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Abstract

A model of a paramagnetic isotropic elastic material with small Young's modulus is proposed, wherein the stress
tensor contains additional terms involving products of strain and "eld components. The new &cross' terms produce an
e!ective Young's modulus which depends on the magnetic "eld, whereas the classical model does not predict an in#uence
of a magnetic "eld on deformation. ( 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

A model describing "eld induced stresses in para-
magnetic elastic isotropic materials may be pro-
posed as the analogy of a previous model of elastic
isotropic dielectrics in an electric "eld [1]. The
main assumption of the model [1] is that a tensor
of dielectric permeability depends linearly on
a strain tensor u

ij
. Using the same assumption

about magnetic permeability we have calculated
the free energy of paramagnetic elastic isotropic
materials in an external magnetic "eld. Our expres-
sion for the free energy has additional &cross' terms

(terms containing products of the magnetic "eld
and the strain tensor components). Analogical
terms (terms containing products of the electric
"eld and the strain tensor components) are neglect-
ed in the model [1]. Same &cross' terms occur in an
expression for the free energy of elastic anisotropic
ferromagnetic materials [2]. However, for rigid fer-
romagnetic materials (small deformation and large
Young's modulus) additional &cross' terms are
small. As it is proven hereinafter the new model
(with additional &cross' terms) describes equilib-
riumly magnetizable (paramagnetic) media with
small Young's modulus when deformations are
large. For example, the model may be valid for
isotropic magnetizable composite materials on the
basis of nonrigid elastomers or rubbers. It should
be noted that this model may be valid for other
paramagnetic homogeneous materials with small
Young's modulus.
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Here we consider the e!ect of the additional
&cross' terms on the stress tensor. The contribution
of the &cross' terms to the stress tensor of an elastic
material in a magnetic "eld can be described by
e!ective values of the Young's modulus that de-
pend on the magnetic "eld. Here we do not describe
the well-known *E-e!ect for anisotropic ferromag-
netic materials. The model predictions for two
examples of deformation of material in an applied
magnetic "eld are compared with the previous
model (without &cross' terms) [1] in which there is
no in#uence of the applied "eld on the elastic
response.

2. Stress tensor of magnetizable elastic materials
in a magnetic 5eld

Let us consider a equilibriumly magnetizable
(paramagnetic) elastic isotropic material with
a magnetic permeability tensor k

ij
that depends on

the strain tensor components u
ij
,
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where k
0
("4p]10~7 NA~2) is the permeability of

free space, g
ij

is the metric tensor, k0 is the per-
meability of the nondeformed material, and a

1
and

a
2

are scalar functions of thermodynamic para-
meters. The parameters a

1
and a

2
can be estimated

for isotropic magnetizable composite media
through the analogy with heterogeneous dielectric
materials [3]
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The thermodynamic potential of the material in
a magnetic "eld H is FI ";!¹S!H )B, where
; and S are the internal energy and the entropy of
the medium and "eld per unit volume, ¹ is the
temperature, and B is the magnetic induction. Ac-
cording to Gibbs' identity, we can represent the free
energy as
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The free energy F
0
(H"0) is represented by

Hooke's law,
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where j and g are the LameH coe$cients. Substitu-
ting Eq. (1) into Eq. (3), the thermodynamic poten-
tial FI becomes
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The stress tensor in a magnetizable elastic medium
in the presence of a magnetic "eld may be obtained
by analogy with the development in Ref. [1],

p
ij
"FI g

ij
#

LFI
Lu

ij
K
T,H

#H
i
B
j
. (6)

Upon substituting the expression for the free en-
ergy, Eq. (5), into Eq. (6), the stress tensor p

ij
be-

comes
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The products of the strain tensor and magnetic "eld
components (&cross' terms in Eq. (7)) were not ac-
counted for in the model developed in Ref. [1].

3. Deformation of materials in a magnetic 5eld

We will consider deformation of an elastic body
which is a parallelepiped in a Cartesian coordinate
system with axes directed along the edges of the
parallelepiped when a uniform magnetic "eld H

0
is

applied (H
0

is a magnetic "eld without the body).
A uniform surface force with density F"$Fe

z
is

applied to the xy faces of the parallelepiped (e
i
is the

base vector along the i-axis). The other surfaces of
the parallelepiped are stress-free.
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We assume that the magnetic "eld H"H
0

is
a uniform one everywhere (H

0
AM, where M is

a vector of magnetization of the material, nonin-
ductive approximation). The stress tensor compo-
nents satisfy the equations of statics, because we
search for uniform deformations and H is a uniform
one. The boundary conditions on the parallel-
epiped surfaces R

yz
, R

zx
, and R

xy
are
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Here MAN"A
m
!A

a
, with indices m and a denot-

ing values of A on the material and air sides of the
surfaces, respectively. Our objective is to determine
the deformation of the material in the uniform
magnetic "eld caused by the external surface force
density F. Below we consider the two di!erent
cases, H

0
"H

0
e
x
and H

0
"H
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e
z
.

H
0

parallel to the x-axis: Taking into account
expression (7), we write down Eq. (8) in the form
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Taking into account Eq. (9), the expression for the
strain u

33
is obtained:
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In the classical model [1] k
1
, k

2
, k

3
equal zero.

Assuming FAA and FAB, we obtain the following
expression for u

33
:

u
33
"

j#g
g(3j#2g)

F(1#k
1
H2

0
)

(1!k
2
H2

0
#k

3
H2

0
)
. (11)

Thus if the extending force is su$ciently large, then
the in#uence of the magnetic "eld can be described
by the introduction of the e!ective value E%&&

:
of the

Young's modulus in the magnetic "eld as follows:

E%&&
:
"E

y

1!k
2
H2

0
#k

3
H2

0
1#k

1
H2

0

, (12)

E
:
"

g(3j#2g)

j#g
. (13)

Assuming jAg, the expression for u
33

follows from
Eq. (11):
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Thus if the extending force is su$ciently large and
jAg, the e!ective value of the Young's modulus in
the magnetic "eld E%&&

:
depends essentially on the

"eld if DGD is not small. The classical model does not
predict any in#uence of the magnetic "eld on defor-
mation for this case.

H
0

parallel to the z-axis: In this case, the bound-
ary conditions (8) yield
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From these equations we can calculate u
33

as fol-
lows:
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Consider the case of large forces: FAA and
FAB. Then the deformation can be determined by
the formula
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When the extending force is su$ciently large and
jAg, the in#uence of the magnetic "eld can be
described by the introduction of the e!ective value
E%&&
:

of the Young's modulus in the magnetic "eld is
as follows:
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:
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The examples of deformation of the material con-
sidered above illustrate that for large forces the
classical model predicts no in#uence of the mag-
netic "eld on deformation while the new model in
this case allows us to introduce the e!ective value of
the Young's modulus, which depends on the "eld.
Obviously, the &cross' terms represented in the for-
mula for the stress tensor (7) should be taken into

account when the deformation of materials is not
small and the LameH coe$cient g is small enough:
DGD"Dk

0
a
1
H2

0
/2gD&1. So this model can describe

the properties of isotropic composite materials that
are created on the basis of nonrigid polymers or
rubbers.
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