МАГНИТНЫЕ ЖИДКОСТИ

А.В. Карелин, В.М. Полунин

МОДУЛЯЦИЯ УЛЬТРАЗВУКОВОГО ИМПУЛЬСА НАМАГНИЧЕННОЙ МАГНИТНОЙ ЖИДКОСТЬЮ

Изучение особенностей распространения ультразвуковых волн через намагниченную магнитную жидкость (МЖ) представляет значительный интерес, поскольку акустические исследования позволяют получить информацию о структурных изменениях в магнитном коллоиде, при этом не требуется оптическая прозрачность исследуемой среды [1–5].

В настоящей работе исследовались амплитуда и форма ультразвукового импульса, прошедшего через акустическую ячейку, заполненную МЖ, при длительном воздействии магнитного поля. Схема экспериментальной установки представлена на рис. 1.

С генератора 1 радиоимпульсы с частотой заполнения 6 МГц и частотой следования 4 кГц поступают на излучающий пьезоэлемент. Ультра-

Рис. 1

звуковой импульс проходит через МЖ, заполняющую акустическую кювету 3, и преобразуется приемным пьезоэлементом в радиоимпульс. Далее радиоимпульс через аттенюатор 4 поступает на вход приемника супергетеродинного типа 5 и детектируется в нем. Полученные видеоимпульсы подаются на вход осциллографа 2. Осциллограммы снимаются видеокамерой SONY 6, после чего преобразуются в цифровой формат TV-тюнером 7 для последующей обработки на компьютере 8. Источником магнитного поля служит постоянный магнит 9, установленный на вращающейся платформе 10. Для покадровой съемки осциллограмм используется программа PIXEL VIEW STATION v. 4.19 TV, а для обработки – COREL DRAW v.9.0.

На рис. 2 показано устройство акустической кюветы. Корпус кюветы выполнен в виде цилиндра с внешним диаметром 40 мм, внутренним – 30 мм и высотой 82 мм, поперечное сечение внутренней полости кюветы представляет собой квадрат со стороной 20 мм. Грани ячейки тщательно обрабатывались на параллельность. Пьезоэлектричекие кварцевые пласти-

ны 1 (излучатель и приемник) размещаются соосно на фиксированном расстоянии друг от друга в специальных нишах и изолированы от исследуемой среды полуволновыми перегородками 2. Все элементы акустической кюветы, в том числе и полуволновые пластинки, изготовлены из немагнитного материала (латунь).

Исследуемый образец представляет собой магнитный коллоид, приготовленный на основе керосина. Дисперсной фазой в нем является магнетит Fe₃O₄, стабилизатором служит олеиновая кислота. Плотность жидкости составляет 1300 кг/м³, объемная концентрация φ=12 %.

Чтобы исключить попадание в МЖ пузырьков воздуха, на этапе подготовки

образца к измерениям предприняты следующие меры: кювета заполняется МЖ за несколько часов до внесения в магнитное поле; для предотвращения проникновения воздушных каверн, образующихся за счет неустойчивости открытой поверхности МЖ в магнитном поле, прожекторную зону кювета заполняют жидкостью практически на всю высоту, а установка кюветы в межполюсном зазоре производится путем поступательного перемещения ее в направлении сверху вниз.

Эксперимент проводился при температуре 290±1 К. Напряженность магнитного поля составляет 122 кА/м, начальный угол между вектором напряженности магнитного поля \vec{H} и волновым вектором \vec{k} $\mathcal{G} = 90^{\circ}$.

Приращение коэффициента поглощения вычисляется по формуле

$$\Delta \alpha_i = \frac{1}{l} \ln \frac{U_{\text{max}}}{U_i}$$

где l – путь ультразвука в магнитной жидкости; U_{max} – максимальная амплитуда, U_{i} – амплитуда сигнала в момент времени t_{i} .

Результаты эксперимента приведены на рис. 3. Треугольниками представлены результаты измерения максимума амплитуды видеоимпуль-

Рис. 2

са U, а квадратами – приращение коэффициента поглощения $\Delta \alpha$. В ходе эксперимента обнаружилось значительное уменьшение амплитуды ультразвукового импульса за время t $\approx 80-85$ час и немонотонный характер угловой зависимости $\Delta \alpha$, что в общих чертах согласуется с полученными данными в работе [4].

Дополнительное поглощение ультразвука связано с изменением структуры МЖ. Под влиянием магнитного поля образуются цепочечные агрегаты из феррочастиц. Звуковая волна при прохождении через дисперс-

Рис. 3

ную систему частично поглощается и рассеивается на агрегатах. Тот факт, что $\Delta \alpha$ приближается к равновесному значению в течение нескольких суток, свидетельствует об относительно малой скорости процесса структурообразования.

Спустя t \approx 150 часов с момента начала эксперимента при дополнительном усилении сигнала в приемнике, обеспечиваемом регулировкой входного аттенюатора 4 (рис. 1) для определенных углов *9*, отчетливо наблюдается изменение формы видеоимпульса.

На рис. 4 представлены осциллограммы для указанных значений *9* (цена деления по Y – 0,5 В/дел, по X – 5 мкс/дел).

В процессе вращения магнитного поля изменяется форма видеоимпульса, т.е. происходит управляемая модуляция ультразвукового импульса. На углах 130°–160° в средней части видеоимпульса появляется «провал», который вновь наблюдается на углах 210°–240°, однако в первом случае «провал» перемещается справа налево, а во втором – в обратном направлении.

Рис. 4

Следует отметить несколько особенностей обнаруженного эффекта: с уменьшением амплитуды зондирующего импульса В несколько раз амплитуда принятого видеоимпульса также уменьшается, сохраняя свою форму; при удалении кюветы из магнитного поля видеоимпульс принимает первоначальную форму, а амплитуда сигнала значительно возрастает, хотя и не достигает первоначального многократное уровня; вращение магнитного поля приводит к восстановлению первоначальной формы и некоторому возрастания амплитуды видеоимпульса, а спустя несколько суток «провал» появляется снова; восстановление перво-

начальной формы и амплитуды ультразвукового импульса достигается путем тщательного механического перемешивания МЖ в отсутствии магнитного поля.

Приведенные выше факты позволяют исключить «аппаратурное» происхождение модуляции наблюдаемого сигнала.

В одной из первых работ по данной теме [1] отмечался эффект появления «быстрого» импульса в намагниченной МЖ, происхождение которого, возможно, имеет ту же физическую природу.

Библиографический список

- 1. Полунин В.М. Акустические эффекты в неэлектропроводных магнитных жидкостях: Дис. ... докт. физ.-мат. наук. -Л.: ЛГУ, 1989.
- 2. Полунин В.М., Чернышова А.А. Об объемной вязкости магнитной жидкости // Магнитная гидродинамика. 1983. №1. –С. 29–32.
- 3. Аксенова Т.И. Ультразвуковое зондирование структуры концентрированной магнитной жидкости: Дис. ... канд. физ.-мат. наук. -Курск: КГТУ, 1998.
- 4. Соколов В.В. Ультразвук и динамические свойства магнитных жидкостей: Дис. ... докт. физ.-мат. наук. -М.: МПУ, 1997.
- 5. Надворецкий В.В. Поглощение ультразвука в магнитных жидкостях: Автореф. дис. ... канд. физ.-мат. наук. -М.: МГАПИ, 1999.