3. Relationship to material parameters

The relaxation equation of Shliomis [5] reduces to the

following form for motionless fluid in an oscillatory

field:

qMðtÞ
qt

¼
1

t
ðM0ðtÞ � MðtÞÞ; ð7Þ

where t is the relaxation time, M0 ¼ w0H0 cosot ¼
Reðw0H0 e

iotÞ is the equilibrium magnetization in the

applied field whose value is given in Eq. (3), and w0 is the
equilibrium susceptibility. Substituting the complex

representations of M0 and MðtÞ into Eq. (7) yields

w ¼
w0

1þ iot
; ð8Þ

which gives the dependence of complex susceptibility on

frequency and from which the components of suscept-

ibility are

w0 ¼
w0

1þ otð Þ2
; ð9aÞ

w00 ¼
ot

1þ otð Þ2
w0: ð9bÞ

These relationships are identical to the Debye spectra of

polar molecules in the absence of a constant field [6].

The spectra for monodisperse particles are plotted in

Fig. 1 which shows that the real and imaginary

components have values that cross at the peak value

of w00: The data of Fanin [7] display this trend. As it
follows from Eq. (9b), the predicted cross-over occurs at

ot ¼ 1: Also shown for comparison is the computed
spectra for a polydispersion of magnetic particles

assuming a log normal distribution of particle size with

standard deviation s ¼ 0:1 as discussed in Section 5. The
polydisperse curves are shifted greatly showing why

measurements of actual magnetic fluids, which are

nearly all polydisperse, vary from the monodisperse

predictions.

Ferromagnets exhibit magnetic resonance at frequen-

cies B108–1010Hz yielding a change of sign to negative
value of w0ðoÞ and a sharp peak of w00ðoÞ [8]. Here
interest is limited to the megahertz frequency range and

below; hence, no further discussion is devoted to the

higher frequency aspects.

4. Time constants

With the Brownian mechanism of relaxation the

magnetic moment is locked to the crystal axis and when

the magnetic moment aligns with the field, the particle

rotates as well. A second mechanism exists (N!eel

relaxation) in which the magnetic moment rotates within

the crystal. To achieve high heating rates the N!eel

relaxation must not be allowed to dominate.

The Brownian time constant is given by the following

relationship [9]:

tB ¼
3ZVH

kT
; ð10Þ

where Z is the viscosity coefficient of the matrix fluid, k

the Boltzmann constant (1.38� 10�23 JK�1), and T the

absolute temperature (K). VH is taken as the hydro-

dynamic volume of the particle which is larger than the

magnetic volume VM ¼ 4pR3=3 for a particle of radius
R: As a model for VH; it is assumed that VH ¼ ð1þ
d=RÞ3VM; where d is the thickness of a sorbed surfactant
layer.

The N!eel relaxation time, denoted tN; is given by the
following expression due to Brown [10],1 where G ¼
KVM=kT withK as the anisotropy constant which may

be of magnetocrystalline or shape origin:

tN ¼

ffiffiffi
p

p
2

t0
exp G

G1=2
ð11Þ

or in the equivalent form

tN ¼

ffiffiffi
p

p
2

tD
expG

G3=2
ð12aÞ

tD ¼ Gt0: ð12bÞ

Fig. 1. Susceptibility components of monodisperse particles

compared to that of a polydispersion. B0 ¼ 0:06 T; R ¼
4:45 nm.

1The author thanks M.I. Shliomis for pointing out the

alternate expressions.
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Because t0BK�1 while tDBVM; Eq. 11 is used when
determining the size dependence of tN; where VM enters

only in G: Alternatively, when considering how tN
depends on K; Eq. (12) is used where K is contained

only in G:
A typical ferrofluid has a broad distribution of

particle sizes with a mean size of B10 nm. Because the
Brownian and N!eel processes take place in parallel, the

effective relaxation time t is given by

1

t
¼
1

tB
þ
1

tN
: ð13Þ

The plot shown in Fig. 2 illustrates that the shorter time

constant tends to dominate in determining the effective

relaxation time for any given size of particle.

From Eqs. (6) and (9b) the power dissipation is

expressed as

P ¼ pm0w0H
2
0 f

2pf t

1þ ð2pf tÞ2
: ð14Þ

Eq. (14) expresses the power dissipation density for a

monodispersion, assuming susceptibility is constant.

Actual susceptibility w0 is magnetic field dependent. As
a conservative estimate giving a lower bound of P; it is
assumed that w0 is the chord susceptibility correspond-
ing to the Langevin equation LðxÞ ¼ M=Ms ¼
coth xF1=x where x ¼ m0Md HVM=kT : Ms ¼ fMd is

saturation magnetization of the ferrofluid, Md the

domain magnetization of a suspended particle, and f
the volume fraction solids. Thus,

w0 ¼ wi
3

x
coth x�

1

x

� �
; ð15Þ

where the initial susceptibility is wi ¼ ðqM=qHÞi ¼
m0fM2

dVm=3kTas determined from differentiation of

the Langevin relationship. Temperature rise for the

monodispersion is computed as DT ¼ PDt=c; where c is

the ferrofluid specific heat and Dt is the duration of the

heating. Specific heat is calculated as the volume average

of solid and liquid constituents.

5. Polydispersions

It is found that the log normal particle size distribu-

tion gðRÞ provides a reasonably good fit to the measured
distribution for ferrofluids [11]. gðRÞ is obtained by
substituting lnðRÞ for R in a Gaussian distribution

function, thereby circumventing the unphysical aspect of

contributions from negative particle sizes associated

with the Gaussian:

gðRÞ ¼
1ffiffiffiffiffiffi
2p

p
sR
exp

�ðlnR=R0Þ
2

2s2

� �
; ð16aÞ

Z
N

0

gðRÞ dR ¼ 1; ð16bÞ

where lnR0 is the median and s the standard deviation
of lnR: The most probable radius is given by

R0 expð�s2=2Þ and the mean radius is R0 expðs2=2Þ:
Numerical integration over the distribution function

transforms P of Eq. (14) to %P; the volumetric heat
release rate of a polydispersion:

%P ¼
Z

N

0

PgðRÞ dR: ð17Þ

The corresponding temperature rise of an adiabatic

sample is D %T ¼ %P Dt=c:

6. Calculated results

The integrand of Eq. (17) is a huge expression when

the expressions for gðRÞ;P; w and t are substituted in it,
and analytical integration is not desirable. Instead,

numerical values of temperature rise are calculated as

examples. These are based on physical property values

listed in Table 1. A value of t0 ¼ 10�9 s is employed
throughout.

Fig. 3a illustrates the heating rate for monodisperse

magnetite samples in a hydrocarbon carrier as a

function of particle radius and field intensity

(B0 ¼ m0H0). Very substantial heating rates are achiev-

able. An optimum particle size yielding maximum

heating exists that is nearly independent of the applied

field intensity. Fig. 3b shows the influence of carrier

viscosity on the heating rate with frequency as para-

meter for a sample with a fixed particle size. It is seen

that heating rates peak at viscosity values lower than the

usually available ones.Fig. 2. Time constants vs. particle size for magnetite particles.
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The degradative influence of polydispersity is illu-

strated in Fig. 4 for magnetite particles in hydrocarbon

carrier, showing the incentive to utilize highly mono-

disperse samples. The calculations are done for a

tetradecane carrier fluid having specific heat of

2080 J kg�1K�1, mass density 765 kgm�3 and viscosity

0.00235 kgm�1 s�1. Surfactant layer thickness is set at

2.0 nm.

Fig. 5 compares heating rates for monodispersions of

the various magnetic solids listed in Table 1 assuming

t0 ¼ 10�9 s. The carrier liquid is tetradecane in all cases.
The main differences between the performance of the

resultant ferrofluids are due to the anisotropy constants

and the domain magnetizations. From the figure it can

be seen that barium ferrite and cobalt ferrite yield the

largest heating rates in the size range of typical

Table 1

Physical properties of magnetic solids

Magnetic solid Chemical formula Md (kAm
�1) K (kJm�3) c (J kg�1K�1) r (kgm�3)

Maghemite g-Fe2O3 414 �4.6 B746 4600

Magnetite FeO �Fe2O3 446 23–41 670 5180

Cobalt ferrite CoO �Fe2O3 425 180–200 700 4907

Barium ferrite BaO � 6Fe2O3 380 300–330 B650 5280

Fig. 4. Temperature rise rate in polydisperse ferrofluid based on magnetite with f ¼ 0:071: (a) Tetradecane carrier, f ¼ 300 kHz;
(b) B0 ¼ 0:06T, f ¼ 900kHz, R ¼ 7 nm.

Fig. 3. Temperature rise rate in monodisperse ferrofluid based on magnetite with f ¼ 0:071: (a) Tetradecane carrier, frequency
300kHz; (b) Magnetic induction 0.06T, R ¼ 7 nm.
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ferrofluids (RB425 nm). The highest heating rates are
provided by magnetite and maghemite; however, the size

range where this occurs is larger than that found in

stable ferrofluids.

7. Conclusion

This study utilizes a collection of well-known princi-

ples in magnetic fluid science to formulate and compute

heating rate in samples subjected to an alternating

magnetic field. The methodology should be of interest to

investigators in numerous fields of technology.
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Fig. 5. Comparative heating rates for various magnetic solids.
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Maghemite. (f ¼ 0:071; Z ¼ 0:00235 kgm�1 s�1, f ¼ 300 kHz,
B ¼ 0:09T, d ¼ 2 nm).
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