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Abstract

This work suggests that van der Waals attraction of small colloidal particles to large colloidal particles can establish
a cloud of the small particles that tends to shield the larger ones from agglomerating to each other. With consideration of
the "nite size of the small particles the system is analyzed thermodynamically with interest in stabilizing dispersions of
magnetic particles in liquid metallic media. ( 1999 Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

Past attempts to produce colloidal magnetic
#uid that remains stably dispersed in metallic liquid
in the presence of applied magnetic "eld have been
unsuccessful [1}3]. A dispersion of ferromagnetic
particles in the size range of a few nanometers is
readily formed, e.g. by electrolytic deposition at
a liquid metal cathode. The particles remain sus-
pended for long periods of time in gravitational
"eld without the bene"t of an additive dispersing
agent. However, the dispersion phase-separates
rapidly when magnetic "eld is applied. It appears
that the metal in liquid metal colloids are almost
stable and require a little additional help. The steric
repulsion mechanism is not available as organic

surfactants are insoluble in liquid metals. Transfer
of electronic charge at the metal}metal interface
produces a short range repulsion and is small in
magnitude [4]. This work considers stabilization
that may be conferred using a bimodal distribution
of particle sizes, e.g. single domain iron particles
with size in the range of 10 nanometers dispersed in
a liquid metal such as mercury containing a large
number of smaller particles. It is supposed that
the small particles form a cloud at the surface of
the large particles rather than chain to each other.
The present analysis examines whether overlap of
the clouds when the surfaces approach one another
produces a repulsion force.

2. Basic relations

Limiting forms of Hamaker's expression for the
van der Waals interaction between macroscopic
spheres of di!erent sizes are found in Ref. [5] with
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Fig. 1. (a) Snapshot of magnetic particles surrounded by di!use cloud of smaller particles. (b) Cloud of small particles between parellel
surfaces. D is a cut-o! distance representing surface roughness.

the potential of closely spaced spheres at surface to
surface separation distance D is given by
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where A is the Hamaker constant and R and R@ the
radii of the spheres. Eq. (1) yields the following
limiting forms.
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Eq. (2a) gives the interaction potential between
a plane surface and a sphere, and Eq. (2b) the
potential between equal size spheres. It is seen that
attraction to a surface exceeds that of particles to
one another by a factor of 2. As a result, clustering
of small particles near a surface is favored over
clustering of the small particles to one another, and
in the following the particle}particle interaction is
neglected. For a particle located at a point between

two plane surfaces the potential is the sum of two
terms.
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With y de"ned as the distance from the midplane
between the surfaces to the center of a particle,
the separation distance between the left surface
and the particle surface is D

1
"(¸/2)!R#y

and the distance from the right surface is
D

2
"(¸/2)!R!y.
The free energy F of particles per unit volume is

now formulated as the sum of an entropic term
representing the free energy of a monatomic gas
[6,7] adjusted for the "nite volume of the particles
plus the van der Waals term:
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Fig. 2. Concentration pro"les in an isolated gap. Initial volume
fraction e

0
"0.1, c"A/6k¹, A is the Hamaker constant and

¹ the temperature (R"2.5 As , D"2 As , ¸"20 As , e
0
"0.1).

The "nite volume correction may be veri"ed by
computing the pressure from the thermodynamic
relationship p"!(RF</Rn

'
)
T
, where < is the mo-

lar volume. This recovers the gas law in the form
p"k¹n

'
/(1!n

'
v
0
) where k is the Boltzmann

constant, ¹ the temperature, and v
0

measures the
particle volume.

3. Particle cloud in an isolated gap

The system is illustrated in Fig. 1 where D repres-
ents a cuto! distance to prevent the occurrence of
singular values of van der Waals interaction; D may
loosely be regarded as surface roughness. At equi-
librium the total free energy F

5
of the system is

minimum subject to the constraint that the total
number of particles N

5
in the gap is "xed. The

mathematical problem is stated compactly as

dF
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where, assuming unit area of surface,
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This de"nes a variational problem as the distribu-
tion n

'
"n

'
(y) is not yet known. The constraint is

incorporated into the problem by introducing
a Lagrange multiplier j which is independent of y.
The variational problem is then expressed as
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Denoting the integrand as G"F!jn
'
and noting

that the derivative of n
'
with respect to y is absent

from G, the associated Euler equation is simply
RG/Rn

'
"0. This yields j"RF/Rn

'
and identi"es

the multiplier as the chemical potential k.
To obtain an appreciation for the concentration

distribution in a simple way it will be assumed for
the moment that the small particles possess

negligible volume such that R;¸/2 and n
'
v
0
;1.

G then takes the following form:
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Computation of RG/Rn
'
yields
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Introducing this expression for n
'
into Eq. (6b) and

recognizing that k is spatially constant, after re-
arrangement yields the desired expression for con-
centration distribution.
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t"¸/D, u"¸/R, c"A/6k¹ and it is recognized
that e

'
"n

'
v
0

and e
0
"n

0
v
0

where e is particle
volume fraction. A plot of this relationship for the
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Fig. 3. Concentration in gap for colloid in equilibrium with the
bulk solution. R, D, ¸, e

0
are the same as in Fig. 2.

concentration distribution in an isolated gap is
shown in Fig. 2. Concentration near both surfaces
exceeds the initial uniform value and, as would
be expected, larger values of Hamaker constant,
hence larger values of c, yield higher concentra-
tions near the boundaries. At the midsection
the concentration is reduced below the initial
value when the Hamaker constant is relatively
large, the particles having moved towards the
boundaries. The cuto! zones are free of particles
but are assumed to contain carrier #uid. As a
result the concentration of particles in the mid-
section tends to become greater than the initial
concentration at the lower values of the Hamaker
constant.

4. Particle cloud in equilibrium with bulk solution

In a colloidal suspension the particles in the
clouds are free to move in and out of the bulk
solution and hence the gap #uid equilibrates with
the bulk #uid. Again, the in#uence of "nite particle
size plays a role and will limit the volume fraction
of particles to be less than one anywhere.

Consider therefore that the gap communicates
with the bulk #uid regarded as a reservoir of
large extent. Potential = is uniform in a di!er-
ential volume element located between positions
y and y#dy. The free energy density F

'
of

the particles in the volume element is given by
Eq. (4) and the free energy F

0
of particles in the

bulk where = is zero is given from Eq. (4) by
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At equilibrium the chemical potential is the same in
both regions. Thus,
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Computation from Eq. (12b) yields a transcenden-
tal equation for the concentration distribution in
the open gap:
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For particles of negligible size (e
'
;1, e

0
;1) the

concentration distribution reduces to the following
explicit relationship.
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This expression di!ers from Eq. (10) obtained for
particles of negligible size in the isolated gap.
Values of concentration computed by numerical
solution of Eq. (14) are plotted in Fig. 3. In common
with the isolated gap, concentration is larger near
the bounding surfaces. However, concentration in
the midsection is always larger than in the bulk,
consistent with the circumstance that particles from
the bulk are attracted into the gap via the van der
Waals force "elds of the bounding surfaces.
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Fig. 4. Interaction energy *F
5
of surfaces shielded by clouds of

particles having R"2.5 As , n
0

is the number concentration of
particles in the bulk solution. D"2 As , m"0.8. The depletion
region extends to ¸/D"4.5. Hard core repulsion indicated at
¸/D"2.

5. Mutual repulsion of the surfaces

Force acting between the surfaces is determined
by the change of total free energy (gap plus reser-
voir) with respect to the surface to surface spacing.
The total free energy F

5
may be written as
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where it is assumed that the surfaces are of unit area
and <

3
is the volume of the reservoir. Because the

reservoir is assumed large compared to the gap
volume, the free energy density F

0
is sensibly con-

stant. However, <
3

varies when the gap spacing
changes as the gap #uid is exchanged with the
reservoir. Thus,
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where<
5
is the constant total volume of the system.

When the gap surfaces are in closest contact
(¸"2D) all the #uid resides in the reservoir and the
total free energy equals <

5
F
0

which is constant and
large. Eliminating <

3
from Eq. (15) with Eq. (16),

then subtracting <
5
F
0

yields the di!erence in free
energy *F

5
which can be expressed as an integra-

tion over the volume of the gap only.
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Substituting for F
'

from Eq. (4) and F
0

from Eq.
(11) permits *F

5
to be expressed in the following

nondimensional terms:
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where t, and c are the same as de"ned previously,
and m"D/R. Eqs. (18) and (13) are coupled

through void fraction e
'
and must be solved simul-

taneously to determine the dependence of total free
energy on the surface separation distance.

Hoon [4] estimates A"2.6]10~13 erg for
the Hamaker constant in a metal/liquid metal sys-
tem. This corresponds to c"1.05 for ¹"298 K.
Numerical integration of Eq. (18) for c"0.5,
1.0, 1.5 yields the plots shown in Fig. 4 where it is
seen that the total free energy is a monotonically
decreasing function of the surface separation dis-
tance indicating that overlap of the clouds produces
repulsion, as would be required for colloid stabiliz-
ation.

6. Depletion zone

When the surfaces are close enough together
such that ¸(2(D#R) there is no room in the gap
for a particle to enter and a di!erent treatment is
needed. The total free energy consists only that of
the reservoir #uid given by F

3
<

3
where F

3
is the free
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energy density of reservoir #uid and <
3
the volume

of reservoir #uid. At minimum spacing of the surfa-
ces ¸"2D, the total free energy is F

0
<

5
where F

0
is

the initial free energy density of reservoir #uid when
all the #uid in the system is in the reservoir having
total volume <

5
. Corresponding to the prior

treatment wherein the gap contains particles we
focus on the di!erence *F
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the free energy density introduced previously we
have F
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wherein the particle conservation relationship
N
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5
is employed. For a large reser-

voir, n
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and n
3
are closely equal so that
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wherein substitution is made of the volume con-
servation relationship <
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;1 expansion of the logarithmic factor

yields *F
5
"n

0
k¹<

'
"n

0
k¹(¸!2D) for unit area

of surface. Thus,

*F
5

n
0
k¹R

"

D
RA

¸

D
!2B"m ) (t!2),

AD(

¸

2
(D#RB, (21)

where n
0
"N

5
/<

5
and m"D/R. The depletion e!ect

is a known result previously obtained in a some-
what di!erent manner in reference to polymer solu-
tions ([5], p. 304). The relationship is plotted in Fig.
4 where the ground energy of *F

5
from Eq. (18) is

rede"ned to splice the curves together at the edge of
the depletion layer where ¸"2(D#R). At these
small separation distances the surfaces experience
attraction to each other, an osmotic e!ect.

7. Conclusions

This work shows that a di!use cloud of particles
develops near a surface due to van der Waals
attraction to the surface mediated by thermal
agitation. Overlap of the clouds produces repul-
sion of opposing surfaces due to entropic e!ect.
At short range, particles of "nite size are excluded
from the gap and attraction due to osmotic pres-
sure develops. To determine the stability of a
colloidal sol it is necessary to transform the
relationships developed here for planar geometry
to apply to spheres.
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