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Abstract

The plane flow of a layer of incompressible viscous magnetic fluid with constant magnetic permeability under the

action of a traveling magnetic field is analyzed. The strength of the magnetic field producing a sinusoidal traveling

small-amplitude wave on the surface of a magnetic fluid is found. This flow can be used in designing mobile robots.

r 2003 Elsevier B.V. All rights reserved.

PACS: 75.50.Mm; 43.35.Pt

Keywords: Magnetic fluid film; Surface waves; Traveling magnetic field
1. Introduction

The possibility of creating the viscous magnetic
fluid flow by means of a magnetic field is
investigated. This effect can be used in designing
autonomous mobile robots without a hard cover.
Such robots can be employed in clinical practice
and biological investigations. In Ref. [1], the flow
of a viscous fluid layer due to an undulation of
bounding impermeable walls was considered. The
undulatory perturbations of the wall surfaces and
the fluid velocity at the wall were assumed to be
given. The average flow rate in the layer was
calculated for the boundary moving as a sinusoidal
traveling wave and the boundary velocity perpen-
onding author. Fax: +7-095-9392090.

address: naletova@imec.msu.ru (V.A. Naletova).

$ - see front matter r 2003 Elsevier B.V. All rights reserve

/S0304-8853(03)00503-1
dicular to the unperturbed boundaries. In Ref. [2],
an analogous flow was considered taking into
account the influence of the adjacent layer of
another viscous fluid. The undulatory perturba-
tion of the interface between the two viscous fluid
layers was given. For the boundary perturbed in
the form of a sinusoidal traveling wave, the
average flow rate in the layer was calculated. In
Refs. [3,4], the behavior of a magnetic fluid film on
a rotating horizontal disk in a non-uniform
magnetic field was studied. It was shown that the
magnetic field affects the film shape considerably,
for example, turning on the field leads to the
formation of a moving layer thickness jump. In
Ref. [5], the motion of a magnetic fluid layer in a
traveling magnetic field was investigated experi-
mentally. A dependence of the surface velocity on
the magnetic field amplitude and frequency and
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the layer thickness was revealed. In that paper, the
theoretical analysis was performed within the
framework of the ideal fluid model. In the present
study, the motion of an incompressible magnetic
fluid layer on an undeformable substrate, pro-
duced by a non-uniform magnetic field, is analyzed
within the framework of the viscous fluid model.
The strength of the magnetic field producing a
prescribed surface shape, in particular, the travel-
ing sinusoidal wave, and the velocities, including
those at the surface, are to be found. The
dependence of the magnitude of the magnetic field
on the wavelength is analyzed and the average flow
rate is calculated.
2. Formulation of the problem

We will consider plane flow of an incompressible
viscous magnetic fluid layer on a horizontal
surface in a non-uniform alternating magnetic
field (Fig. 1). The magnetic permeability of the
fluid m is assumed to be constant. Here we do not
consider effects of finite time of magnetization
relaxation t because t=tH51 (tH is a characteristic
time of a field alteration). The environment is
unmagnetizable and the pressure on the free fluid
surface is constant. In the case of constant
magnetic permeability, the body magnetic force
is absent and the magnetic field manifests itself in a
surface force acting on the free surface [6]. The
gravity is not taken into account.
In this case, the system of equations consists of

the continuity and Navier–Stokes equations:

div v ¼ 0;

qv

qt
þ ðv � rÞv ¼ �

1

r
grad p þ nDv:

Here, v ¼ ðu;wÞ and p are the velocity vector and
the fluid pressure, n ¼ Z=r and Z are the kinematic
Fig. 1. Magnetic fluid layer.
and dynamic fluid viscosity coefficients, and r is
the fluid density. The boundary conditions have
the form

z ¼ 0 : v ¼ 0; ð1Þ

z ¼ h :
dh

dt
¼

qh

qt
þ u

qh

qx
¼ w; ð2Þ

�p þ
g
R
þ

B2
n

8p
1

m
� 1

� �
�

H2
t

8p
m� 1ð Þ

� �
n þ tijn

jei ¼ 0:

ð3Þ

Here, tij are the viscous stress tensor components,
R is the radius of curvature of the line z ¼ hðx; tÞ; n
is the vector of outward normal to the surface, ej

are the basis vectors, g is the surface tension
coefficient, Bn ¼ mHn is the normal component of
the magnetic induction vector, and Ht is the
tangential component of the magnetic field
strength vector. The magnetic field H is assumed
to be fixed, since the non-inductive approximation
m� 151 is considered. The surface magnetic force
is then equal to ðm� 1ÞH2ðx; z ¼ hðx; tÞ; tÞn=8p:
We will assume that the magnetic field produces

a traveling periodic wave on the surface of a
sufficiently thin magnetic fluid layer:

z ¼ hðx; tÞ ¼ d þ a cosðot � kxÞ; dk ¼ e51:

We introduce the following dimensionless vari-
ables (the dimensional variables are here denoted
with the asterisk):

x ¼ x�k; z ¼
z�

d
; h ¼

h�

d
; u ¼

u�

Uc

; w ¼
w�

eUc

;

Uc ¼
o
k
; d ¼

a

d
; t ¼ t�o; p ¼

p�

P
; P ¼

Zo
e2

;

H2 ¼
H�2

P
; Re ¼

rUcd

Z
; W ¼

gdk2

P
:

We can simplify the dimensionless equations
and boundary conditions (1)–(3) similar to Refs.
[3,7] and in the zeroth approximation (e ¼ dk-0)
obtain the following system of equations and
boundary conditions for W ¼ Oð1Þ and Ret1:

qu

qx
þ

qw

qz
¼ 0; ð4Þ

�
qp

qx
þ

q2u
qz2

¼ 0;
qp

qz
¼ 0: ð5Þ
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For z ¼ h :
qh

qt
þ u

qh

qx
� w ¼ 0;

qu

qz
¼ 0;

pðx; tÞ ¼ �W
q2h
qx2

�
H2ðx; z ¼ 0; tÞ

8p
m� 1ð Þ:

For z ¼ 0 : u ¼ w ¼ 0: ð6Þ

Here, for a small layer thickness h; H2ðx; z ¼ h; tÞ
can be assumed to be equal to H2ðx; tÞ ¼ H2ðx; z ¼
0; tÞ: Such assumption allow us to simplify the
boundary conditions. From Eqs. (4) and (5) and
boundary conditions (6) we obtain the relations
for the velocity components

uðx; z; tÞ ¼ F ðx; tÞ
z2

2
� hz

� �
; F ðx; tÞ ¼

qp

qx
; ð7Þ

wðx; z; tÞ ¼ F ðx; tÞ
qh

qx

z2

2
þ

qF

qx

h

2

z2

2
�

z3

6

� �
: ð8Þ

From relations (6)–(8) we derive the equation for h

(our approach is similar to shallow water approx-
imation on magnetohydrodynamics [8,9])

qh

qt
¼

qFh3=3

qx
: ð9Þ

From the mass conservation law and Eq. (9) it
follows the equation

qh

qt
¼ �

qQ

qx
; Qðx; tÞ ¼

Z h

0

uðx; z; tÞ dz ¼ �Fh3=3:

ð10Þ

For h ¼ hðxÞ and x ¼ t � x (in the dimensionless
form) it follows from Eqs. (10) that for an
arbitrary e the volume flow rate Q is equal to

QðxÞ ¼ hðxÞ þ C; C ¼ const: ð11Þ

In the case of periodic motion, we can introduce
the flow rate %QðxÞ average over the period
T : %QðxÞ ¼

R T

0 Qðx; tÞ dt=T : If hðxÞ ¼ 1þ d cosðxÞ;
the dimensionless average flow rate %Q is equal to
1þ C: We note that this flow with non-zero flow
rate can be used for designing autonomous movers
without hard walls.
If h ¼ hðxÞ; with account for Eqs. (11) and (10),

the equation for the magnetic field strength takes
the form

F ¼ W
q3h

qx3
þ

ðm� 1Þ
8p

qH2

qx
¼ �

3

h2
�
3C

h3
: ð12Þ

3. Solution of the problem in the case of small

amplitude of surface oscillations

Let h ¼ 1þ d cos x; where d51 (the dimension-
less amplitude is small). With Eq. (12) taken into
account, we represent F as a series in powers of the
parameter d:

F ¼ � 3 1þ C þ 3
2
d2 þ 3Cd2 þ 15

8
d4 þ 45

8
Cd4

�
� ð2þ 3CÞd cos xþ 3 1

2
þ C

� �
d2 cos 2x

�ð4þ 10CÞd3 cos3 x

þ 5ð1þ 3CÞd4 1
2
cos 2xþ 1

8
cos 4x

� ��
: ð13Þ

Here we assume that d5 > e: Correct to terms of the
order of d5; the gradient of the square of the
magnetic field strength is equal to

qH2

qx
¼ KðC; dÞ þ f ðxÞ;

K ¼ �
3� 8p
m� 1

1þ C þ 3
2d

2 þ 3Cd2 þ 15
8 d

4 þ 45
8 Cd4

� �
;

f ðxÞ ¼ � W
8pd
m� 1

sin x�
3� 8p
m� 1

� �ð2þ 3CÞd cos xþ 3 1
2
þ C

� �
d2 cos 2x

�
�ð4þ 10CÞd3 cos3 xþ 5ð1þ 3CÞd4

� 1
2
cos 2xþ 1

8
cos 4x

� ��
: ð14Þ

From Eq. (14) we can see that K ¼ const;R 2p
0 f dx ¼ 0: Our aim is to find periodical square
of the magnetic field H2 (for z ¼ 0). The periodical
solution realizes for K ¼ 0 only, the constant C

can then be found

C ¼ �
1þ 3

2
d2 þ 15

8
d4

1þ 3d2 þ 45
8
d4
:

Expanding the expression for C in a series in
powers of d; we obtain the following expression for
the dimensionless average flow rate %QðxÞ:

%QðxÞ ¼ 1þ C ¼ 3
2
d2 � 3

4
d4 þ Oðd6Þ:
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Fig. 3. Magnitude of the magnetic field strength jH�j as a

function of the x coordinate. 1� k ¼ 2; 2 – k ¼ 0:7; 3 – k ¼ 0:1:
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The dimensional flow rate is equal to

%Q�ðxÞ ¼ d
o
k
%QðxÞ ¼ d

o
k

3
2
d2 � 3

4
d4 þ Oðd6Þ

� �
:

Integrating equality (14) with account for the
assumptions made, we obtain the relation

H2 ¼H2
0 � D;

D ¼
8p

m� 1
dð�W cos xþ 3 sin xÞ
	

þ d2 �9
4
sin 2x

� �
þ d3 3

2
sin 3x

� �
þ d4 �3

4
sin 2x� 15

16
sin 4x

� �

: ð15Þ

We choose the constant H0 arbitrary, greater or
equal to Dmax; since H2

X0 and
R 2p
0

D dx ¼ 0: In
what follows, we will assume H0 ¼ Dmax: We
express the value of magnetic field in terms of the
dimensional variables: H�2 ¼ ZoH2=e2: For calcu-
lating the dimensional maximum magnitude of the
magnetic field H�

max; we take the following para-
meter values: Z ¼ 0:1 P; d ¼ 0:1 cm; o ¼ 0:1 s�1;
d ¼ 0:1; g ¼ 102 D cm�1; r ¼ 1 g cm�3; m ¼ 1:1:
In Fig. 2, the dependence of H�

max (Oe) on the
wave vector is presented. We note that the wave
vector is bounded below by the requirement
Rep1; which is, for the above-specified
parameters, reduced to kX0:1: From Fig. 2, it
can be seen that for k ¼ 0:7 there exists a
minimum of the maximum magnitude of the
magnetic field. Fig. 3 shows the spatial distribution
(at a fixed time) of the magnitude of the magnetic
Fig. 2. Dependence of H�
max on k:
field strength for different k and the above-
specified parameter values.
The sign of the magnetic field may alternate but

so that its absolute value satisfies formula (15).
For the parameter values used, the average volume
flow-rate per unit channel thickness is equal to
%Q� ¼ ð0:00015=kÞ cm3 s�1: We can anticipate that
in the magnetic field whose gradient changes
according to the found law a mobile robot with
free magnetic fluid surface bounded by an elastic
film will move opposite to the traveling wave.
If d is sufficiently small, the magnitude of the

magnetic field can be represented in the form
(tan f ¼ 3=W ):

H2 ¼ H2
0 �

8p
m� 1

d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W 2 þ 9

p
cosðxþ fÞ ð16Þ

Let H2
0 ¼ 8pd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W 2 þ 9

p
=ðm� 1Þ: Then the abso-

lute value of the magnetic field is equal to

H ¼ H�
a sin

xþ f
2


; ð17Þ

H�
a ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pd

m� 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2d2k4 þ 9

ðoZÞ2

d4k4

svuut
ð18Þ

From Eq. (18) it is obvious that at a certain value
k ¼ kmin the amplitude of the magnetic field
reaches its minimum k8

min ¼ 9ðZoÞ2=g2d6: The
restrictions on the parameters at which this
minimum can be reached in the approximation
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considered (e51) and on the frequency in this
approximation (eRe51) have the form: o5g=3Zd;
o5Z=d2r: We note that the inequality eRe51
does not restrict the wavelength but essentially
bounds the frequency above: o5Z=ðd2rÞ: If we
like to obtain a flow with non-zero flow rate at low
magnetic fields, we must choose the wave vector
equal to kmin for which the necessary amplitude
is minimal. For example, if Z ¼ 1 P; d ¼ 0:1 cm;
k ¼ 1 cm�1; o ¼ 10 s�1; g ¼ 3� 104 D cm�1; r ¼
1 g=cm�3; m ¼ 1:1; and d ¼ 0:1; the average flow
rate equals %Q� ¼ ð1:5� 10�2=kÞ cm3 s

�1
and k ¼

kmin ¼ 1: In this case, the amplitude of the
magnetic field is minimal and in the linear
approximation equal to 461.8Oe. The condition
e51 restricts k (k510) and the wave vector value
k ¼ kmin ¼ 1 is allowable (the condition e51 is
satisfied). With decrease in the magnitude of the
wave vector (ko1) for all the other parameters
fixed, the flow rate increases but the amplitude of
the magnetic field producing this flow rate also
increases significantly.
4. Conclusion

1. An expression is obtained for the strength of the
magnetic field producing a sinusoidal wave on
the surface of a viscous magnetic fluid as a
function of the characteristics of the fluid
(viscosity, surface tension, and magnetic perme-
ability) and the parameters of the wave
(amplitude, frequency, and wave number). It
is shown that at a certain wavelength the
maximum magnitude of the magnetic field has
a minimum.
2. The average flow rate produced by this mag-
netic field is calculated. The dependence of the
average flow rate on the layer thickness and the
amplitude, frequency and length of the surface
wave is found.

3. The dependencies obtained can be used as a
basis for designing mobile robots in the form of
envelopes filled with magnetic fluid.
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