Ferrofluid dynamics by ODD and EVEN Neutron Spin Echo studied

V.T.Lebedev¹, Gy.Torok², L.Vekas³

¹ Petersburg Nuclear Physics Institute, 188300 Gatchina, St.Petersburg distr., Russia ²Research Institute for Solid State Physics and Optics, Konkoly-Thege ut. 29-33, Budapest, Hungary ³Center of Fundamental and Advanced Thechnical Research, Timisoara-1900, Romania

Odd neutron spin echo (ODD-NSE)[1] combined with NSE(EVEN) [2] yield the excitations spectra in condensed matter $S(\omega, \mathbf{q})=S_{odd}(\omega, \mathbf{q})+S_{even}(\omega, \mathbf{q})$ from odd and even NSE-signals dependent on time t and momentum transfer **q**:

 $S_{odd} \sim JS(\omega, \mathbf{q}) \sin(\omega t) d\omega$,

 $S_{even} \sim \int S(\omega, \mathbf{q}) \cos(\omega t) d\omega$.

In ferrofluids (FF) the frequencies $\omega \leq 1/\tau$ and relaxation times τ of soft modes characterise particles' interaction masked by viscous medium. We have studied the FF magnetised $(20^{\circ}C,$ density not d=1.69g/cm³; 20%vol.of Fe₃O₄ stabilised in pentanole by oleic and dodecylbenzensulphone acids' bilayer; magnetisation $4\pi M_s = 860G$). Each particle (diameter $D_{P}\sim 16nm$, core $D_{m}\sim 10nm$), surrounded by other particles (spacing ~20nm ~D_P), can move only by their regrouping (cage effect). Indeed, the NSE-data (Fig.1) confirm a delayed correlations Seven(t) damping started at t>t*~10ns for momentum transfer $q_{1,2,3}$ (0.31; 0.55; 0.91 nm⁻¹). At $q>1/D_P$ the even part shows a diffusion of single particle by cage slowed. The $S_{odd}(t) \sim t$ grow quite linear at $t \leq 1$ ns, their slope gives the energy transfer q-dependent. At t >10ns the curves converge.

In gaussian approximation $S_{even}(t) \sim exp[-q^2\Gamma(t)/2]$ describes particle's selfcorrelation, where $\Gamma(t)$ is a squared particle's displacement for the time t. The $S_{odd}(t)$ do not adhere a simple model, $S_{odd}(t/\tau) \sim t \cdot exp(-t/\tau)$. The normalised functions $F(t)=S_{odd}(t)/t$ display oscillations and damping at $q\sim 0.6-0.9nm^{-1}(Fig.2)$.

Figure 1: Even (1,3,5) and odd (2,4,6) functions: 20°C, $q_1(1,2)$; $q_2(3,4)$, $q_3(5,6)$. Lines are spline-functions.

Note, neutrons excite particles' vibrations:

F(t) = $<\omega> + \beta \cdot t^2 + \mu \cdot \cos(\Omega t) \exp(-\nu t)$ where fitting parameters are q-dependent (Tab.1). The q₁~π/D_m is maximum wave number for acoustic wave, frequency Ω~0.5rad./ns, in coupled particles chain (spacing ~ core diameter D_m~10nm). At q_{2,3}>q₁ the optical modes only permitted have frequency Ω~0.3rad./ns, period T_Ω~20ns, damping time τ=1/ν~10ns~T_Ω/2. The slow mode has frequencies $<\omega> = \int \omega \cdot S(\omega,q) d\omega / \int S(\omega,q) d\omega ~ (3-5) \cdot 10^7 rad./s.$

The periods T= $2\pi/<\omega>\sim100$ ns at q_{2,3}, and T~200ns at q₁ are much longer than the experimental time t=0-20ns. The estimated velocity of slow waves propagation U ~ $<\omega>/q \sim 10$ cm/s is by 4 orders in magnitude smaller than sound velocity in liquids.

Figure 2: Function $S_{odd}(t)/t$ at $q_{1,2,3}$ (1,2,3). Lines are fitting functions F(t).

q , nm^{-1}	0.31	0.55	0.91
<00>, ns ⁻¹	0.029	0.049	0.051
	±0.002	± 0.002	±0.001
β , ns ⁻³	$(5\pm 1) \cdot 10^{-5}$		
μ , ns ⁻¹	- 0.0044	0.017	0.042
	±0.0011	±0.010	±0.011
Ω , ns ⁻¹	0.50	0.32	0.30
	±0.02	±0.02	±0.02
ν , ns ⁻¹		0.072	0.14
		±0.062	±0.04

Tab. 1: Odd function: parameters.

The ratio $\mu/\langle \omega \rangle \sim 0.2$ -0.8, growing with q, indicates the balance of fast and slow dynamics. The latter dominates at small q, when the odd-correlations are also delayed for t*~10ns, that is described by the term $\beta \cdot t^2$ in function F(t). At the scale of radius $2\pi/q_3 \sim D_m/2$ fast and slow components in dynamics are comparable.

The S(t)_{even}=exp[-q² Γ (t)/2] depend on particle's shift $\Delta X=\Gamma(t)^{1/2}=[-(2/q^2)\ln(S)]^{1/2}$ increasing slowly up to $\Delta X(t)\sim 1$ nm at t<15ns. Then it achieves the $\Delta X\sim 3$ nm ~ radius of core (Fig.3). At t<15ns the shift adheres the function $\Delta X(t)=[a^2+(vt)^2]^{1/2}$. Here a=0.4±0.1nm is the amplitude of fast oscillations, v=8.7±0.3 cm/s is the component of particle's velocity along q (data for q=q₁).

Figure 3: Particle's shift: data 1-3 at $q_{1,2,3}$, fitting function $\Delta X = [a_2 + (vt)^2]^{1/2}$ for data1.

Vibrating with a small amplitude (~ solvent molecule), a particle moves slowly waiting the conditions for a jump (length ~ shell thickness ~ core radius). Its velocity v~10cm/s is smaller by an order in magnitude than thermal one, $V_T=(kT/m_P)^{1/2}$ ~100cm/s (m_P is particle's mass). Hence, a particle involves solvent molecules and neighbouring particles (1st, 2nd spheres, region ~100 volumes of particle). Comparing even and odd dynamics, we conclude: the damping time of particle's oscillations $\tau=1/v \sim T_{\Omega}/2 \sim 10$ ns is comparable with induction period, after that it jumps from cage to a new position.

Even data show particle's motion as a fast vibration + slow moving and final jump. Odd data visualise the main dynamic component that is a soft mode. Without it a jump of particle to new position is not possible. Odd NSE-signal reflects the potential defining particles motion. In FF with massive particles we observe their fast vibrations and relaxation initial stage, $S_{odd}(t)$ ~t.

References

- Lebedev V.T., Torok Gy. Odd neutron spin echo // 3rd European Conf. on Neutron Scattering. Sept. 3-6, 2003, Montpellier, France.Abstract book, p.155.
- [2] Mezei F. Neutron Spin-Echo: a new concept in polarised neutron techniques. // Z.Physik, 1972, v.255, p.146-160.