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Convective instability of magnetized ferrofluids
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Abstract

Convective instability in a flat ferrofluid layer subject to a transverse uniform magnetic field is investigated

theoretically. A temperature gradient imposed across the layer induces a concentration gradient of magnetic grains

owing to the Soret effect. Both these gradients cause a spatial variation in magnetization that establishes a gradient of

magnetic field intensity within the fluid layer. The field gradient induces in its turn a redistribution of magnetic grains

due to magnetophoresis. The resulting self-consistent magnetic force tries to mix the fluid. Linear analysis performed

for the case of realistic boundary conditions on confined horizontal planes predicts double-diffusive oscillatory

instability in a certain region of parameters, whereas if the particle diffusion had been not operative, then only

stationary instability would occur.

r 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Mechanical equilibrium of a nonisothermal ferrofluid

in a magnetic field H is in general impossible. At the

basis of the mechanism of thermomagnetic convection

[1–5] lies the temperature dependence of the magnetiza-

tion M; under otherwise equal conditions, the colder

elements of the fluid are more strongly magnetized, and

therefore they are subject to a larger magnetic force in

the direction of rH : Interestingly, this convection can

arise even in a uniform applied magnetic field [4]. Let

such a vertical external field act upon a ferrofluid

confined between two horizontal planes at the tempera-

ture TðzÞ: Then the dependence MðTÞ provides the field
nonuniformity within the fluid layer. Indeed, from the

Maxwell equation divB=0 where B ¼ Hþ 4pM; it

follows that

dH

dz
¼ �4p

dM

dz
¼ �

4p
#m

qM

qT

� �
H

dT

dz
; ð1Þ

where #m ¼ 1þ 4pðqM=qHÞ is the differential magnetic

permeability. As the field gradient (1) is directed opposite

to the gradient of magnetization, the magnetic force F ¼
MrH always tries to mix the ferrofluid. The magnetic

mechanism of convection predominates over the buoy-

ancy mechanism in a sufficiently thin fluid layer,

dB1mm. Actually, as it is shown below, the magnetic

Rayleigh number RmpðDT dÞ2 whilst the gravitational
Rayleigh number RgpDT d3; i.e. Rm=RgpDT=d: With

a decrease in d, the critical temperature gradient DTc=d

increases, so that it becomes RmbRg:
Ferrofluids should be treated as binary mixtures

whose magnetization depends on the concentration f
of magnetic grains. An imposed rT induces rf owing

to the Soret effect; the magnetic force F leads to an

additional redistribution of magnetic grains due to

magnetophoresis. As it was recently demonstrated [6],

these thermo- and magnetodiffusion processes give rise

to oscillatory instability, which cannot occur in a

hypothetic pure (i.e., single-component) magnetized

fluid [4,5,7,8].

The flux of magnetic grains in a ferrofluid is

j ¼ fu� Dðrfþ STrTÞ; ð2Þ
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where D ¼ kBT=6pZa is the diffusion coefficient of

grains of radius a; ST the Soret coefficient, and the

regular grain velocity u with respect to the liquid is

determined by the Stokes drag coefficient 6pZa and the

magnetic force acting upon a particle:

6pZau ¼ mLðxÞrH: ð3Þ

Here m ¼ MsV is the magnetic moment of the

particle of volume V ; Ms is the saturation magnetiza-

tion of a dispersed ferromagnet, and LðxÞ ¼ coth

x� x21 is the Langevin function of the parameter

x ¼ mH=kBT : Eliminating u from Eqs. (2) and (3), we

obtain

j ¼ �D½rfþ STrT � ðf=HÞxLðxÞrH�: ð4Þ

At the equilibrium (j=0) in a uniform applied

magnetic field, only the temperature gradient can cause

gradients of f and H: Their self-consistent values are

determined by Eqs. (1) and (4):

dH

dz
¼
4pM

sT
Cþ

xL0

L

� �
dT

dz
; ð5Þ

df
dz

¼ �
#mf
sT

C�
#m� 1

#m
xL

� �
dT

dz
: ð6Þ

Here C ¼ ðT=fÞST plays the role of the separation

ratio in the mechanism of thermomagnetic convec-

tion, s ¼ #mþ 12pw0L
2ðxÞ ¼ 1þ 12pw0ðL

0 þL2Þ; and

w0 ¼ fMsm=3kBT is the initial magnetic susceptibility.

Note that df=dza0 even if C ¼ 0: The non-

Soret f� T coupling originates from the magneto-

phoresis, which is manifested as a negative separation

ratio.

2. Eigenvalue problem

Small perturbations of a standing mode are char-

acterized by velocity v, pressure p; temperature y;
concentration j; magnetic field h, and magnetic induc-

tion b. The latter reads

b ¼ ð1þ 4pM=HÞhþ 4p
qM

qT
yþ

qM

qf
j

�

þ
qM

qH
�

M

H

� �
hz

�
e; ð7Þ

where e is the unit vector along axis z: Let us introduce
the potential F of magnetic field perturbations: h ¼ rF:
Substituting b from Eq. (7) and M ¼ fMsLðxÞ into

div b=0, we obtain the equation for F:

mr2F� ðm� #mÞ
q2F
qz2

¼ �4pM
1

f
qj
qz

�
xL0

TL

qy
qz

� �
; ð8Þ

where m ¼ 1þ 4pðM=HÞ ¼ 1þ 12pw0LðxÞ=x:

The perturbation f of the magnetic force density

F ¼ MrH is

f ¼ �hzrM þ
qM

qT
yþ

qM

qf
jþ

qM

qH
hz

� �
rH:

On substitution of dH=dz from Eq. (5) and hz ¼ qF=qz;
the last formula takes the form

fz ¼
M

sT
Cþ

xL0

L

� �
#m
qF
qz

þ 4pM
j
f
�

xL0

L

y
T

� �� �
dT

dz
:

ð9Þ

Eq. (4) under the replacement f-fþ j;T-T þ y;
and H-H þ qF=qz determines the matter flux pertur-

bation. So, making allowance for Eq. (6), we obtain the

diffusion equation

qj
qt

¼Dr2 jþ
f
T
Cy�

f
H

xL
qF
qz

� �

þ
fDT #m
sTd

C�
#m� 1

#m
xL

� �
ðveÞ: ð10Þ

Pass over to dimensionless variables by choosing a

unit of length d; time d2=k (k is the fluid thermo-

diffusivity), velocity k=d; temperature DT ; concentration
ðDT=TÞf; and field potential 4pMðDT=TÞd: Then

inserting the force given by Eq. (9) in the equation of

fluid motion and assuming all perturbations to be

dependent on time and horizontal coordinates as

exp½iðot þ kxx þ kyyÞ�; we arrive at the following system
of linear equations for z-dependent amplitudes of the

vertical component of velocity W ¼ ðveÞ; temperature y;
matter flux potential O ¼ jþCy� ðs� #mÞDF (it is

introduced as an independent variable instead of the

concentration perturbation j), and magnetic field

potentials inside (F) and outside (Fe) the fluid layer [6]:

ðD2 � k2ÞðD2 � k2 � io=PÞW

¼ k2RmG½O� ðCþ xL0=LÞyþ sDF�; ð11aÞ

ðD2 � k2 � ioÞy� W ¼ 0; ð11bÞ

LðD2 � k2 � io=LÞOþ io½Cy� ðs� #mÞDF�

¼ �s�1½ #mC� ð #m� 1ÞxL�W ; ð11cÞ

ðsD2 � mk2ÞF ¼ �D½O� ðCþ xL0=LÞy�; ð11dÞ

ðD2 � k2ÞFe ¼ 0: ð11eÞ

Here P ¼ Z=rk is the Prandtl number, L ¼ D=k is the

Lewis number, D 
 d=dz;

Rm ¼
½fMsDTd�2

ZkT2
;

G ¼
4pL2

s
Cþ

xL0

L

� �
: ð12a; bÞ

Note that the magnetic Rayleigh number Rm is always

positive.
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To specify the solutions of Eqs. (11), one needs 12

boundary conditions (b.c.) at confined surfaces z ¼ 71=2:
For the case of rigid, perfectly heat conducting and

completely impervious boundaries, the b.c. on velocity,

temperature and matter flux perturbations read as

W ¼ DW ¼ y ¼ DO ¼ 0 at z ¼ 71=2: ð13Þ

B.c. of continuity of tangential components of magnetic

field and the normal component of magnetic induction (7)

on the layer borders take the form [6]

F ¼ Fe; sDFþ O ¼ DFe at z ¼ 71=2; ð14Þ

respectively. Eigenvalue problem (11)–(14) can be

simplified by means of exception from consideration of

the value Fe: According to Eq. (11e), Fepexpð7kzÞ: As
the perturbation must decay far from the layer, we find

DFe ¼ 8kFe at z ¼ 71=2: This relation permits to

eliminate Fe from Eq. (14):

sDF7kF ¼ �O at z ¼ 71=2: ð15Þ

Thus, we have obtained the closed b.c. on F; so there is

no necessity to find the magnetic potential outside the

layer.

Convective instability of magnetized ferrofluids in the

B!enard configuration has been analyzed recently [6] for

the case of ideal (so-called ‘‘free’’) boundaries at which

W ¼ D2W ¼ y ¼ O ¼ DF ¼ 0: These b.c. permit to

obtain an exact solution, W ; y; Opcos pz; Fpsin pz;
whose properties guide our present analysis produced

below.

3. Solution for realistic boundaries

We have obtained critical values of the Rayleigh

number for stationary (o ¼ 0) and oscillatory (oa0)

instabilities using the Galerkin method by expanding the

velocity, temperature and matter flux potential in the

series containing only even functions of z:

W ¼
XN�1

n¼0

a2nW2n; y ¼
XN�1

n¼0

b2ny2n;O ¼
XN�1

n¼0

c2nO2n: ð16Þ

As the W2n basis we have chosen even solutions of the

eigenvalue problem

ðD2 � k2Þ2W2n ¼ �l2nðD2 � k2ÞW2n;

W2nð71=2Þ ¼ DW2nð71=2Þ ¼ 0;

which describes velocity perturbations in the fluid layer

when Rm ¼ 0—see Eq. (11a). The eigenfunctions W2n

are

W2n ¼
cosh kz

cosh k=2
�

cos
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2n � k2

p
z

cos
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2n � k2=2

p
and eigenvalues l2n are determined by the equationffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2n � k2

p
tan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2n � k2=2

q
¼ �k tanh k=2:

Functions y2n and O2n are determined by the corre-

sponding eigenvalue problems:

ðD2 � k2Þy2n ¼ �n2ny2n; y2nð71=2Þ ¼ 0

ðD2 � k2ÞO2n ¼ �r2nO2n; DO2nð71=2Þ ¼ 0

and have the form

y2n ¼ cosð2n þ 1Þpz; n2n ¼ ð2n þ 1Þ2p2 þ k2;

O2n ¼ cos 2npz; r2n ¼ 4n2p2 þ k2; n ¼ 0; 1; 2;y:

Trial functions (16) satisfy b.c. (13). Substituting y
and O from Eq. (16) in field perturbation equation (11d)

and satisfying b.c. (15), we find an exact odd solution of

the equation:

F ¼
XN�1

n¼0

b2nF
ð1Þ
2n þ

XN�1

n¼0

c2nF
ð2Þ
2n ; ð17Þ

Fð1Þ
2n ¼

ð2n þ 1ÞpðCþ xL0=LÞ

ð2n þ 1Þ2p2sþ mk2

� sinð2n þ 1Þpz �
cos np sinh gkz

sg cosh gk=2þ sinh gk=2

� �
;

Fð2Þ
2n ¼ �

1

ð2npÞ2sþ mk2

� 2np sin 2npz þ
mk cos np sinh gkz

sg cosh gk=2þ sinh gk=2

� �
;

where g ¼
ffiffiffiffiffiffiffiffi
m=s

p
: Functions (16) and (17) are substi-

tuted into Eqs. (11) and then Eqs. (11a)–(11c) are

required to be orthogonal to each of the functions

W2n; y2n; and O2n; respectively. This way we arrive at the
3N-rank determinant of the coefficients a2n; b2n; c2n;

0 2 4 6 8 10
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Fig. 1. The corridor of oscillatory instability (dashed) in x; C
plane. Dashed lines correspond toC ¼ 0; �0:6; þ0:6 and x ¼ 2:
Cross-sections of the surface Rmcðx; CÞ along these lines are

presented below in Figs. 2–5, respectively.
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which leads to a characteristic equation to be solved for

the eigenvalue RmðkÞ:
Our analysis has shown that there exists an area in the

(x; C)-plane

�
xL0ðxÞ
LðxÞ

oCo
#m� 1

#m
xLðxÞ ð18Þ

(see Fig. 1), where oscillatory instability occurs. Inter-

estingly, the area location does not depend on the

boundary conditions of the problem. The same corridor

(18) of oscillatory instability has been obtained for

unrealistic ‘‘free’’ boundaries [6]. Actually, on the

lower border of the area, the critical Rayleigh number

for oscillatory instability, Rmosc
c ; turns into infinity since

the field gradient (5) (and the magnetic force too)

vanishes on this border. On the upper border of the

interval (18), the frequency of neutral oscillations, oc;
turns into zero together with the concentration gradient

(6). Indeed, if f¼ const; only stationary instability can

occur [4].

Note that ferrofluids are characterized by two very

different time scales [9]: the long mass-diffusion time

tD ¼ d2=p2D and the short thermodiffusion time

tD ¼ d2=p2k: The ratio tT=tD is equal to the Lewis

number, L ¼ D=k; which is very small (B10–4) due

to the low diffusion coefficient for magnetic grains.

Therefore, there are two possible scenarios of the

convection onset. If the temperature difference DT

between the layer boundaries is increased from zero

till a supercritical value for a time t5tD; diffusion

processes have no time to evolve; hence magnetic colloid

behaves like a pure fluid. Stationary convection starts in

this case at a certain Rmð0Þ
c : If however DT is formed for

a time t > tD; the concentration gradient is built up

undisturbed by convection. Then in the dashed area of

Fig. 1 there arises oscillatory instability at Rmosc
c : Thus,

both the critical Rayleigh numbers, Rmosc
c and Rm 0ð Þ

c ;
have a direct physical meaning. Depending on the

conditions of a real experiment, either stationary

convection above Rm 0ð Þ
c or oscillatory convection above

Rmosc
c set in.

4. Numerical results and conclusions

Results of applying the Galerkin method for the case

C ¼ 0 and realistic (‘‘rigid’’) boundaries (subindex r) are

indicated in Table 1 and Fig. 2 in comparison with an

exact solution for ‘‘free’’ boundaries (subindex f ). In the

figure, the logarithms of Rmosc
c and Rm 0ð Þ

c ; and critical

cyclic frequency f ¼ oc=2p are presented as functions of

the magnetic field x: The calculations have been

performed for a ferrofluid with the initial magnetic

permeability m0 ¼ 1þ 4pw0 ¼ 3: The critical Rayleigh

number for oscillatory instability in the fluid (see curve

ar in Fig. 2) reaches a minimum, min[Rmc
osc]=9340.7, at

xc ¼ 1:44; corresponding wave number and frequency of
neutral oscillations are kc ¼ 3:72 and oc ¼ 15:14: As
seen from Table 1, these critical values weakly depend

on the number 3N of trial function that we used.

Table 1

The dependence of critical parameters on numbers of trial functions in the case C ¼ 0

3N (Rank of determinant) min½Rmosc
c � oc kc xc

6 9380.193 15.148 3.755 1.439

9 9355.674 15.145 3.751 1.439

12 9347.244 15.142 3.750 1.439

15 9343.791 15.140 3.750 1.439

18 9342.140 15.140 3.749 1.439

21 9341.255 15.139 3.749 1.439

24 9340.740 15.139 3.749 1.439

Exact solution for ‘‘free’’ b.c. 4993.214 12.126 3.081 1.474
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bf
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Fig. 2. Field dependence of Rmc and circular frequency f in the

caseC ¼ 0: Curves (a)—oscillatory solution Rmosc
c ; curves (b)—

stationary solution Rm 0ð Þ
c in the absence of particle diffusion.

Solutions for realistic b.c. are marked by subindex r, for ideal

(‘‘free’’) boundaries—by subindex f :
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Therefore, all following calculations were carried out

with 12 functions (N ¼ 4).

Maps of stability in Rmc; x plane are presented in

Figs. 3 and 4 for C ¼ �0:6 and þ0:6; respectively. For
each of these magnitudes, there is a certain interval of x
(see Fig. 1) in which oscillatory instability occurs. Out of

the interval, there arises a stationary Soret convection

above the critical Rayleigh numbers Rmst
c : The latter are

very small due to the small value of the Lewis number L:
Having in mind a water-based ferrofluid, we carried out

0 1 2 3
ξ
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g 
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Fig. 3. Field dependence of Rmc and f (a) and critical wave

number kc (b) for C ¼ �0:6: Curves (a)—oscillatory solutions

Rmosc
c ; kc and (b)—stationary solutions Rmst

c ; kc; curves (c)—
stationary solution Rm 0ð Þ

c in the absence of particle diffusion.
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Fig. 5. Rmc and f (a) and kc (b) versus separation ratioC at the

fixed magnetic field strength x ¼ 2: Curves (a)—oscillatory

instability, curves (b, c)—stationary instability. Solutions for

realistic b.c. are marked in Fig. 5b by subindex r; for free

boundaries—by subindex f :

Fig. 4. Field dependence of Rmc and f for C ¼ þ0:6: Curve
(a)—oscillatory solution Rmosc

c and (b, c)—stationary solution

Rmst
c ; curve (d)—stationary solution Rm 0ð Þ

c in the absence of

particle diffusion.
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our calculations with L ¼ 1:9� 1024 and the Prandtl

number P ¼ 7:
A diagram of stability on the (Rmc; C)-plane at the

fixed magnitude of magnetic field is shown in Fig. 5.

Two things distinguish the diagram from a traditional

one for binary mixtures [10,11]. Firstly, the codimen-

sion-2 point (i.e., the intersection point of the oscillatory

(a) and stationary (c) branches) is essentially shifted

towards positive values of C due to magnetophoresis.

Secondly, the stationary branch b is usually located in

the region of negative Rayleigh numbers (these deter-

mine the onset of convection in a binary mixture heated

from above). However, thermomagnetic mechanism of

convection has neither the top nor the bottom since

RmpðDTÞ2: C dependence of Rmc of f shown in the

figures is basically similar to that found for the case of

free boundaries [6], but the corresponding wave numbers

vary sharply in the same range of C values.

Thus, convective instability of magnetized ferrofluids

is strongly effected by the magneto- and thermophoretic

transfer of magnetic grains. The particle diffusion just

gives an opportunity to observe oscillatory instability in

a certain region of fluid parameters and in a certain

experimental condition. Namely, an applied temperature

difference must not be increased faster than the limit

imposed by concentration diffusion. In the opposite

case, ferrofluids behave like pure fluids, which results in

stationary instability at Rm 0ð Þ
c :
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