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Motivated by a recent experimental finding
of stable soliton-like configurations on the
free surface of a magnetic fluid (MF) in [1],
we aim to detect a single peak formation as
a result of numerical simulations.

Physical phenomenon

A single stationary peak was experimentally
generated by a local field perturbation in the
hysteretic regime of the Rosensweig insta-
bility and observed to be stable after turning
off the locally applied field [1]. This surface
configuration can be interpreted as an addi-
tional stable state in the hysteretic regime
beside the flat surface and the fully devel-
oped pattern.

Mathematical model

We consider a semi-infinite MF layer in a
uniform magnetic field of intensity H0, di-
rected perpendicular to the flat surface.
The equilibrium of forces is described by
the coupled system of Maxwell’s equations
and the magnetically-augmented Young-
Laplace equation [2]. The constitutive law
in the Langevin form will be applied.
In the case of a fully developed pattern, we
can restrict the computational domain to a
single cell and specify periodicity bound-
ary conditions at the cell boundaries. Thus,
the wavelength becomes an input parame-
ter which has to be estimated experimen-
tally or theoretically. For resolving a sin-
gle peak, we consider an enlarged computa-
tional domain and use boundary conditions
corresponding to a flat surface. The wave-
length is no more an input parameter in the

model but can be estimated from numerical
results.

Numerical model

Different numerical algorithms were elab-
orated to model the Rosensweig instability
both in two-dimensional axisymmetric and
fully three-dimensional cases [3–5]. The
coupled problem is iteratively splitted into
two subproblems, one for calculating mag-
netic field with a given interface position
and the other for determining the interface
location for a given field configuration. We
combine finite element and finite difference
methods to discretise the governing equa-
tions. Fixed-point iterations for linearisation
are performed while the linearised systems
are solved iteratively. It is worth to mention
that the result of the outer iterations, starting
from a given interface position, calculating
the magnetic field, and determining a new
position of the interface, depends strongly
on the initial surface deformation. As a re-
sult, the coupled problem can have several
solutions.
In numerical simulations we replace the ini-
tial field disturbances of the experiment by
initial surface deformations.

Results

We carried out numerical simulations for the
magnetic fluid EMG 901. From a linear sta-
bility theory, see e.g. [2], a critical magnetic
field Hc = 9.104 kA/m and a critical wave-
length λc = 8.457 mm can be obtained.
Numerical simulations of the fully devel-
oped pattern give a hysteretic range 8.6 ≤



H0 ≤ 9.1 kA/m. Within this range we re-
solved single peak configurations on the free
surface of MF, see Fig. 1 and Fig. 2.
According to the experimental observations
[1], in the supercritical region H0 > Hc

a pattern formation prevents a single peak
configuration. The three-dimensional nu-
merical model allows to catch this effect but
the axisymmetric model does not. Axisym-
metric single peaks exist also for H0 > 9.1
kA/m, see Fig. 2. This might be caused by
the fact that the axisymmetric model does
not allow a developed pattern as a solution
except the case where the horizontal size of
the computational domain matches the crit-
ical wavelength λc.
Dependences of height and wavelength of
single peaks on the magnetic field will
be presented for axisymmetric and three-
dimensional models.

Figure 1: Soliton shape: H0=9 kA/m, three-
dimensional model.
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Figure 2: Soliton shapes: H0={8.6, 8.8, 9,
9.2, 9.4, 9.6} kA/m, axisymmetric model.
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