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Abstract
Conformational properties of dipolar chains, and spatial and orientational intra-
chain correlations in zero and infinitely strong external fields are investigated
theoretically. A striking similarity and essential distinctions between the chains
and polymer molecules are revealed and discussed. The main attention is given
to the chain flexibility. The coil–globule phase transition in dipolar chains is
predicted.

1. Introduction

Fluid of dipolar hard spheres is the basic model in statistical mechanics of polar liquids. An
important ‘natural’ representative of dipolar fluids is ferrofluids (FF) [1, 2]—the colloidal
solutions of magnetic grains. The distinctive and attractive features of FF are due to the
presence of two control parameters: the particle size (it determines the scale of interparticle
interactions) and the concentration. An excess of anisotropic dipole interactions over energy
of thermal fluctuations leads to the formation of chains out of head-to-tail aligned magnetic
dipoles. This was a surprising result of Monte Carlo simulations [3–7]. Many intriguing
and unexpected properties of FF established during last decade are due to the chains. To all
appearances, the chain formation precedes the gas–liquid phase separation formerly predicted
analytically [8] (within the limits of the mean spherical model [9]) and recently observed in
simulations [10]. The two effects are divided by their scales: the condensation manifests as
macroscopic phenomenon whereas the chain formation manifests as a microscopic one. The
pathway between the phenomena was given in the recent Monte Carlo study [11, 12] of gas–
liquid nucleation in a strongly polar Stockmayer fluid. As shown, the nucleation is initiated
by chains which then grow in length and finally collapse to spherical clusters as the result of
coil–globule transition.

Theoretical investigations of association phenomena in FF started from pioneering works
of de Gennes and Pincus [13] and Jordan [14]. The latter treated FF as a chemical equilibrium
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mixture of non-interacting clusters of different size. This reasonable approach became the
basis for latest theoretical works [15–22]. So, combining the van der Waals theory for liquid
condensation with the associated Jordan theory revealed [15] a competition between liquid
condensation and chain formation in accordance with mentioned simulations [3–7]. Analogous
results were obtained in [16–19] where some phenomenological parameters of work [15] were
estimated.

Remarkably, all of the aforementioned theoretical works dealt with only one attribute
of dipolar chains—their length. Meanwhile, a genuine understanding of the phenomenon
remains incomplete without studying the spatial and orientational correlations along the chain.
Investigating these correlations, we have established an important role of the chain flexibility:
this property of chains has never been the subject of study. De Gennes and Pincus [13] were the
first who noted an analogy between dipolar chains and polymer molecules. In fact, developing
the association theory, we arrive at a natural extension of basic concepts of polymer physics
(such as a coil, globule, the persistent length, Kuhn’s segment etc [23]) to the case of dipolar
chains. Below we study possible conformations of the chains (statistical coil, globule) and
investigate the coil–globule phase transition.

2. Factorization of the partition function of ideal chain

Consider FF as an assembly of chains of different length formed out of magnetic grains. We
assume that all the grains are identical spheres of diameter d , only neighbouring grains in the
chain interact with each other, and there is no interaction between grains of different chains.
In other words, we consider for the moment a case of ideal chains.

The grain interaction is described by the sum of hard-sphere Uhs(r) and dipolar potentials,

U(12) = Uhs − (m2/r3)
[
3(e1 · r̂)(e2 · r̂) − e1 · e2

]
, (1)

where ei and r̂ are unit vectors along the magnetic moment of a particle i , mi = mei , and
along the interparticle vector r12 = r r̂.

We give a definition to the chain. First, two neighbouring grains are reputed to be bonded
if their dipolar potential for the head-to-tail dipole configuration exceeds thermal energy,
2m2/r3 � kBT . Other words, the distance r between the grains should satisfy the condition
r3 � 2λd3 where λ = m2/(d3kBT ) is the dimensionless coupling parameter. Second,
calculating the partition function Z N of an N-particle chain, the integration over displacement
vector ri,i+1 of two neighbouring particles should be done over half the spherical volume
admitted by the above mentioned condition.

Let us comment on the last statement. The procedure of integration was proposed in [22].
It allows us, effectively, to take into account the steric interactions with other grains in a chain.
Of course, the given integration narrows down the real region of space admitted for the particle
in a chain. However, it contains the main region around the head-to-tail configuration of
dipoles. The results of exact integration and integration over half the spherical volume prove
to be practically coincide starting from λ � 3, that is from the same beginning of the grain
association as we will see later. In order to show the chosen method of integration over half
the spherical layer we use below the prime near the symbol of integral.

The main advantage of the model is factorization of the partition function of an N-particle
chain: Z N = Z N−1

2 where Z2 is the partition function of a dimer—the cluster of two grains.
Such a factorization takes place in either zero or infinitely strong magnetic fields, but not
for arbitrary external field strength. This property of a dipolar chain is quite analogous to
that for the chain of spins with the Heisenberg interactions [24]. In zero field it immediately
follows from the absence of a preferable direction in the system. So, calculating Z N one should
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integrate over variables ei and ri−1,i starting from the last grain of number N (‘tail’ of the chain)
to the first one (‘head’) and taking at each step the direction ei−1 of the previous grain for the
polar axis. In the case of infinitely strong field, the factorization is obvious. As soon as Z N is
known, the chain distribution upon their length is easily calculated (see, e.g., [14, 15, 18, 19]).
In particular, the average number of grains in the chain is

〈N〉 = 1
2 +

√
1
4 + �Z2, (2)

where � = nv is the volume fraction of magnetic particles, and n and v = πd3/6 are their
concentration and volume, respectively.

Thus the problem of determination of the average length of the chains is reduced to
calculation of the partition function of dimer. The asymptotic representation at λ � 1 of the
dimer partition function in zero and infinite external field is calculated in detail in the appendix.
The result is

Z2(0) = e2λ

3λ3

(
1 +

8

3λ
+

23

3λ2
+

229

9λ3
+

5263

54λ4
+

11 536

27λ5
+

57 427

27λ6

)
, (3)

Z2(∞) = e2λ

3λ2

(
1 +

5

3λ
+

41

12λ2
+

155

18λ3
+

11 195

432λ4
+

39 235

432λ5
+

628 145

1728λ6

)
. (4)

These expansions are given up to terms of order of O(λ−6) because of the slow convergence
of the series. The main (first) term in the right side of (3) and (4) is a result of de Gennes and
Pincus [13]. The calculated values of both partition functions are shown in figure 1; note that
in the figure and below, the minimal value of λ is 0.5 according to our definition of a chain. It
is interesting that maximal deviations of calculated values from unity (i.e. from de Gennes and
Pincus asymptotic values) takes place at small λ ∼ 2−3, however even at λ = 10 it achieves
50%. The expansions (3) and (4) describe the calculated values within the accuracy of 10%
starting from λ ∼ 6.

Being the very important integral characteristic of the phenomenon of chain formation, the
average length itself, however, does not contain an exhaustive information about the system.
Our understanding of the phenomenon would be incomplete without study of statistical
properties of the chains, including their spatial and orientational correlations. It is these
questions we start to investigate.

3. Statistical properties of ideal chains

We study now the statistical properties of a single chain. Owing to the factorization, the
problem again reduces to study of statistical properties of nothing but dimers. The properties
are expressed through four orientational and two spatial correlation functions:

A = 〈e1 · e2〉, B = 〈e1 · r12〉d−1, C = 〈(e1 · e2)
2〉,

D = 〈(e1 · r12)
2〉d−2, E = 〈r12〉d−1, F = 〈r2

12〉d−2.
(5)

All of them depend only on λ and are easily calculated. We determined also their asymptotic
representation at λ � 1 which is given in the appendix. Note that even for strong dipole
interactions, λ = 10, these correlations are still far from unity. For example, the mean values
of cosine (e1 ·e2) and its square are (see equations (A.12) and (A.18)): A ≈ 0.77 and C ≈ 0.64.
This means that orientations of neighbouring dipoles preserve a fairly high rotational mobility
inside dimers.

The dimer correlations (5) contain all necessary information about the chain. For instance,
the correlation in orientations of i and i +k dipoles pertaining to the same chain is multiplicative,
〈ei · ei+k〉 = Ak , and then decays exponentially. Hence, using a polymeric analogy [23], one can
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Figure 1. The partition functions of dimer in zero
and infinite external fields in units of de Gennes and
Pincus asymptotic values exp(2λ)/3λ3 and exp(2λ)/3λ2,
respectively.

Figure 2. The persistence Lp and Kuhn LK lengths
versus the coupling parameter λ.

introduce the persistence length Lp = −E/ ln A (in units of particle diameter d) characterizing
the chain flexibility. This quantity is shown in figure 2. For λ � 1 there is

Lp = λ

2
− 11

12
− 23

18λ
− 128

27λ2
− 9698

405λ3
− 1423 259

9720λ4
. (6)

As in the case of the partition functions (3) and (4), this expansion well describes (within
the accuracy of a few per cent) the calculated values of Lp starting from λ � 6. For λ = 12.25,
it gives Lp = 5.1 as opposed to Lp � 7 obtained in the simulation [7]. Thus, dipolar chains
are very flexible: only on scales not exceeding λd/2 may they be considered as rigid.

The most informative quantity of chain conformation is the ‘end-to-end’ vector R =∑N−1
i=1 ri,i+1 connecting centres of the first and last particles in a chain. We have calculated

〈R2〉 = 〈R2
‖ 〉 + 2〈R2

⊥〉 where ‖ means ‘along e1’ and ⊥—the perpendicular direction. The
result is expressed via the dimer’s mean values (5):

〈R2〉
d2

= F(N − 1) +
2AB2

1 − A

[
N − 2 − APN−2(A)

]
,

〈R2
‖ 〉 − 〈R2

⊥〉
d2

= 3D − F

2
PN−1(G) +

2AB2

A − G

[
APN−2(A) − G PN−2(G)

]
,

(7)

where G = (3C − 1)/2 and PN (x) = (1 − x N )/(1 − x). For dimers, N = 2, the obvious
result 〈R2

‖〉 = Dd2, 〈R2
⊥〉 = (F − D)d2/2 is recovered. For very short chains, N 
 λ, we

have 〈R2
‖〉 = N2d2 and 〈R2

⊥〉 = 0, which is just the case of rod-like aggregates claimed to
exist by Zubarev and Iskakova [21, 22]. However, according to equation (2) the mean number
of grains in a chain 〈N〉 grows with λ so quickly (∝eλ) that the condition 〈N〉 
 λ is never
satisfied. Therefore, although statistically some number of such short chains still exists, their
fraction is negligible [3–6, 16, 18].

For a long chain, N � λ, equation (7) gives 〈R2
⊥〉 = 〈R2

‖ 〉: the chain forms a spherical
coil. Its mean-squared end-to-end distance is proportional to N as typical of ideal polymer
chain [23]:

〈R2〉 = Nd2[F + 2AB2/(1 − A)]. (8)
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Figure 3. Non-sphericity parameter S as a function of number of particles in a chain in zero (open
diamonds) and infinite (full diamonds) external field. The coupling parameter λ = 10.

The chain stiffness is commonly characterized (along with the persistent length Lp) by the
Kuhn segment LK. This is determined by the relation 〈R2〉 = N〈r〉LK d where 〈r〉 is the
mean distance between neighbouring grains in the chain. Both the quantities, LK and Lp,
are depicted in figure 2 as functions of λ. Interestingly, starting from λ � 5 (i.e. when the
aggregation phenomenon becomes sufficiently appreciable) the ratio LK/Lp proves to be close
to 2 as it takes place for many models of polymer molecules [23]. Note that the linear (along
the chain) memory disappears at the distances of only a few grains.

Chains of a finite length form statistical coils whose shape deviates from spherical. The
deviation may be characterized by the parameter of non-sphericity S = (α2 − β2)/(α2 + β2)

where α = d + 〈R2
‖ 〉1/2 and β = d + 〈R2

⊥〉1/2 are the chain scales in two directions. As seen
from figure 3, in the absence of magnetic field, S quickly decreases with increasing N . For
a strong dipole interaction (λ � 10) and the volume fraction of magnetic particles φ ∼ 0.01,
equations (2) and (3) give 〈N〉 � 50. So, once more we conclude that the chain of magnetic
grains is a flexible formation with a short persistent length (Lp � 5). Such a chain resembles
a cloud or coil of connected monomers and has quasi-spherical form.

Insert now the ferrofluid in an infinitely strong magnetic field. As noted above, in such
a field the factorization of the problem takes place as well as in zero field, thus the general
result (7) remains valid. At ξ → ∞ the dimer correlations A∞, B∞, etc, differ of course
from their zero-field values; e.g., evidently, A∞ = C∞ = 1. Then equation (7) yields the
characteristic size of chains along the field and in the perpendicular direction:

〈R2
‖ 〉/d2 = (N − 1)

[
B2

∞(N − 2) + D∞
]
,

〈R2
⊥〉/d2 = (N − 1)(F∞ − D∞)/2.

(9)

Thus, the length of a long chain increases ∝N along the field, while the transverse size
remains of the order of

√
N . The non-sphericity S drastically increases with N and quickly

approaches unity—see figure 3.
The proposed representation of magnetic fluid as an assembly of ideal flexible

chains admits a straightforward calculation of macroscopic properties of the system. For
instance, the initial magnetic susceptibility χ is expressed compactly via its Langevin value
χL = nm2/3kBT , the correlation function A, and the average chain length 〈N〉 (see
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equation (2)) as

χ = χL
1 + A(1 − 1/〈N〉)
1 − A(1 − 1/〈N〉) . (10)

In the limit λ � 1 when 〈N〉 � 1 and A ≈ 1 − 2λ−1 − 2λ−2 (see equation (A.12)), the
last expression takes the form χ ≈ (λ − 2)χL. The important peculiarity of the relation
is the dependence of susceptibility χ on both dipolar parameters—χL and λ. The former
characterizes the mean dipolar interaction in the system (note that majority of theories describes
χ using only this interaction parameter [25]). The latter accounts for the short-range effects of
cluster formation when two grains are in contact with each other. In spite of an elegant form
of expression (10) we however do not proceed to its physical consequences. The point is that
this equation has been found for the case of ideal chains. As we will see in the next section
an account of non-neighbouring grain interactions leads to the transformation of a friable coil
into a dense globule that makes the result (10) practically useless.

4. Nonideal chains. The coil–globule transition

Above we make allowance for interactions of only neighbouring grains belonging to the same
chain ignoring interactions between (i) the non-nearest neighbours along the chain, (ii) the
distant segments of the same chain which are found near each other owing to chain flexibility,
and (iii) the segments of different chains. The account of the first of them in the case of
straight linear chains reduces [14] to the simple re-normalization of the nearest-neighbours
interactions: λ → λζ(3) where ζ(3) = 1.202 is the Riemann ζ -function. The chain flexibility
should only decrease this value, thus the point (i) may be regarded as insignificant. The second
type of interactions can form antiparallel side-by-side configurations of dipoles in zero field.
The third type should be taken into account along with the second because the friable coils of
ideal chains (with typical volume of ∝ N3/2 in zero field) begin to overlap already at small
volume fractions (φ � 1) of magnetic grains. A due regard for these interactions can be
carried out in the frame of the concept of quasi-monomers [23] treating a long flexible chain
as a system of disconnected segments. For the sake of simplicity, we identify each a segment
with an individual grain and make allowance for interactions between the segments in the
approximation of the second virial coefficient bseg. Let us calculate it.

At first, write down the usual second virial coefficient of free dipoles b2 scaled by the
grain volume v:

b2 = − 1

2v

∫
V
F(12) f (1) f (2) de1 de2 dr, (11)

where V is the volume of an ellipsoidal container filled with FF,F(12) = exp(−U(12)/kBT )−
1 is the Mayer function with the potential (1), f (i) = (ξ/4π sinh ξ) exp(ξei · h) is the
one-particle orientational distribution function in the field H = H h. It should be noted
that calculating the second virial coefficient there is no need to distinguish the external and
internal magnetic fields: the difference between them takes place in higher orders of grain
concentration.

Following to Kirkwood’s idea [26], we put the particle 1 in the centre of a spherical volume
v∗ = 4πr3∗/3, outside which interparticle interaction is weak: U(12) � kBT for r � r∗. Then
b2 is decomposed onto three terms:

b2 = bhs + bmag + bv∗ : bhs = 4, bmag = 12λ
(
ns − 1

3

)
L2(ξ),

bv∗ = − 1

2v

∫
v∗
F(12) f (1) f (2) de1 de2 dr,

(12)
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where L(ξ) = coth ξ − 1/ξ is the Langevin function of the dimensionless field strength
ξ = m H/kBT and ns is the demagnetizing factor of the sample. The hard-spheres repulsion
contributes the value bhs = 4, while the field dependent term bmag ∝ L2(ξ) is an inevitable
consequence of the long-range nature of dipolar interactions [13]. Integration in the last term
is performed over the spherical layer d � r � r∗.

The next step is accounting for the difference between virial coefficients of quasi-
monomers bseg and free dipoles b2. The difference originates just from the chain flexibility,
owing to which two segments being far apart along the chain can prove to be at a short distance.
Other words, bseg is due to interaction of grains belonging to different Kuhn segments. Two
grains are reputed to belong to the same segment if inclination of e1 and e2 to the displacement
vector r does not exceed 60◦. In the opposite case, particles 1 and 2 belong to different
segments. Naturally, the configuration space of quasi-monomers is smaller than that of a pair
of free dipoles. To make allowance for that fact, one should introduce in the last term in (11)
the cutoff factors 
( 1

2 − |ei · r̂|); the Heaviside step-function 
(x) differs from zero only for
x > 0. Then we finally have

bseg = 4 + 12λ
(
ns − 1

3

)
L2(ξ)

− 1

2v

∫
v∗
F(12) f (1)


(
1

2
− |e1 · r̂|

)
f (2)


(
1

2
− |e2 · r̂|

)
de1 de2 dr. (13)

Now we intend, using the second virial coefficient of quasi-monomers (13), to judge what
interaction—repulsive or attractive—prevails in the system. If the potential of interaction is
short-range, we would apply the usual condition bseg = 0. In the theory of polymer solutions,
this relation determines the so-called ‘theta temperature’ [23]. However, our situation is more
complicated due to long-range dipolar interaction. The result of dipolar interaction is the
appearance of a shape-dependent term bmag in equations (12) and (13). The physical meaning
of such a term becomes clear writing the corresponding contribution into volume density of
free energy of the system:

Fmag = kBT bmagvn2 = 2π(ns − 1
3 )M2, (14)

where M = nmL(ξ) is the ferrofluid magnetization. From here Fmag is identified as
magnetostatic energy of a macroscopically homogeneous sample. We emphasize that this
term is due only to long-range effects. It forms the long-range ‘background’ for the short-
range effects. Therefore, to judge the short-range effects, we should exclude the ‘background’,
i.e. one should consider bmag as a reference point for the second virial coefficient bseg. In other
words, for the dipolar system the mentioned condition of balance of attractive and repulsive
forces takes the form

�bseg = bseg − bmag = 0; (15)

and, apparently, �bseg is shape-independent.
Calculate now when �bseg take zero values. We choose the radius r∗ from the natural

limitation m2/r3∗ = kBT : the potential of side-by-side dipole orientations must not exceed
thermal energy within the sphere r � r∗. Then we find �bseg as a function of the inverse
temperature λ and the field ξ . The condition �bseg(λ, ξ) = 0 determines the neutral
curve λc(ξ) shown in figure 4. Lower in this curve, where steric repulsion prevails over
magnetic attraction (�bseg > 0), dipolar chains exist in the form of coils in zero and weak
magnetic fields (ξ 
 1) or almost straight stripes along the strong field (ξ � 1). Vice
versa, higher in the curve, where attraction predominates (�bseg < 0), the coil-like chains
become unstable and collapse into dense globules or, probably, into an extended network [27].
Although the curve cannot be precise for small λ because of the small length of the chains
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∆

Figure 4. Line of coil–globule transition in the plane of coupling parameter λ—field ξ .

according to equation (2) and figure 1, the value λc(0) = 3.9 is reasonably less than the
inverse critical temperature λ∗(0) = 4.45 for the gas–liquid phase separation [8]. Indeed,
globule formation should precede the separation. Just that very pathway was revealed in the
Monte Carlo study of a polar Stockmayer liquid [11]: the globules were the nuclei of future
condensation.

We make in conclusion some remarks about the validity of our approximation. As seen
from (13), nearby the neutral curve �bseg ∼ 1. Therefore, as long as we are interested in
the onset of coil–globule transition rather than in the low-temperature globular state itself, the
second virial coefficient approximation is certainly valid. Its validity for interchain interactions
is limited by the condition φ 
 1. Hence the term φ2cseg with the third virial coefficient
is negligible nearby the transition where cseg ∼ b2

seg ∼ 1. For intrachain interactions the
mentioned limit of low concentrations is fulfilled as well owing to the coil friability. Indeed,
according to equation (8) the grain concentration inside the coil φseg ∼ 1/

√
N .

5. Summary

In summary, we have extended the basic concepts of polymer physics to chains formed out of
dipolar grains and established an important role of the chain flexibility. We have revealed a
very deep similarity between dipolar chains and polymer molecules, however this analogy is
not full: both the systems are not equivalent to each other. In particular, the mean length of the
dipolar chain is not an independent parameter—as it is in the case of polymer molecules—as
it strongly depends on the coupling constant: 〈N〉 ∼ exp(λ) (see equation (2)). This prohibits
an identification of both systems and impedes the direct transfer of properties of a polymer
chain with dipolar segments [28] onto pure a dipolar chain. Actually, the dipolar polymer
molecule is a coil at high temperatures (λ 
 N) and becomes rod-like at low temperatures
(λ ∼ N) [28]. As demonstrated above, the results for the dipolar chain are entirely opposite:
the chain exists in the form of coil or globule until dipolar interactions are strong (λ � 1),
while with an increase of temperature it ‘melts’ and ceases to exist when λ nears unity. This
is because the dipole interactions are alone responsible for structural transformations as well
as for the chain formation itself and their also length.
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Appendix

We give here the calculation of the dimer partition functions Z2(0) and Z2(∞) in zero and
infinite magnetic fields, respectively, as well as calculations of the correlations (5). To this
end, let us make some important remarks.

Consider first the case of zero external field. In general we should distinguish the dimer
partition functions of two types. One of them is the partition function Z2(0; e1) for the fixed
orientation e1 of particle 1, where the first argument of Z2 is the value of field. In fact Z2(0; e1)

is the one-particle partition function, describing the states of grain 2 in the field of particle 1.
The definition of Z2(0; e1) is

Z2(0; e1) =
∫ ′

exp

{
m2

r3kBT
(3(e1 · n)(e2 · n) − e1 · e2)

}
de2

4π

dr
v

, (A.1)

where the prime denotes the integration over half of a spherical layer in accordance with the
chain definition given in section 2. Other words, the absolute value of displacement vector r
of two grains satisfies the condition d � r � (2λ)1/3d and the angle between e1 and r takes
the values from zero to π/2.

Another quantity is the usual dimer partition function Z2(0) [14], including the integration
over all orientations of both grains

Z2(0) = 1

2

∫
exp

{
m2

r3kBT
(3(e1 · n)(e2 · n) − e1 · e2)

}
de1

4π

de2

4π

dr
v

. (A.2)

We emphasize that here the orientations e1 and e2 are within the full angular-phase space volume
equal to 4π and the coordinate integration is over the whole spherical layer d � r � (2λ)1/3d .

Since in the case of zero field there is no preferable direction in the system, the integrals
in (A.1) and (A.2) depend only on relative orientations e1 with e2 and e1 with r. Therefore the
result of (A.1) is independent of e1 and the integration over e1 in (A.2) reduces to the factor
4π . Thus both partition functions coincide with each other; Z2(0; e1) = Z2(0).

We note that the dimer partition function Z2(0) is close to the usual second virial coefficient
of two dipoles:

b2 = −1

2

∫ [
exp

{
−U(12)

kBT

}
− 1

]
de1

4π

de2

4π

dr
v

= 4 − 1

2

∫ [
exp

{
m2

r3kBT
(3(e1 · n)(e2 · n) − e1 · e2)

}
− 1

]
de1

4π

de2

4π

dr
v

. (A.3)

Here the dimensionless value b2 is given in units of particle volume v and U(12) is the
potential (1). After extracting the contribution of steric interactions given by 4, the integration
is fulfilled over r > d . It is obvious that absolute values of both quantities coincide with each
other in the limit of large λ.

Let us calculate now the dimer partition function Z2(0) (see equation (A.2)). After trivial
integration over e1, resulting in factor 4π , we chose this vector as a polar axis. Now we have to
calculate the integral of five variables, including two angles (polar and azimuthal) of vector e2,
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two angles of orientation n = r/r and a space variable r . The integration over three angular
variables is elementary. The result is

Z2(0) = 4π

v

∫ (2λ)1/3d

d
r2 dr

∫ 1

0
dx

sinh[λ̃(1 − 3x2)/2]

λ̃(1 − 3x2)
I0[3λ̃(1 − x2)/2], (A.4)

where I0 is the modified Bessel function of zero order and λ̃ = m2/r3kBT . Changing variable
r → λ̃ and substituting v = πd3/6, we find

Z2(0) = 8λ

∫ λ

0.5

dλ̃

λ̃3

∫ 1

0
dx

sinh[λ̃(1 − 3x2)/2]

1 − 3x2
I0[3λ̃(1 − x2)/2]. (A.5)

The expression of the second virial coefficient b2 is similar to equation (A.5), namely

b2 = 4 − 8λ

∫ λ

0

dλ̃

λ̃3

∫ 1

0
dx

{
sinh[λ̃(1 − 3x2)/2]

1 − 3x2
I0[3λ̃(1 − x2)/2] − λ̃

2

}
. (A.6)

In the limit of small λ it reproduces the well-known result of the paper by Joslin [29]:

b2 = 4
(
1 − 1

3λ2 − 1
75λ4 − 29

55 125λ6 − 11
694 575λ8 − O(λ10)

)
. (A.7)

Here and below we used the package Maple V in the calculational work. Analogous series
over powers of dipolar parameter can be written for Z2(0). Our aim however is to analyse the
opposite case of high values of λ, i.e. the determination of asymptotic behaviour of functions.
For that we expand first functions sinh(y) and I0(y) in equation (A.5) into asymptotic series
of high values of argument y. Then the straightforward integration gives the result (3). To
conclude the discussion of calculation of Z2(0) we note that its small λ expansion describes
perfectly the function behaviour in the whole region 0.5 � λ � 10 when retaining terms
up to ∼λ20. Nevertheless the values of Z2(0) depicted in figure 1 were found directly from
equation (A.5) by numerical calculations.

The calculation of the dimer partition function in infinite external field Z2(∞) is simpler.
Now all dipoles are along the field and

Z2(∞) = 1

2

∫
exp

{
m2

r3kBT
(3 cos2 θ − 1)

}
dr
v

, (A.8)

where θ is the angle between the displacement vector r and external field H. The changing of
variables reduces this relation to

Z2(∞) = 4λ

∫ λ

0.5

dλ̃

λ̃2

∫ 1

0
dx e3λ̃x2

. (A.9)

The calculated values of Z2(∞) are shown in figure 1. The asymptotic expansion (4) follows
immediately from equation (A.9).

Calculate now the averages in (5). Averaging in these expressions, the orientation e1 of the
first grain is assumed to be fixed and taken as a polar axis. Then the mean cosine A = (e1 · e2)

is equal in zero field

A =
∫ ′ exp(−Udd/kBT ) (e1 · e2) de2 dr

4πvZ2(0; e1)
, (A.10)

where Udd is the dipolar part of potential (1). In complete analogy with the calculation of the
partition function Z2(0) we have

A = 8λ

Z2(0)

∫ λ

0.5

dλ̃

λ̃3

∫ 1

0
dx

sinh
[

λ̃
2 (1 − 3x2)

]
1 − 3x2

L

[
λ̃

2
(1 − 3x2)

]
I0

[
3

2
λ̃(1 − x2)

]
, (A.11)



Ferrofluids: flexibility of magnetic particle chains 3817

where L(y) = coth(y)−1/y is the Langevin function. From here it is easy to find an expansion
of A for small λ. The calculation of asymptotic expansion is analogous to that for Z2(0). The
final result is

A = 1 − 2

λ
− 2

λ2
− 20

3λ3
− 266

9λ4
− 4241

27λ5
− 77 669

81λ6
. (A.12)

Consider now the average value of B = 〈e1 · r12〉d−1. As in the previous case (cf (A.10)),
we have

B =
∫ ′ exp(−Udd/kBT ) (e1 · r12) de2 dr

4π dv Z2(0; e1)
. (A.13)

In as much as the angle between e1 and r12 is assumed to vary from zero to π/2, the integrand
function in (A.13) takes positive values resulting in a non-zero value of B . The analytic
representation of B proves to be the simplest among all correlations (5):

B = 4λ4/3

3Z2(0)

∫ λ

0.5

cosh 2λ̃ − cosh λ̃

λ̃13/3
dλ̃. (A.14)

From here the asymptotic expansion for λ � 1 follows:

B = 1 − 1

2λ
− 5

9λ2
− 11

6λ3
− 689

81λ4
− 15 593

324λ5
− 229 265

729λ6
. (A.15)

The other averages C , D, E and F can be calculated in the same way. We indicate only
their analytic representations. The expression for C looks like (A.11) with a single difference:
instead of L it contains L2 + L ′, where L ′ is the derivative of the Langevin function. The
average D is equal

D = 4λ5/3

Z2(0)

∫ λ

0.5

dλ̃

λ̃11/3

∫ 1

0
dx

1 − x2

1 − 3x2
[I0(z) + I1(z)L(y)] sinh y, (A.16)

where I1 is the modified Bessel function of first order and we use for short the notation
y = λ̃(1 − 3x2)/2 and z = 3λ̃(1 − x2)/2.

The averages E and F are similar to (A.5) and can be written both as a function of
parameter n

G(n) = 8λ1+(n+1)/3

Z2(0)

∫ λ

0.5

dλ̃

λ̃2+(n+1)/3

∫ 1

0
dx

sinh y

1 − 3x2
I0(z). (A.17)

The values of E and F are found from here for n = 1 and 2, respectively.
The asymptotic expansions of the correlations C , D, E and F are

C = 1 − 4

λ
+

4

λ2
+

8

3λ3
+

74

9λ4
+

998

27λ5
+

16 880

81λ6
, (A.18)

D = 1 − 1

λ
− 7

18λ2
− 43

27λ3
− 397

54λ4
− 20 185

486λ5
− 398 579

1458λ6
, (A.19)

E = 1 +
1

6λ
+

4

9λ2
+

44

27λ3
+

1175

162λ4
+

18 007

486λ5
+

153 715

729λ6
, (A.20)

F = 1 +
1

3λ
+

17

18λ2
+

97

27λ3
+

2657

162λ4
+

41 507

486λ5
+

719 573

1458λ6
. (A.21)

So, we determined the asymptotic representations at λ � 1 of the orientational and spatial
dimer correlations (5) for zero external field. The calculation for the case of infinite field is
much simpler than mentioned above and we omit it. We point out that the dimer correlations
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A∞ and C∞ are obviously equal to unity, because two dipoles in infinite field are aligned along
field direction. The averages left have a form

B∞ = 1 +
7

36λ2
+

25

36λ3
+

1787

648λ4
+

1000

81λ5
+

715 597

11 664λ6
, (A.22)

D∞ = 1 +
4

9λ2
+

85

54λ3
+

343

54λ4
+

56 255

1944λ5
+

106 571

729λ6
, (A.23)

E∞ = 1 +
1

6λ
+

13

36λ2
+

119

108λ3
+

2675

648λ4
+

34 801

1944λ5
+

508 025

5832λ6
, (A.24)

F∞ = 1 +
1

3λ
+

7

9λ2
+

67

27λ3
+

3109

324λ4
+

10 366

243λ5
+

2472 103

11 664λ6
. (A.25)
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