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Abstract. An interesting extension in the use of magnetic fluids has resulted from
the development of magnetic fluid composites obtained by dispersing
micrometre-sized non-magnetic particles in a magnetic fluid. The composites
possess a yield stress in a magnetic field which can be described at sufficiently
high strain rates by the Bingham relation τ = τy + η0γ̇ , where τ is the shear stress
perpendicular to the applied field, τy the extrapolated yield stress, γ̇ the strain rate
and η0 the plastic viscosity. Thus, a composite, particle concentration φ = 0.35, in a
field 0.036 T with χ̄ = 0.96 has a yield stress τy of 26 Pa. The yield stresses
obtained experimentally for different φ and B0 correspond well to values predicted
theoretically by Rosensweig using a determination of τy based on a continuum
concept of unsymmetric stress that develops in the deformed but unyielded
anisotropic medium.

1. Introduction

A magnetic fluid composite is a dispersion of micrometre-
sized non-magnetic particles in a magnetic fluid carrier.
The magnetic fluid itself is typically a colloidal suspension
of magnetite (Fe3O4) particles of 100Å diameter which
are, therefore, 109 times smaller in volume than the
non-magnetic particles of the composite. Thus, the
composite can for most purposes be regarded as a dispersion
of non-magnetic particles in a homogeneous magnetic
medium. The magnetic properties of the composite
result entirely from the magnetic fluid carrier which is
a superparamagnetic fluid with a saturation magnetization
some 10% that of bulk magnetite. The rheological and
magnetic properties of magnetic fluids which determine the
properties of the composites have been intensively studied
and reviewed by Rosensweig [1].

The initial studies of composites were undertaken by
Skjeltorp [2], who studied films containing a monolayer
of polystyrene spheres of diameterD = 10 µm. The
films were marginally thicker than the sphere diameter, thus
allowing free movement of the particles in two dimensions.
The particles can be considered to form voids in the
magnetic fluid which acquire an induced moment when a
magnetic field is applied, opposite to the direction of the
field. This induced momentm can be written to a first
approximation in terms of an effective fluid susceptibility
χeff and in the case of a linear medium

m(θ) = µ0χeff (θ)vH(θ) (1)

whereµ0 is the permeability of free space,v is the particle
volume, H the field applied andθ the field direction. In
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determiningχeff the particle and sample shape have to be
taken into account. It is shown in the appendix that

χeff (θ) = −[1 + Np(θ)]χf

(1 + χf )[1 + Ns(θ)χf ]
(2)

where χf is the fluid susceptibility andNs(θ) and
Np(θ) are de-magnetizing factors for sample and particle,
respectively.

The dipole interaction energy between two identical
spherical particles separated by a distanced is given by

U = 1

4πµ0
m2(θ)

(1 − 3 cos2 θ)

d3
(3)

where θ is the angle between the field and the line of
centres of the two particles. The energy is a minimum
and attractive whenθ = 0 and the particles are in contact
with d = D, the particle diameter. It then follows that

U = − m2

2πµ0D3
(4)

wherem is given by (1) andχeff by (2). The particles will
attract one another to form chains in the field direction,
however, only if the coupling constantλ representing the
ratio of the dipole–dipole energy to thermal energy is
greater than unity, that is

λ = m2

4πµ0D3kT
= mM

24kT
> 1 (5)

wherem = µ0Mv and µ0M is the magnetic moment per
unit volume.

The number of particlesn in a chain has been derived
theoretically by de Gennes and Pincus [3] and Gast and
Zukowski [4] who showed that

n =
[

1 − 2

3

(
φ

λ2

)
e2λ

]−1

(6)
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Figure 1. A composite containing polystyrene spheres,
D = 10 µm, in an isopar M-based magnetic fluid
µ0Ms = 0.035 T, B0 = 0.

where λ is given by (5) and φ is the volumetric
concentration. Thus, the chain length becomes infinite at a
critical concentration

φc = 3

2

(
λ2

e2λ

)
. (7)

In such cases, whenφ = φc, the chains provide a
continuous path across the sample, aligning parallel to the
field. The structures formed in a monolayer composite
film as studied by Skjeltorp [2] are shown in figures 1 and
2. The composite contains uniform polystyrene particles,
D = 10 µm, dispersed in an isopar M-based magnetic
fluid with µ0Ms = 0.035 T. The field applied in plane
in the chain direction in figure 2 is 0.02 T. Figures 3
and 4 show samples containing hollow glass spheres
with a distribution of particle sizes, median diameter
8 µm. The chain structure is less regular when a field
0.02 T is applied, with a thickening or coarsening of the
chain structure at high particle concentrations as shown in
figure 5.

The structures observed in figure 5 are similar to those
found in electrorheological fluids and magnetorheological
fluids consisting of ferromagnetic particles dispersed in a
non-magnetic carrier. The particle interactions in the latter
would always be stronger than those in magnetic fluid
composites of the same particle concentration and particle
size because the particle moments are an order of magnitude
greater and it would be expected, that these would make
more effective magnetorheological fluids. However, the
magnetic fluid composites are more versatile. The particles

Figure 2. The same composite as in figure 1 with a field
B0 = 0.02 T applied in the chain direction.

Figure 3. A composite containing a distribution of hollow
glass spheres, mean diameter D = 8 µm, in a hydrocarbon
magnetic fluid µ0Ms = 0.015 T, φ ' 0.1 and B0 = 0.

can be chosen from a wide selection of non-magnetic
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Figure 4. The same composite as shown in figure 3 but
with a field B0 = 0.02 T applied in the chain direction.

materials covering a range of densities which can be
matched to that of the magnetic fluid. Moreover, since the
induced moment is determined by the superparamagnetic
carrier, the particle moment disappears in zero field
in contrast to the case for ferromagnetic particles and
aggregation in zero field is inhibited. Finally, since
the choice of particle material is so extensive, either
metallic or non-metallic particles can be used, providing
the composite with a rich variety of electrical and dielectric
properties.

Magnetorheological fluids can be used in similar
situations to those of electrorheological fluids, that is in
computer-controlled hydraulic systems for vehicles, field-
controlled damping devices, magnetic valves and so on.
The control is through magnetic fields derived from low-
voltage sources rather than electric fields requiring high
voltages of 103–104 V mm−1.

Initial studies on magnetorheological fluid composites
were undertaken by Kashevskiiet al [5] who studied the
effects of magnetic fields on the viscosity of composites
containing non-magnetic particles of different shapes,
concluding that plate-like particles produce a greater
magnetorheological response than do spherical particles.
They did not, however, discuss the factors which determine
yield stress values. These were studied by Bossis and
Lemaire [6], who considered in detail the yield stress values
of composites in a magnetic field and obtained yield stress
values for composites containing both magnetic and non-
magnetic particles.

Figure 5. A composite containing a distribution of hollow
glass spheres, mean diameter D = 8 µm, in a hydrocarbon
magnetic fluid µ0Ms = 0.015 T and φ ' 0.3. The field
B0 = 0.02 T is applied in the chain direction.

2. Theory

Rosensweig [7] developed a continuum model of a
composite based on a laminar layer structure with magnetic
elements aligned in the field direction, to determine
theoretical expressions for the yield stress. It was proposed
that, when a shear stress is applied perpendicular to the field
direction, the layer structure distorts as shown in figure 6.
χ1 denotes the isotropic susceptibility of medium 1 andχ2

that of medium 2. H0 is the applied field andµ0M the
magnetization of the magnetic layer. The inclination of the
layer,α, increases as the stressτ increases until, at the yield
point τy , α = π/4 for a layer with no de-magnetization.
For a system with de-magnetizationα depends on the
susceptibility but is close toπ/4 with χ1 < 2. The
cone and plate viscometer where aluminium is used as the
cone and plate material corresponds to a system with de-
magnetization. In this case, if the cone angle is small and
the separation between cone and plate small compared to
the diameter, the yield stress is given approximately [7] by

τy = µ0H
2
0 φ(1 − φ)χ̄2

4{(1 + χ̄)(1 + φχ̄)[1 + χ̄(1 − φ)]}1/2
(8)

with de-magnetizing factors taken as appropriate to those
of a thin film, that is D = 1 in the direction ofH0

and 0 perpendicular toH0. When the cone and plate
are made from iron and the thickness is small (8) would
still be a reasonable approximation for the yield stress.χ̄

is the chord susceptibility with̄χ = χf (H0 cosα) rather
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Figure 6. The laminar model of a composite proposed by
Rosensweig [7]. The shaded region represents the
magnetic component and the unshaded region the
non-magnetic component. Unprimed axes indicate
laboratory coordinates. Primed axes represent principal
axes of the sheared composite.

Table 1. The susceptibility χf for the kerosene-based
magnetic fluid carrier, µ0Ms = 0.045 T.

χf = M /H 1.87 1.81 1.47 1.08 0.85 0.73

B0 T (10−4) 0 50 100 200 300 400

than χf (H0) with α approximated toπ/4 to represent
the susceptibility along the principal axis of the deformed
sample of figure 4 more realistically.

3. Experimental

Composites were prepared by dispersing hollow glass
beads, mean diameter 8± 2 µm, in a kerosene-based
magnetic fluid with saturation magnetizationµ0Ms =
0.045 T and viscosity 7 cP. The hollow glass beads,
supplied by Potters Industries, Inc, had a density of
1.1 × 103 kg m−3 which matched that of the carrier
magnetic fluid. Thus, effects of gravitation in determining
the rheological properties of the composites could be
discounted. The coupling coefficientλ given by (5) is of
the order of 105 in a field of 10−2 T so that substantial
particle chaining would be expected. Typical structures are
shown in figures 4 and 5. The carrier magnetic fluid had
susceptibilityχf = M/H as shown in table 1.

Rheological studies were performed at 24◦C with a
cone-and-plate viscometer that allows the applied stress
to be independently controlled. The plate diameter was
25 mm and the cone angle 0.1 rad. The cone material
was chosen to be either aluminium or iron and the surface
roughness measured with a profilometer was 10µm. A
magnetic field was applied perpendicular to the shear plane
by means of a pair of coils surrounding the cone and plate.
The magnitude of the field could be varied in the range
0–0.036 T when the aluminium cone and plate were used
and in the range 0–0.140 T when the cone and plate were
iron. Radial field gradients in the horizontal plane acted
to restrain the composite to the gap between the cone and
plane and counteracted dynamic effects resulting from the
cone rotation. Gradients in the vertical plane were small
by comparison.

4. Results

The variation in strain rate with stress was measured at
different fields for composites with particle concentrations
φ = 0.15, 0.18, 0.23, 0.31 and 0.35. The maximum
stress applied was 80 Pa and strain rates up to 300 s−1

were observed. Examples of the stress against strain rate
variations, measured in a fixed field, are shown in figures 7–
11 for φ = 0.15, 0.18, 0.23, 0.31 and 0.35. There are two
quite distinct regions in these curves. At high strain rates,
the strain rate variation with stress is linear, following a
Bingham relationship:

τ = τy + γ̇ η0 (9)

where τy is the yield stress,̇γ the strain rate andη0 the
plastic viscosity which can be approximated to the zero
field viscosity. For composites for which the Bingham
relationship applies, the yield stress can be obtained by
extrapolation to zero shear rate. Equation (9) does not
apply, however, when the strain rate is small and the
relationship between stress and strain rate is complex.
It is possible that slippage occurs between the cone or
plate surfaces and the solid composite when the applied
stress is below the yield stress value. Bossis and Lemaire
[6] mentioned the importance of surface roughness in
determining yield stress values. Studies of the surface
roughness of the cone and plate indicate that, on a
microscopic scale, the surfaces are far from smooth (as
compared, for example, to glass) but slippage might well
result from weak bonding between the particle chains of the
composite and the rheometer cone and plate. Popplewell
et al [8] showed that, when an iron cone and plate are
used and a field is applied, the extra adhesion of the chains
due to image forces restricts slippage, giving a higher
actual yield stress and lower strain rates than those for the
aluminium equivalent in the same field. This is illustrated
in figure 12. In addition to the effects of slippage, the
chains would fracture at weak points at a stress below
the yield stress value expected for perfectly structured
chains of spherical particles. The nonlinear behaviour
at low strain rates was also observed by Keshevskiiet
al [5], Klingenberg and Zukowski [9] and Gastet al
[4] in electrorheological fluids. In [9, 10] the nonlinear
behaviour at low stresses was attributed to fracture of
the solidified electrorheological fluid, which spreads as the
strain rate increases until the particles are all dispersed. The
yield stresses obtained experimentally from the Bingham
relationship (9) are shown for different values ofφ and
field B0 = µ0H0 in table 2.

The agreement between the theoretical values for the
yield stress calculated from (8) and the experimental
values is remarkably good at all concentrations and fields,
indicating that the continuum model of Rosensweig [7] is
appropriate for these composite systems. A comparison
between the variation of the normalized yield stress withφ

and χ̄ obtained experimentally with that predicted by the
theory of Rosensweig (8) is given in figure 13. Again
excellent agreement between theory and experiment is
observed.
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Table 2. A comparison between experimental and theoretical values of the yield stress τy for a composite containing hollow
glass beads in a magnetic fluid with µ0Ms = 0.045 T.

τy (B0 = 0.036 T) τy (B0 = 0.024 T)

φ Experimental (Pa±20%) Theoretical (Pa) Experimental (Pa±20%) Theoretical (Pa)

0.15 16 15.0 10 7.5
0.18 19 17.6 9 10.9
0.23 21 20.8 14 12.8
0.31 23 24.8 15 15.3
0.35 26 26.3 16 16.1

Figure 7. The stress against strain rate variation for a
composite containing hollow glass beads, D = 8 µm, with
concentration φ = 0.15 and field B0 = 0.036 and 0.024 T.
η0 = 15 cP.

Figure 8. The stress against strain rate variation at low
strain rates for a composite containing hollow glass beads,
D = 8 µm, with concentration φ = 0.18 and
field B0 = 0.006, 0.012 and 0.024 T. η0 = 16 cP.

The variation of stress with strain rate with increasing
applied stress can be different from that observed with
decreasing stress. This apparent hysteresis is, however,
a time-dependent phenomenon, as shown in figure 14.
It is reasonable to expect the strain rate to increase
progressively as chains, formed in the field, disperse with
time and conversely the strain rate decreases as chains
develop. It is important, therefore, to allow 20 min between
measurements to ensure steady state conditions.

Figure 9. The stress against strain rate variation for a
composite containing hollow glass beads, D = 8 µm, with
concentration φ = 0.23 and field B0 = 0.012, 0.018 and
0.036 T. η0 = 22 cP.

Figure 10. The stress against strain rate variation for a
composite containing hollow glass beads, D = 8 µm, with
concentration φ = 0.31 and field B0 = 0.006, 0.018, 0.030
and 0.036 T. η0 = 62 cP.

5. Summary

The magnetorheological properties of composites at low
stresses and strain rates are difficult to interpret and are
probably very structure-sensitive. Measurements may also
depend on whether the surfaces of the viscometer cone and
plate are rough or smooth or whether they are made of
non-ferrous or ferrous material.

At high stress and strain rates a Bingham relationship
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Figure 11. The stress against strain rate variation for a
composite containing hollow glass beads, D = 8 µm, with
concentration φ = 0.35 and field B0 = 0.024 and 0.036 T.
η0 = 250 cP.

Figure 12. The strain rate variation with applied stress,
indicating the possibility of slippage at the walls of the
aluminium cone and plate with B0 = 0.024 T (for aluminium)
and 0.028 T (for iron).

allows a yield stress to be determined which matches
with theory (7). The values of yield stress measured
are similar to those obtained by Bossis and Lemaire [6]
but are still some 103 times smaller than the best values
obtained from electrorheological fluids. Higher values
could be obtained by using needle or plate-like particles
to increase the packing fraction, as shown by Kashevskiiet
al [5], or by increasing the magnetic fluid magnetization
and the field applied. Although yield stress values are
below those obtained from many electrorheological fluids
or magnetorheological fluids containing magnetic particles,
composites based on magnetic fluids are a suitable and
possibly better alternative when yield stress values are less
important (as in damping applications) than having well-
defined and reproducible rheological properties coupled
with product reliability.

Figure 13. Theoretical predictions of yield stress given by
(8) compared with experimental values.

Figure 14. The variation of strain rate with applied stress
showing how the strain rate varies over a 600 s interval.
Measurements are taken both in increasing and in
decreasing stress modes, B0 = 0.012 T and φ = 0.18.
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Appendix. The effective particle susceptibility
χeff

The effective susceptibility of a non-magnetic particle
immersed in a magnetic fluid was given by Skjeltorp [2] as

χeff = χf

[1 + (Ns − Np)]χf

(A1)

whereχf is the magnetic fluid susceptibility andNs andNp

are the respective de-magnetizing factors for the sample
and particle. The solution (A1), however, is physically
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Figure 15. The pole distribution on cavity and sample
surfaces in the field Ha .

unacceptable sinceχeff can change sign and take positive
values whenχf is large andNp > Ns . it is clear
from physical consideration of the total field distribution
that the particle susceptibility must always be negative
(diamagnetic). The following analysis is believed to give
an exact expression forχeff .

With reference to figure 15,Ha is the field applied along
the axis for an ellipsoidal magnetic fluid sample containing
an ellipsoidal cavity. The poles induced byHa are shown
in figure 15, giving an induced diamagnetic moment to
the cavity which, in the case of a composite, would be a
non-magnetic particle of volumev. Let Hf be the field
in the magnetic fluid in the absence of the cavity andMf

the corresponding fluid magnetization. It should be noted
that the magnetization of the fluid with the cavity present
is not uniform and at the cavity surface has valuesM ′

f in
field H ′

f .
Thus, in the absence of the cavity

Hf = Ha − NsMf (A2)

Mf = χf Hf . (A3)

From (A2) and (A3) it follows that

Mf = χf

1 + χf Ns

Ha. (A4)

When the size of the cavity is much smaller than the system
as a whole the field inside the cavity is

Hc = Hf + NpMf . (A5)

Thus, substituting forHf from (A2) and forMf from (A4),
we have

Hc = 1 + χf Np

1 + χf Ns

Ha. (A6)

Invoking the continuity of the induction fieldB across the
cavity interface on the centre-line gives

Bc = µ0Hc = µ0(H
′
f + M ′

f ) (A7)

and, from (A3),
M ′

f = χf H ′
f . (A8)

Thus, eliminatingH ′
f between (A8) and (A9),

M ′
f = χf

1 + χf

Hc. (A9)

Writing the definition of the effective susceptibility

χeff = −M ′
f

Ha

(A10)

gives

χeff = − χf (1 + Npχf )

(1 + χf )(1 + Nsχf )
(A11)

which is substantially different from the Skjeltorp
expression (A1). The fieldHc in the cavity andHf in the
sample without the cavity are both rigorously uniform but
H ′

f andM ′
f are spatially variable over the cavity interface.

χeff is the susceptibility of an isolated particle of the same
size and shape as that of the cavity and yielding the same
distribution of poles when subjected to the applied fieldHa.
The susceptibility is diamagnetic and the induced moment
of the particle is opposite to the direction of the field, as
shown in figure 15.
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