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Abstract

A mathematical model for targeted drug delivery using magnetic particles is developed. This includes a diffusive flux

of particles arising from interactions between erythrocytes in the microcirculation. The model is used to track particles

in a vessel network. Magnetic field design is discussed and we show that it is impossible to specifically target internal

regions using an externally applied field.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In conventional (systemic) drug delivery the
drug is administered by intravenous injection; it
then travels to the heart from where it is pumped
to all regions of the body. Where the drug is aimed
at a small target region this method is extremely
inefficient and leads to much larger doses (often of
toxic drugs) being used than necessary. In order to
overcome this problem a number of targeted drug
delivery methods have been developed. One of
these, magnetically targeted drug delivery, involves
binding a drug to small biocompatible magnetic
particles (diameters o5� 10�6m), injecting these
- see front matter r 2005 Elsevier B.V. All rights reserve
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into the blood stream and using a high gradient
magnetic field to pull them out of suspension in the
target region. Once on the vessel wall the drug can
either be released directly into the blood stream or
a biological technique can be used to ensure
uptake of the particles into the tissue. Recently
there have been a number of promising animal [1]
and clinical trials [2]. In this work we describe a
theoretical analysis of this drug delivery technique.
Previous theoretical studies of magnetically

targeted drug delivery have considered tracking
individual particles under the influence of Stokes
drag and a magnetic force alone [3,4]. Here we also
consider interactions and collisions between mov-
ing red blood cells in the bloodstream which cause
a diffusive motion of the magnetic particles much
greater than the standard Brownian diffusion. We
formulate a two-dimensional (2-D) model, suitable
for studying the deposition of magnetic particles
d.
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within a network of blood vessels, in the limit of
low diffusivity. Finally, we show (in two-dimen-
sions) that it is impossible to target internal regions
of the body using an externally applied magnetic
field without targeting some surrounding regions
more strongly. This leads us to speculate that
magnetically targeted drug delivery is only suitable
for target sites close to the edge of the body.
2. An advection–diffusion model

The motion of magnetic particles in the blood
stream is modelled as an advection–diffusion
process for the particle concentration c(x,t). The
particle velocity vp in the blood stream is found by
balancing hydrodynamic and magnetic forces. For
a particle with hydrodynamic radius a in a fluid
flow, velocity vb, Stokes drag law gives

vp ¼ vb þ vmag; where vmag ¼
Fmag

6pma
, (1)

where m is the dynamic viscosity of the fluid, and
Fmag is the magnetic force on the particle. The
Stokes drag coefficient must be modified when the
particle is of the order of a few particle diameters
from a solid boundary [5].
For small particles, Brownian motion may also

be significant. This can be accounted for by
introducing a particle diffusivity using the Einstein
relation,

DBr ¼ kT=ð6pmaÞ.

Here T is the absolute temperature (measured in
Kelvin) and k is Boltzmann’s constant. A second
diffusive mechanism that influences the particle
motion in vessels larger than capillaries is ‘shear-
Table 1

Typical values of the properties of the main types of blood vessel

Vessel type Diameter (m) Length (m)

Artery 3� 10�3 1� 10�1

Arteriole 3� 10�5 7� 10�4

Capillary 7� 10�6 6� 10�4

Venule 4� 10�5 8� 10�4

Vein 5� 10�3 1� 10�1

We chose rRBC ¼ 4:2� 10�6 m; Ksh ¼ 5� 10�2 when calculating Dsh
induced diffusion’. Blood is a highly concentrated
suspension of red blood cells suspended in plasma
and when sheared cell—cell collisions give rise to
random motions with a diffusive character [6].
This in turn drives a diffusive motion of the
plasma, causing plasma borne particles and solutes
to experience shear-induced diffusion, as has been
shown experimentally in Ref. [7]. Measurements of
the shear-induced diffusion coefficient of the
plasma borne particles are difficult to obtain,
however the scaling

Dsh ¼ K shðrRBCÞ
2_g

is quite well established [6,8] (Table 1). Here rRBC
is the blood cell radius and _g is the local value of
the fluid shear rate, defined in terms of the strain
rate tensor eij by the formula

_g ¼ ð2eijeijÞ
1=2

¼
1

2

qui

qxj

þ
quj

qxi

� �
qui

qxj

þ
quj

qxi

� �� �1=2
,

where Ksh a dimensionless coefficient that depends
on the blood cell concentration. Experimental
estimates of Ksh for red blood cells at physiological
haematocrits show a high degree of scatter, but a
value of K sh � 5� 10�2 is representative [8]. Note
that the shear augmented diffusion coefficient is
independent of the particle dimensions, so that Dsh

will take the same value for a 10 nm particle and
1 mmmicrosphere. Representative values of Dsh for
a range of blood vessels are shown in Table 1. The
overall diffusion coefficient is given by the sum of
the Brownian diffusivity and the shear-induced
diffusivity, leading to a diffusive flux

Jdiff ¼ �Drc; where D ¼ K shðrRBCÞ
2 _gþ

kT

6pma
.

(2)
Ub (m s
�1) _g (s�1) Dsh (m

2 s�1)

1� 10�1 6� 101 6� 10�11

1� 10�2 6� 102 6� 10�10

7� 10�4 2� 102 N/A

4� 10�3 2� 102 1.6� 10�10

1� 10�1 4� 101 3.5� 10�11

¼ Kshr2RBCg:
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Combining the advective flux, Jadvect ¼ c vp; and
the diffusive flux contributions, and using con-
servation of mass, leads to an advection–diffusion
equation for the particle concentration c [9],

qc

qt
þ r 	 ðcvpÞ ¼ r 	 ðDrcÞ. (3)

The model is closed (when Do0) by imposing
boundary conditions on c. These can be derived by
relating the flux of particles onto the boundary of
the blood vessels to the evolution of the surface
density of particles on the vessel wall, sðx; tÞ;

qs
qt

¼ n 	 ½Jadvect þ Jdiff �jboundary

¼ n 	 ½cvmag � Drc�jboundary, ð4Þ

(n is the outward unit normal vector at the
boundary, vb ¼ 0 at the boundary) and modelling
the evolution of s by taking the particle adhesion
rate to be proportional to c(x,t) at the wall,
and the particle detachment rate to be propor-
tional to s;

qs
qt

¼ kacjboundary � kds. (5)

The particle adhesion and detachment rate coeffi-
cients, ka and kd, are functions of the particle
radius, the shear rate at the wall, as well as the
surface chemistry of the particle and vessel walls.
In Ref. [10], it is shown that the particle adhesion
coefficient ka is a decreasing function of particle
size and shear rate and that the particle detach-
ment coefficient kd is highest for large particles and
high shear rates.
3. The magnetic field and force

The force Fmag and torque Tmag on a particle in
a magnetic field B(x) are described by the formulae
Fmag ¼ ðm 	 rÞB and Tmag ¼ m� B; respectively,
where m is the magnetic moment of the particle.
Particles containing cores of magnetite material
over 30 nm in diameter generally have a permanent
magnetic moment [11]. The torque Tmag causes
such particles to rapidly align with the magnetic
field so that the force Fmmag on a permanently
magnetised particle becomes

Fmmag ¼
jmj

jBj
ðB 	 rÞB. (6)

However magnetite particles of diameter smaller
than 30 nm are generally superparamagnetic [11].
In this case m depends on the local magnetic flux
density B and it is common to use a Langevin
function to relate m to B [3],

m ¼
msatB

jBj
LðjBjÞ; LðjBjÞ ¼ cothð�jBjÞ �

1

�jBj
,

� ¼
msat

kT
,

where msat is the saturation magnetisation of the
magnetic particle. Thus the force on a super-
paramagnetic particle is Fsmag ¼ msatLðjBjÞjBj

�1ðB 	

rÞB: For sufficiently weak fields L(|B|) can be
linearised and Fsmag approximated by

Fsmag � ð�msat=3ÞðB 	 rÞB ¼ �msatrðjBj
2Þ=6. (7)

Magnetic field varies over a lengthscale determined
by the magnet size, typically O(10�2–10�1m).
Typical diameters of the blood vessels in which
targeting takes place are much smaller than this
and thus magnetic force across a vessel diameter is
approximately constant.
4. Two-dimensional network models

Optimisation of the magnetic targeting of drugs
to tumours requires an understanding of the
behaviour of magnetically targeted delivery in
networks of blood vessels. However the solution of
the Navier–Stokes equations and the advection
diffusion model (3)–(5) (for vb(x) and c(x,t)) in a
three-dimensional network is a formidable com-
putational task. Here we shall limit ourselves to
considering a simplified 2-D network model, with
the goal of obtaining a qualitative understanding
of the targeting process.

4.1. Analysis of magnetic targeting in a single vessel

We start the network analysis by considering a
2-D model of a single small vessel, as shown in
Fig. 1. The vessel has width 2d and length L. We
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Fmag

vb
y = d
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Fig. 1. The 2-D pipe geometry.

Table 2

Estimates of ad�1; Pe�1sh d
�2 and S ¼ adPesh for particles with

diameter 1.0� 10�6, 2.0� 10�6 and 4.0� 10�6m

Particle

diameter, 2a

(m)

Vessel

type
ad�1 Pe�1sh d

�2 S

1� 10�6 Artery 1.6� 10�3 8.7� 10�6 1.8� 102

1� 10�6 Arteriole 1.6� 10�1 1.2� 101 1.3� 10�2

1� 10�6 Venule 1.2� 10�1 7.4� 10�1 1.6� 10�1

1� 10�6 Vein 9.4� 10�4 1.9� 10�6 5.0� 102

2� 10�6 Artery 6.3� 10�3 8.7� 10�6 7.2� 102

2� 10�6 Arteriole 6.3� 10�1 1.2� 101 5.1� 10�2

2� 10�6 Venule 4.7� 10�1 7.4� 10�1 6.4� 10�1

2� 10�6 Vein 3.8� 10�3 1.9� 10�6 2.0� 103

4� 10�6 Artery 2.5� 10�2 8.7� 10�6 2.9� 103

4� 10�6 Arteriole 2.5� 100 1.2� 101 2.0� 10�1

4� 10�6 Venule 1.9� 100 7.4� 10�1 2.6� 100

4� 10�6 Vein 1.5� 10�2 1.9� 10�6 8.0� 103

We used the value of m ¼ 3� 10�3 N sm�2 for the viscosity of

blood. Typical saturation values of the mass magnetisation for

magnetite particles are approximately Msat ¼ 50Am2 kg�1

(1Am2 kg�1 � 1 emug�1). The density of magnetite is

5.1� 103 kgm�3. We assume the magnetic field gradient is

E10Tm�1 at the target and that the particles contain 10%

magnetite by volume (E33% by weight). The blood vessels

dimensions are displayed in Table 1.
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do not consider capillaries, for which the motion
of individual blood cells must be studied. The
blood velocity profile is assumed to be Poiseuille
flow with mean velocity Ub, given by vbðyÞ ¼

3=2Ubð1� y2=d2Þx̂ with corresponding shear rate
_g ¼ 3Ubjyj=d2: The true velocity profiles may be
slightly blunted by the presence of blood cells, but
this is not expected to be a significant effect [12].
Particles enter the tube at x ¼ 0:
Here we write Fmag ¼ Fmag f̂; where jf̂j ¼ 1: We

nondimensionalise (1)–(3) by scaling x with the
vessel length L, y with the vessel half-width d, c

with the inlet concentration cin and t with the
average time taken for a particle to pass through
the vessel,

x ¼ Lx0; y ¼ dy0; t ¼
L

Ub
t0,

c ¼ cinc
0; vp ¼ Upv

0
p.

We now drop the primes from the notation, and
work only with the nondimensional variables. The
dimensionless version of Eq. (3) is

qc

qt
þ
3

2
ð1� y2Þ

qc

qx
þ

q
qx

ððaf̂ 	 x̂ÞcÞ

þ
q
qy

a
d
f̂ 	 ŷ

� �
c

� �
¼

1

PeBr

q2c
qx2

þ
1

d2
q2c
qy2

� �

þ
1

Pesh
jyj

q2c
qx2

þ
1

d2
q
qy

jyj
qc

qy

� �� �
ð8Þ

for jyjo1; 0oxo1: Here PeBr ¼ 6UbLpma=ðkTÞ is
the Brownian Peclet number and Pesh ¼

Ld=ð3K shr
2
RBCÞ is the shear Peclet number, which

give the ratio of the advective flux along the
channel to the Brownian diffusive flux and shear-
induced diffusive flux, respectively; d ¼ d=L is the
aspect ratio of the vessel, and a ¼ Fmag=ð6pmaUbÞ
is the dimensionless magnetic velocity. The particle
radius is denoted by the symbol a.
In Eq. (8), the term ða=dÞðqc=qyÞ represents

particle transport in a direction normal to the
blood flow. Thus a significant fraction of the
particles passing through the vessel will be trapped
only if a=dXOð1Þ: The value of a=d is tabulated in
Table 2 for particles of diameter 1.0� 10�6,
2.0� 10�6, 4.0� 10�6m containing 10% by vo-
lume magnetite in field gradients of 10 Tm�1 for
four classes of blood vessel.
The terms Pe�1Br d

�2
ðq2c=qy2Þ and Pe�1Sh d

�2
ðq2c=qy2Þ

in Eq. (8) give the diffusion of the magnetic
particles across the flow streamlines. Using the
parameters in Table 1, we find Pesh5PeBr for all
the particle diameters we consider (which implies
shear-induced diffusion dominates Brownian dif-
fusion). Shear-induced diffusion plays an impor-
tant role in the transport and deposition of
particles where the diffusive flux is strong enough
to balance the advective flux due to the magnetic
field. This is quantified by the dimensionless
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Node 0
Width 2d1,3

Node 3
Node 1

Length L0,1

Blood flux Q1,2

Node 2

Fig. 2. An example of the network, showing node numbers and

sample data values for dij, Lij and Qij. The shaded area centred

on node 1 is reproduced in Fig. 3.
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parameter S, which expresses the ratio of the
advective and diffusive flux across the channel,

S ¼ adPesh ¼
Fmagd

2

16pmaUbK shr
2
RBC

. (9)

The shear-induced diffusive flux must be included
in the model if SpOð1Þ; and in particular if S51
the particle flux due to the magnetic force is
negligible in comparison to the flux due to shear-
induced diffusion. Using the estimates shown in
Table 2, we conclude that shear-induced diffusion
can be an important effect within the arterioles
and venules. Future work will examine the
influence of the capture condition (5) on the
deposition rate.

4.2. Two-dimensional network analysis at low

Reynolds number, with Sb1; a=d ¼ Oð1Þ

Here we consider a simplified model of drug
deposition in a network of vessels in the zero
diffusion limit, S ! 1: In addition transient
effects are ignored and we look for steady-state
solutions.
A common approach to determining vb in a

complex network geometry is to approximate the
network by a series of linear flow resistors
connecting a set of junction nodes [13]. The
relationship between the pressure drop ðpi � pjÞ

between junctions nodes i and j and the flux Qij of
blood in the vessel connecting i and j is calculated
assuming a Poiseuille flow profile in each vessel,

Qij ¼ wijðpi � pjÞ; wij ¼
2d3ij

3mLij

,

where 2dij and Lij are the width and length of the
vessel joining nodes i and j. A sample network is
shown in Fig. 2. The network flow is then
determined by solving a system of sparse linear
equations which enforce the conservation of mass
at each junction, and specify the inlet/outlet
pressures at each node on the boundary of the
network,X

j

wijðpi � pjÞ ¼ 0 for each junction

pi ¼ pini for boundary nodes.
This model is simple to solve, even for networks
containing a large number of vessels. At low
Reynolds numbers, such as those found in the
microcirculation, the flow deviates from the
Poiseuille flow only in a small region about the
junction (labelled ‘Junction region’ in Fig. 3).
To complete the network model, we couple the

flow model with the magnetic particle model (8) in
the zero diffusion limit, S ! 1: In this limit the
governing partial differential equation changes
type, from parabolic to hyperbolic, and so no
boundary conditions are given except where the
particle velocity is directed into the vessel, through
the vessel wall; that is to say c ¼ 0 where vp 	 no0:
The concentration at any point in the vessel is

either 0, or the initial inlet value, cin. This is
because we are considering the zero diffusion limit
and vp is divergence free. The particle flux per unit
length onto the vessel wall is cinvmag 	 n. The flux of
particles onto the vessel wall is computed by
integrating this quantity along the vessel, however
the total deposition rate cannot exceed the inlet
flux, qinij ; thus

q
deposited
ij ¼ min

Z Lij

0

cinvmag 	 nij dl; qinij

� �
,

where nij is the outward normal to the wall (on
which deposition occurs) of the vessel connecting
nodes i and j. The inlet and outlet particle fluxes,
qinij and qoutij ; therefore satisfy a simple conservation
relation,

qoutij ¼ qinij � q
deposited
ij .
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Junction region Vessel 3 Blood flux Q1,3 out

Blood flux Q0,1 in

Blood flux Q1,2 out

Fmag

Vessel 2Dividing streamline

Vessel 1

Fig. 3. An example of the division of the particles at a vessel junction with low Reynolds number flow conditions. The shaded regions

of the pipes contain magnetic particles. This diagram corresponds to the highlighted region in Fig. 2.

Junction region

Junction region

2 dividing streamlines

Fmag

Fmag

Fig. 4. The simple rules for determining the particle fluxes qij may be extended to cope with trifurcations and bends where deposition

can occur on both vessel walls.
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The division of particle flux at a simple vessel
bifurcation is illustrated in Fig. 3. We can ignore
the small amount of particle deposition which
occurs inside the junction region and the effect of
vmag in this small region since, at low Reynolds
numbers, the junction region is very short com-
pared to the length of the network vessels, Lij. We
consider the dividing streamline, which separates
the fluid which passes into the two daughter
vessels. Its position at the entrance to the junction
region may be computed in a simple manner from
the blood fluxes Q0,1 (flowing between nodes 0 and
1), Q1,2 (flowing between nodes 1 and 2) and the
flux Q1,3 (flowing between nodes 1 and 3). Using
the Poiseuille flow profile in a channel of width
2d0,1, carrying a flux Q0,1, the position of the
dividing streamline is calculated by choosing the
flux of blood above it equal to Q1,2. The region of
fluid containing particles at the outlet of the vessel
connecting nodes 0 and 1 is computed from qout0;1 :
Particles entering the junction region above the
dividing streamline are assumed to enter the vessel
connecting nodes 1 and 2, and particle below it are
assumed to enter the vessel connecting nodes 1 and
3. We can thus compute the particle distribution
without calculating the exact blood velocity field at
each junction.
Other vessel junction topologies, such as con-

verging flow at a junction, or trifurcations can lead
to more complex distributions of the magnetic
particles as shown in Fig. 4. These situations may
be described using straightforward generalisations
of the above technique. The network flow and
particle deposition models were solved using
Matlab.
Blood flow and particle deposition results

obtained from the network model are shown in
Fig. 5. This example shows a branching tree
network; all the blood vessels have identical
width and length. A uniform magnetic force
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Fig. 5. (a) The division of blood flow in a simple branching tree

model network of uniform vessels. The numbers and grey-scale

shading indicate the fraction of flow in each vessel. (b) The

numbers and grey-scale shading indicate the number of

particles deposited in each vessel, as a percentage of the total

flux of particles into the system. Overall, about 89% of the

particles are captured in this model network. The magnetic

force is assumed to be uniform in this example.
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Fmag ¼ �Fmagŷ is applied to the particles. Blood
and magnetic particles enter the network through
a single vessel at ðx; yÞ ¼ ð0; 0Þ: The blood flows
through the branches of the tree network to the
terminal nodes, where a uniform fluid pressure,
p ¼ 0; is prescribed. The division of the blood flow
between the branches of the network is shown in
Fig. 5(a). The flow is distributed evenly over the
vessels at each level of the network. Fig. 5(b)
shows the number of magnetic particles captured
in each vessel, as a percentage of the total number
of particles entering the network. Overall, about
89% of the particles are trapped in this example,
and 11% are washed out of the network through
the terminal vessels. Despite the even distribution
of blood flow in the network the particle distribu-
tion is quite heterogeneous, with no particles being
trapped in some vessels. The deposition pattern
depends strongly on the alignment of the vessels
with respect to the force Fmag. Although a large
number of particles are trapped in the first vessel,
this represents only a small fraction of the total
number of particles flowing through this vessel. In
contrast, the number of particles captured in the
fourth and fifth generation vessels is small, but this
constitutes a large fraction of the particles entering
these vessels. This is consistent with the observa-
tion that the efficiency of magnetic particle capture
depends on the parameter ratio a=d:
7. Designing the magnetic field

It is clear from the preceding discussion that
increasing particle uptake onto the vessel walls
within a target region can be achieved by increas-
ing the magnetic force experienced by the particles
in that region. Ideally we would like to obtain a
maximum of the magnetic force in the target
region. However, as we shall demonstrate in two-
dimensions, this is only possible (using an ex-
ternally applied magnetic field) if the target region
lies on the surface of the body. We now set out to
demonstrate the following statement:

Statement: If the magnetic field is applied ex-
ternally to the body then there can be no
point within the body where the magnitude of
the force on a (superparamagnetic or permanently
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magnetised) particle takes a maximum value. This
statement is only proved for a 2-D magnetic field
(although we suspect it to be true in three-
dimensions).
External to the magnet the magnetic field may

be expressed in terms of a scalar potential, B ¼ rf
(since permeability is approximately constant and
no significant currents flow in the region external
to the magnet). Furthermore since B is divergence
free we have r 	 B ¼ r2f ¼ 0: It follows that the
forces on a superparamagnetic particle Fsmag (in a
weak field) and a permanently magnetised particle
Fmmag are, from Eqs. (6)–(7),

Fsmag ¼
�msat

6
rðjrfj2Þ,

Fmmag ¼
jmj

2jrfj
rðjrfj2Þ ¼ jmjrðjrfjÞ.

Proof of the Statement. The magnitude of the
force Fsmag on a superparamagnetic particle takes a
maximum where jrðjrfj2Þj2 has a maximum. In
the case where the magnetic field is 2-D (i.e.
B ¼ Bðx; yÞ), we can write

jrðjrfðx; yÞj2Þj2 ¼ a2x þ a2y; where a ¼ f2x � f2y,

by noting that fxx ¼ �fyy: It is straightforward to
show that if r2f ¼ 0 then r2a ¼ 0: Now for a
maximum of magnetic force we require a2x þ a2y to
take a maximum. Without loss of generality we
can orientate the coordinate system such that at
the maximum, ay ¼ 0: This implies that a2x has a
local maximum, and hence ax has a local
maximum or minimum, at this point. However
ax satisfies Laplace equation r2ðaxÞ ¼ 0; since a
does, and thus by the maximum principle [14], ax

cannot have an interior local maximum or an
interior local minimum (here interior means
wholly within the region in which r2f ¼ 0; i.e.
away from the magnet). Thus a2x þ a2y cannot have
an internal maximum. Hence that the magnetic
force on a paramagnetic particle has no maxima
internal to the body (they occur on the magnet).

The magnitude of the force Fmmag on a perma-
nently magnetised particle takes a maximum where
jrðjrfj2Þj2=jrfj2 has a maximum. Where the
magnetic field is 2-D we can write

jrðjrfðx; yÞj2Þj2

jrfðx; yÞj2
¼ a2x þ a2y; where a ¼ 2fx.

Again it is clear that r2a ¼ 0 and hence that a2x þ
a2y cannot have an internal maximum by a similar
argument to that given above.
The fact that the magnetic force on a particle

cannot take a maximum magnitude within the
body (away from the source of the magnetic field)
means that, where the drug/particle complex is
injected systemically, it is impossible to target
regions deep within the body without targeting
some surrounding regions more strongly.
8. Conclusion

We have formulated a model of magnetic
particle transport in the intermediate sized vessels
of the blood stream which incorporates the
effects of shear-induced diffusion (which arises as
a result of interactions between red blood cells).
The model depends crucially on the dimensionless
parameter S, (see Eq. (9)). In particular if S51 the
effects of the magnetic force are negligible in
comparison to those of shear-induced diffusion.
Estimates for magnetic particles of diameter
1� 10�6–4� 10�6m containing magnetite nano-
particles (10% by volume) confirm that the
diffusive flux may significantly disrupt particle
deposition in arterioles and venules. The effects of
magnetic targeting in the capillaries have yet to be
modelled.
We have demonstrated a simple network model

which can describe the deposition of magnetic
particles in a hierarchy of vessels and observed
that the orientation of the vessels with respect to
the magnetic force crucially affects particle deposi-
tions rates leading to heterogeneous particle
distributions. In addition we have shown (in a 2-
D analysis) that it is not possible to obtain a
maximum of magnetic force (on a magnetic
particle) inside the body, using an externally
applied magnetic field. Since drug targeting is
effected by pulling magnetic particles to the edge
of vessels this suggests that it will not be possible
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to target interior regions of the body without
targeting some of the surrounding regions of the
body more strongly. Furthermore we do not
expect magnetic traps to be of use in this
application since magnetic particles are con-
strained to move around the body in linear vessels
and the magnitude of magnetic field required to
hold a particle in the main flow, of all but the very
smallest of vessels, is very large. This leads us to
conjecture that the use of magnetically targeted
drug delivery with an externally applied field is
appropriate only for targets close to the surface of
the body.
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