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The concept of frozen magnetization was 
used in deducing ferrohydrodynamics 
equations [1].  It was shown [2] that the 
fast and slow magnetosonic waves and 
Alfven-type hydrodynamic wave are the 
hydrodynamic modes of the ideal non-
conducting magnetic fluid with frozen-in 
magnetization.  
The experimental proof of existence of 
slow magnetosonic wave recently was re-
ceived in work [3]. The authors of [3] have 
reported the experimental evidence of fast 
and slow longitudinal acoustic waves 
which propagates through a magnetor-
helogical slurry composed of hydrogen-
reduced spherical iron particles suspended 
in glycerine. The slow wave has been dis-
cussed in the frame of Biot theory which 
describing the propagation elastic waves in 
porous fluid-saturated solid [3]. However 
Brand and Pleiner [4] pointed out on im-
possibility to describe the slow wave in 
frame of Biot theory because it propagated 
in presence of external magnetic field only. 
Authors of [4] have proposed a different 
explanation of slow wave based on their 
theory [5] in which a propagating mag-
netotlastic sound-like mode  due to longi-
tudinal chain vibrations was predicted.  
 Here we explain these experimental results 
using the theory of wave propagation in 
magnetic fluid with frozen-in magnetiza-
tion. 
The complete system of equations de-
scribing an ideal non-conducting magnetic 
fluid of density ρ  with the frozen-in 
magnetization =M mρ  has the form [1]: 
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The system of equations is closed by setting 
a specific form of the internal energy per 
unit mass u , which depends on the fluid 
density, on the specific entropy s , and on 
the components of the magnetization per 
unit mass im . The latter two equations of 
the system (1) are the Maxwell magne-
tostatic equations, where Ψ  is the scalar 
potential of the magnetic field. Let us inves-
tigate the small amplitude waves which 
propagate through a spatially uni-form 
magnetic fluid placed in external magnetic 
field. We can assume, without loss of gen-
era-lity, that the intensity of magnetic field 

0H  is directed along the z-axis, and the 
wave-vector k  lies in the y-z plane and 
makes an angle ϑ  with the z-axis. Also we 
assume that the internal energy density per 
unit mass has the form 
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We linearize the equations of system (1) 
with allowance for this explicit form of the 
functional dependence of the internal en-
ergy  assuming, for sake of simplicity, that 
the equilibrium flow velocity is zero.The 



standard technique is used to solve lin-
earized equations of system (1). 
The solutions of the linearized  equations 
determine  the velocity of  the Alfven-type 
hydrodynamic wave  
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and  the velocity of  the slow magnetosonic 
wave  
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Here  с0  denotes the sound propagation 
velocity in unmagnetized magnetic fluid.  
Figure 1 shows the theoretical dependence 
of  the slow wave velocity on the angle 
values ϑ  in magnetorheological suspen-
sion investigated in  [3].   
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Figure 1. 
 
 

Curves 1 and 2  describe the anisotropy of 
the slow wave velocity at  60H =  G and 

490H =  G, respectively. These results can 
be used in experimental check of the pro-
posed theory. We believe, that slow mag-
netosonic  waves should form interesting 
area of an experimental research. 
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