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Abstract

Two important aspects of the control of the coal blending process in the iron and steel industry are computation of the target percentage of
each type of coal to be blended and the blending of the different types in the target percentages. This paper proposes an expert control strategy
to compute and track the target percentages accurately. First, neural networks, mathematical models and rule models are constructed based
on statistical data and empirical knowledge on the process. Then a methodology is proposed for computing the target percentages that
combines the neural networks, mathematical models and rule models and uses forward chaining and model-based reasoning. Finally, the
tracking control of the target percentages is carried out by a distributed PI control scheme. The expert control strategy proposed is
implemented in an expert control system that contains an expert controller and a distributed controller. The results of actual runs show
that the proposed expert control strategy is an effective way to control the coal blending process.q 1999 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

Coke plays an important role in the iron and steel indus-
try. It is used mainly as a fuel to provide the heat needed to
melt iron ore and also as a source of reducing gases in a blast
furnace. Coke is a solid product of the destructive distilla-
tion of coal. Coke for iron smelting is made from coal that
satisfies specific quality indexes. Since raw coal does not
generally meet the requirements, different types must be
blended in suitable percentages to form a coal blend of
the required quality (The Iron and Steel Institute of Japan,
1979; Hashimoto, 1989; ASM International Handbook
Committee, 1990). Under certain distillation conditions
(proper temperature, suitable time, etc.), the quality of
coke is mainly determined by the quality of the coal
blend. This means the quality and percentage of each type
of coal to be blended are key factors influencing the quality
of coke. To obtain the desired coal blend, it is imperative to
rigorously control the coal blending process.

Two important aspects of the control of this process are
computation of the target percentage of each type of coal
and the blending of the different types in those percentages.

It is especially important to compute the target percentages
from the quality requirements of the coke and the quality of
each type of coal by predicting the quality of the coal blend
and coke. Conventional computation methods involve
constructing mathematical models to predict quality based
on measured data for coal blending and distillation, and then
computing the target percentages using the models. The
models mainly employ linear system identification techni-
ques, such as the least-squares method (Miura et al., 1979;
The Iron and Steel Institute of Japan, 1979; Shi, 1989; Wen
et al., 1994). However, it is difficult to get accurate percen-
tages by conventional methods, because the computation is
based solely on mathematical models which do not describe
the exact relationships among the parameters that character-
ize the quality of the coal blend and coke, and the quality
and percentage of each type of coal. In order to achieve
rigorous control over the coal blending process, we need a
way to compute the target percentages with a high accuracy.
This requires highly accurate quality prediction models.

Artificial intelligence techniques have been widely
studied and used in engineering. Expert systems are one
rapidly growing area, and are a very practical technique in
the field of artificial intelligence (Hayes-Roth et al., 1983;
Jackson, 1986; Liebowitz, 1988; Liebowitz and DeSalvo,
1989; Mockler and Dologite, 1992; Liebowitz, 1995).
They are used for process control in the iron and steel
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industry (e.g., Tsushima et al., 1985; Yui et al., 1987;
Ishiduka and Kobayashi, 1991). An expert system that is
designed to emulate the expertise of experts and veteran
operators in performing control activities is called an expert
control system. Such a system uses empirical knowledge to
solve the control problem, and is a powerful technique for
controlling a complex process with nonlinearities and uncer-
tainties (Åström et al., 1986; Efstathiou, 1989; Passion and
Lunardhi, 1996; Cai et al., 1996). On the other hand, neural
networks are effectively used for the modeling, identifica-
tion and control of complex systems, and a large number of
neural network algorithms have been developed (Rumelhart
et al., 1986; Narendra and Parthasarathy, 1990; Piovoso et
al., 1992; Hagan et al., 1996). Among all neural networks,
the backpropagation network is the most widely used in
process control applications. It can approximate large
classes of continuous functions (Hornik et al., 1989; Su
and McAvoy, 1997). These artificial intelligence techniques
provide a way to control the coal blending process, because
the relationships among the parameters in the process can be
expressed through a combination of backpropagation

networks, mathematical models and rule models based on
the empirical knowledge of experts and veteran operators,
and statistical data on coal blending and distillation. Expert
systems and neural networks can be employed to construct
highly accurate quality prediction models for the coal blend
and coke, and to compute precise target percentages.

This paper proposes an expert control strategy based on a
combination of backpropagation networks, mathematical
models and rule models to compute and track the target
percentages accurately. The strategy was implemented in
a hierarchical configuration with two controllers that does
not have the drawbacks of the conventional methods. In this
paper, the coal blending process and the basic idea of the
expert control strategy are first described. Next, based on
statistical data and empirical knowledge, highly accurate
quality prediction models that consist of backpropagation
networks and mathematical models are constructed, and rule
models are established. Then, a methodology for computing
the target percentages is proposed that combines the
networks and models and uses forward chaining and
model-based reasoning. Finally, an expert control system
is constructed for the control of the coal blending process.
It employs a distributed controller for blending in accor-
dance with the target percentages. The results of actual
runs are also presented.

2. Process description and expert control strategy

The expert control strategy proposed in this paper is used
for the coal blending process in an iron and steel plant. The
process can be roughly divided into two steps: first blend
different types of coal in the target percentages and then
pulverize the coal blend.

2.1. Process description

The coal blending process is shown in Fig. 1. Various
kinds of raw coal from different mines are classified accord-
ing to their properties into seven types. Each type is fed
from a hopper through a screw conveyer to a central belt
conveyer in the target percentage, where it is blended with
the others. The coal blend is pulverized and put in a coke
oven, where destructive distillation produces coke.

An important requirement of the process is to compute
the target percentage of each type of coal from the quality
requirements of the coke and the quality of coal to be
blended. These percentages are tracked by controlling the
speeds of the screw conveyers. The coke produced must
satisfy the given quality requirements.

2.2. Basic idea of expert control strategy

An expert control strategy is proposed to control the coal
blending process. It is based on the hierarchical configura-
tion shown in Fig. 2, and consists of a decision level, a
control level and a process level, which correspond to an
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expert controller, a distributed controller and the coal blend-
ing process, respectively.

The expert controller uses a reasoning strategy based on
backpropagation networks, mathematical models and rule
models, and combines forward chaining and model-based
reasoning to compute the target percentages from the qual-
ity requirements of the coke and the quality of each type of
coal so as to obtain the desired coke. Moreover, by using the
computed target percentages, the total flow rate of the coal
blending process and the moisture content of each type of
coal, the expert controller calculates the target flow rate of
each type of coal and sends it to the distributed controller.

The distributed controller is used for blending different
types of coal in accordance with the target percentages.
More specifically, the distributed controller generates
control actions by using a PI control algorithm to control
the speeds of the screw conveyers so as to ensure that the
actual flow rates track the target flow rates.

3. Quality prediction models and rule models

The quality prediction models for the coal blend and coke
consist of three backpropagation networks and two mathe-
matical models. Rule models are represented in If–Then
form. This section describes these models, which are
based on statistical data and empirical knowledge on coal
blending and distillation.

3.1. Quality prediction models for coal blend

In the coal blending process, coal quality is characterized
mainly by the caking property index, the volatile matter
content, the sulfur content and the ash content (Van Kreve-
len, 1961). Assume thatGi, Vbi, Sbi and Abi denote these
properties of theith type of coal, respectively;G, Vb, Sb

and Ab are for the coal blend, respectively; andĜ, V̂b, Ŝb

andÂb are the predicted values.xi is the percentage of theith
type of coal. The quality prediction models for the coal
blend are constructed to predict its quality from the quality
and percentage of each type of coal, i.e., to obtainĜ, V̂b, Ŝb

andÂb from Gi, Vbi, Sbi, Abi andxi.
Empirical knowledge and statistical data show thatG, Vb,

Sb andAb for the most part depend only onxiGi, xiVbi, xiSbi

andxiAbi, respectively. In particular, the relationship among
G andxiGi is more complicated than the other three relation-
ships. To predict the quality of the coal blend accurately, the
following expressions are introduced:

Ĝ�
X7
i�1

aixiGi 1 DG; �1�

V̂b �
X7
i�1

xiVbi 1 DVb; �2a�

Ŝb �
X7
i�1

xiSbi 1 DSb �2b�

and

Âb �
X7
i�1

xiAbi 1 DAb; �2c�

whereai is the correlation coefficient, andDG, DVb, DSb and
DAb are compensation values that are used to improve the
accuracy of the prediction of coal blend quality.

In fact, Eq. (1) describes a backpropagation network with
two layers for predictingG (BP2L-G) that has an input layer
with seven neurons and an output layer with one neuron,
while there are an input layer, several hidden layers and an
output layer in a general backpropagation network (Rumel-
hart et al., 1986; Hagan et al., 1996). In the input layer, both
the input and output of theith neuron arexiGi; and in the
output layer, those of the neuron areĜ. ai is the weight of the
signal from theith neuron of the input layer to the neuron of
the output layer andDG is the bias of the neuron in the
output layer; they are determined by training BP2L-G
based on statistical data.

To determine the compensation valuesDVb, DSb andDAb,
Eqs. (2) are written in the following form:

B̂� DX 1 DB; �3�
where

B̂�
V̂b

Ŝb

Âb

2664
3775; D �

Vb1 Vb2
… Vb7

Sb1 Sb2
… Sb7

Ab1 Ab2
… Ab7

2664
3775; �4a�

X �

x1

x2

..

.

x7

266666664

377777775; DB�
DVb

DSb

DAb

2664
3775: �4b�

Let B denote the measured value corresponding toB̂.
Then the compensation valueDB(k) for the kth blending is
given as the error between the last prediction,B̂�k 2 1�, and
the measured value,B(k 2 1); i.e.,

DB�k� � B̂�k 2 1�2 B�k 2 1�: �5�
Eqs. (3) and (5) yield the following mathematical model:

B̂�k� � D�k�X�k�1 DB�k�; �6a�

DB�k� �
Xk 2 1

j�1

�D�j�X�j�2 B�j��1 DB�1�; �6b�

whereDB(1) is the compensation value for the first blending
and is determined by the empirical data.
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3.2. Quality prediction models for coke

The quality of coke can be characterized by the MICUM
strength 40 mm index, the MICUM strength 10 mm index,
the sulfur content and the ash content (The Iron and Steel
Institute of Japan, 1979). LetM40, M10, SandA denote these
properties, respectively, and̂M40, M̂10, Ŝ and Â denote the
corresponding predicted values. The quality prediction
models for coke are constructed to predict the quality of
coke from the quality of the coal blend, i.e., to obtain
M̂40, M̂10, ŜandÂ from G, Vb, Sb andAb.

M40 andM10 have been shown to depend mainly onG, Vb

andAb under certain distillation conditions. However, these
relationships are nonlinear. To predictM40 andM10 from G,
Vb and Ab accurately, two backpropagation networks with
three layers, BP3L-M40 and BP3L-M10, are constructed,
respectively.

As shown in Fig. 3, BP3L-M40 and BP3L-M10 have the
same structure: an input layer with three neurons, a hidden
layer with 12 neurons and an output layer with one neuron.
The inputs of the three neurons of the input layer for both
BP3L-M40 and BP3L-M10 areG, Vb and Ab, and their
outputs are the same as the inputs. Let

pI
1 � G; pI

2 � Vb; pI
3 � Ab: �7�

Then the input and output of theith neuron of the hidden
layer of BP3L-M40 are defined to be

pH1
i �

X3
j�1

wH1
i;j pI

j 1 bH1
i �8a�

and

yH1
i � tansig�pH1

i �; �8b�
respectively, and those of the neuron of the output layer of
BP3L-M40 are defined to be

pO1 �
X12

j�1

wO1
j yH1

j 1 bO1 �9a�

and

M̂40 � pO1
; �9b�

respectively, where tansig(·) denotes the tan-sigmoid trans-
fer function, which has the form

tansig�x� � 2
1 1 e22x 2 1: �10�

The tan-sigmoid transfer function maps the input to the
interval (21, 1) (Hagan et al., 1996). In Eqs. (8a) and
(9a), wH1

ij denotes the weight of the signal from thejth
neuron of the input layer to theith neuron of the hidden
layer, bH1

i denotes the bias of theith neuron of the hidden
layer, wO1

j denotes the weight of the signal from thejth
neuron of the hidden layer to the neuron of the output
layer, andbO1 denotes the bias of the neuron of the output
layer.

Eqs. (7)–(9) can be written in the following form:

M̂40 �WO1 tansig�WH1PI 1 BH1�1 bO1
; �11�

where

WH1 �

wH1
1;1 wH1

1;2 wH1
1;3

wH1
2;1 wH1

2;2 wH1
2;3

..

. ..
. ..

.

wH1
12;1 wH1

12;2 wH1
12;3

2666666664

3777777775
; BH1 �

bH1
1

bH1
2

..

.

bH1
12

266666664

377777775; �12a�

PI �
pI

1

pI
2

pI
3

26664
37775; WO1 � wO1

1 wO1
2

… wO1
12

h i
: �12b�

Using the same method as forM40 yields

M̂10 �WO2 tansig�WH2PI 1 BH2�1 bO2
; �13�

where

WH2 �

wH2
1;1 wH2

1;2 wH2
1;3

wH2
2;1 wH2

2;2 wH2
2;3

..

. ..
. ..

.

wH2
12;1 wH2

12;2 wH2
12;3

2666666664

3777777775
; BH2 �

bH2
1

bH2
2

..

.

bH2
12

266666664

377777775; �14a�

WO2 � wO2
1 wO2

2
… wO2

12

h i
: �14b�

The weight matricesWH1, WO1, WH2 andWO2, and the biases
BH1, bO1, BH2 andbO2 are determined by training BP3L-M40
and BP3L-M10 based on statistical data.

From statistical data and empirical knowledge, the
predicted values ofSandA can be computed from:

Ŝ� hs

hc
Sb 1 DS �15a�

and

Â� 1
hc

Ab 1 DA; �15b�
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whereh c is the coking coefficient of the coal blend andh s is
the residual coefficient of the sulfur content of the coal
blend. Usually,h c � 0.75–0.80 andh s � 0.65–0.75. The
compensation valuesDS and DA improve the prediction
accuracy. The following mathematical model for predicting
the sulfur content and ash content of coke in thekth blending
is obtained by a process similar to that for Eqs. (6):

Ŝ�k� � hs�k�
hc�k� Sb�k�1 DS�k�; �16a�

Â�k� � 1
hc�k� Ab�k�1 DA�k�; �16b�

DS�k� �
Xk 2 1

i�1

hs�i�
hc�i� Sb�i�2 S�i�

� �
1 DS�1� �16c�

and

DA�k� �
Xk 2 1

i�1

1
hc�i� Ab�i�2 A�i�

� �
1 DA�1�; �16d�

whereDS(1) andDA(1) are the compensation values in the
first blending, which are determined from empirical data.

3.3. Training of neural networks

BP2L-G, BP3L-M40 and BP3L-M10 are trained based on
statistical data to accurately predictG, M40 and M10. The
training process requires a set of network inputs and target
outputs culled from measured statistical values for the coal
blending and distillation. More specifically, the network
inputs of BP2L-G arex1G1,x2G2,…,x7G7 and the target
output is G. The network inputs of both BP3L-M40 and
BP3L-M10 areG, Vb and Ab, and the target output isM40

for BP3L-M40 andM10 for BP3L-M10. The network perfor-
mance functions of BP2L-G, BP3L-M40 and BP3L-M10
are the average squared errors between the network outputs
and the target outputs. For example, the network

performance function of BP3L-M40 is defined to be

J � 1
N

XN
k�1

�M40�k�2 M̂40�k��2; �17�

whereN is the total number ofM40 values used in training,
andk indicates the order of the data. The weights and biases
of BP2L-G, BP3L-M40 and BP3L-M10 are iteratively
adjusted to minimize the associated network performance
function during training.

In our scheme, a basic backpropagation training algo-
rithm (Rumelhart et al., 1986; Hagan et al., 1996) deter-
mines the weights and biases of BP2L-G, BP3L-M40 and
BP3L-M10. It employs the gradient of the network perfor-
mance function to adjust the weights and biases and mini-
mize that function. The gradient is determined by the
backpropagation technique, which involves performing
computations backwards through the network using the
chain rule of calculus. In the basic backpropagation training
algorithm, the weights and biases are moved in the direction
of the negative gradient, and the performance function
decreases very rapidly. Letxwb(k) be the vector of current
weights and biases,gwb(k) be the current gradient,hwb(k) be
the current learning rate, andJ be the associated network
performance function. Then the training algorithm can be
written as

xwb�k 1 1� � xwb�k�2 hwb�k�gwb�k�; �18a�

gwb�k� � 2J
2xwb

�k�; �18b�

wherek is the number of iterations. A batch training method
is used to implement the above gradient descent algorithm.
In this training, the weights and biases of the network are
updated only after all the training data have been fed to the
network. The gradients calculated during each training
session are added together to determine the changes in the
weights and biases.

The initial weights and biases of BP2L-G, BP3L-M40
and BP3L-M10 are based on statistical data for the last
two years. When new statistical data are collected, the
weights and biases are updated based on the previous
weights and biases, and the new data.

3.4. Rule models

In coal blending and distillation, there may exist several
sets of percentages of coal to be blended that satisfy the
same quality requirements for coke. It is important to effi-
ciently determine a practical percentage for each type of
coal. On the other hand, there are some relationships that
cannot be described by backpropagation networks and
mathematical models; but these relationships influence the
quality prediction accuracy and the computational accuracy
of the target percentages. In addition, how suitable compen-
sation values are selected in mathematical models (6) and
(16) is also an important aspect for improving the quality
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Table 1
Some typical rule models for coal blending and distillation

Number Condition Action

R1 Gi increases G increases
R2 Vbi increases Vb increases
R3 Sbi increases Sb increases
R4 Abi increases Ab increases
R5 G increases

or Vb

decreases or
Ab decreases

M40 increases andM10 decreases

R6 G decreases
or Vb

increases or
Ab increases

M40 decreases andM10 increases

R7 Sb increases S increases
R8 Ab increases A increases



prediction accuracy. To meet these requirements, we need
to construct rule models based on the empirical knowledge
of experts and veteran operators.

All rule models use the following production rule form
(Hayes-Roth et al., 1983; Jackson, 1986; Liebowitz, 1988;
Mockler and Dologite, 1992):

R# : If conditionThenaction; �19�
whereR# is the number of the rule model,condition is the
operating state of the process or a logical combination, and
action is the conclusion or operation.

Some relationships among the parameters expressing the
quality and the percentages can be represented by rule
models based on statistical data and empirical knowledge.
For example, some typical rule models are listed in Table 1.
These rule models are also used to examine whether BP2L-
G, BP3L-M40, BP3L-M10 and the mathematical models are
correct or not.

The computation of the target percentages is divided into

two steps: (1) determine the allowable values of the quality
of the blend coal from the quality requirements of the coke;
and (2) determine the target percentages from both the
allowable values and the quality of each type of coal. The
solution of each step is not unique. To obtain a suitable
solution in each step quickly, empirical knowledge and
data must be used effectively.

By using the empirical knowledge and data, rule models
for computing the target percentages are constructed based
on the operational states of the process. The operational
states are used in theconditionpart of the rule modes. For
instance, if we assume that the given quality index of coke is
M40g, M10g, Sg andAg, and the allowable values of the quality
of the coal blend areGg, Vbg, Sbg andAbg, then some opera-
tional states, which are numberedS#, are listed in Table 2.

About 150 rule models for computing the allowable
values of the coal blend and the target percentages were
developed. Some typical ones are listed in Table 3.

4. Methodology for computing target percentages

An expert controller was designed to compute the target
percentages. It uses a reasoning strategy based on the
constructed backpropagation networks, mathematical
models and rule models, and a combination of forward
chaining and model-based reasoning. The reasoning strat-
egy is implemented in two algorithms that compute the
allowable values of the quality of the coal blend and the
target percentages. The predictions of the coal blend
and coke quality are repetitively performed in the two
algorithms.

4.1. Computation procedure and objective

The procedure for computing the target percentages is
shown in Fig. 4.

The control objective of the coal blending process is to
make the quality of the coke satisfy the following quality
index requirements:

M40 $ M40g; M10 # M10g; �20a�

S# Sg; A # Ag: �20b�
To achieve this, the objective of the first step of the

computation is to obtain the allowable valuesGg, Vbg, Sbg

andAbg so that the predicted valueŝM40, M̂10, ŜandÂ for the
quality of the coke satisfy

M40g # M̂40 # M40g 1 DM40r; �21a�

M10g 2 DM40r # M̂10 # M10g; �21b�

Ŝ# Sg; Â # Ag: �21c�
The objective of the second step of the computation is to

obtain the target percentagesxi (i � 1,2,…,7) so that the
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Table 2
Main operational states of the process

Number States

S1 M40 is smaller thanM40g

S2 M40 is much larger thanM40g

S3 M10 is larger thanM10g

S4 M10 is much smaller thanM10g

S5 S is larger thanSg

S6 A is larger thanAg

S7 G is smaller thanGg

S8 Vb is larger thanVbg

S9 Sb is larger thanSbg

S10 Ab is larger thanAbg

S11 Gi is larger thanGg

S12 Gi is smaller thanGg

S13 Vbi is larger thanVbg

S14 Vbi is smaller thanVbg

S15 Sbi is larger thanSbg

S16 Sbi is smaller thanSbg

S17 Abi is larger thanAbg

S18 Abi is smaller thanAbg

Table 3
Some typical rule models for computing target percentages

Number Condition Action

R9 S1 or S2 increaseGg and decreaseVbg

R10 S2 or S4 decreaseGg and increaseVbg

R11 S5 decreaseSbg

R12 S6 decreaseAbg

R13 S7 andS11 increasexi

R14 S7 andS12 decreasexi

R15 S8 andS13 decreasexi

R16 S8 andS14 increasexi

R17 S9 andS15 decreasexi

R18 S9 andS16 increasexi

R19 S10 andS17 decreasexi

R20 S10 andS18 increasexi



predicted valueŝG, V̂b, Ŝb andÂb for the quality of the coal
blend satisfy

Gg # Ĝ # Gg 1 DGr; V̂b # Vbg; �22a�

Âb # Abg; Ŝb # Sbg: �22b�
DM40r, DM10r andDGr are empirically determined positive
values that are used to keep the computational process from
being too conservative. In general,DM40r � 2–5,DM10r �
1–2 andDGr � 2–10.

The introduction ofDM40r, DM10r andDGr also simplifies
expressions for some states of the process. For example, the
statesS2 andS4 can be expressed asM40 . M40g1 DM40r and
M10 , M10g 2 DM10r, respectively.

4.2. Structure of expert controller

An expert controller was designed to achieve the compu-
tational objective in each step. It computes the target
percentages and the corresponding flow rates according to
the computational procedure in Fig. 4.

The structure of the expert controller is shown in Fig. 5. It
consists of a knowledge base, a database, a working
memory, an inference engine, a calculation module, a
control and communication interface, and a man–machine
interface.

The knowledge base and database store empirical know-
ledge and data. When the quality requirements of the coke
or the quality of the coal to be blended change, the asso-
ciated states and data are sent to the working memory. The
inference engine gets the empirical knowledge and data
from the knowledge base and database, and uses a reasoning
strategy combined with forward chaining (Hayes-Roth et
al., 1983; Jackson, 1986; Liebowitz, 1988; Efstathiou,
1989; Mockler and Dologite, 1992) and model-based
reasoning (Ishiduka and Kobayashi, 1991) to compute
the target percentages. The intermediate results and
states are stored in the working memory and employed
repetitively. The computed target percentages, i.e., the
reasoning results, are stored in the database and sent to
the calculation module, which computes the target flow
rates from the target percentages, moisture content and
total flow rate of the coal to be blended. The moisture
content and total flow rate come from the database. The
control and communication interface is used to send the
target flow rates to the distributed controller and
provide process data to the database. The man–machine
interface is employed to edit and modify the knowledge
base and database, and display data in the database in
the form of tables and graphics.

A important feature of the expert controller is that it
combines the backpropagation networks, mathematical
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Fig. 4. Computation procedure for target percentages.

Fig. 5. Structure of expert controller.



models and rule models. The combination ensures accuracy
in the computation of the target percentages.

4.3. Computation algorithms

The computation of the target percentages is implemen-
ted in two algorithms. One computes the allowable value of
the coal blend quality from the quality requirements of the
coke, and the other computes the target percentages from
the allowable values and the quality of each type of coal.

More specifically, the allowable valuesSbg and Abg are
obtained from Eqs. (15) as follows:

Sbg � hc

hs
�Sg 2 DS� �23a�

and

Abg � hc�Ag 2 DA�: �23b�
The allowable valuesGg andVbg are determined so that the
predicted valuesM̂40 and M̂10 obtained from BP3L-M40
and BP3L-M10 satisfy inequalities (21a) and (21b), respec-
tively. This can be achieved through an iterative computa-
tion. That is, first, select empirical initial values ofGg and
Vbg from the knowledge base; then computeM̂40 and M̂10

from Eqs. (11) and (13), respectively, and check whether
inequalities (21a) and (21b) hold or not. If not, adjustGg and
Vbg as follows:

Gg � Gg 1 DGg �24a�
and

Vbg � Vbg 1 DVbg; �24b�
whereDGg andDVbg are determined by the errors between
M̂40 and M40g, and M̂10 and M10g. For example, when
M̂40 , M40g,

DGg � a1�M40g 2 M̂40� �25a�
and

DVbg � a2�M̂40 2 M40g� �25b�
are selected according to rule modelR9; and when
M̂40 . M40g 1 DM40r,

DGg � b1�M40g 1 DM40r 2 M̂40� �26a�
and

DVbg � b2�M̂40 2 M40g 2 DM40r� �26b�
are selected according to rule modelR10, wherea1, a2, b1

and b2 are empirically determined positive values that
determine the convergence rate of the iterative computation.

Based on the above discussion, algorithm 1 has been
developed to compute the allowable value of the coal
blend quality.

Algorithm 1 (Computes Allowable Values):
Step 1. Compute the allowable valuesSbg andAbg from Sg

and Ag using Eqs. (23a) and (23b), respectively.

Step 2. Select suitable empirical values ofG andVb from
the knowledge base as the initial values ofGg and
Vbg, respectively.

Step 3. ComputeM̂40 and M̂10 from BP3L-M40 and
BP3L-M10 by replacingG and Vb with Gg and
Vbg, respectively.

Step 4. Check ifM̂40 andM̂10 satisfy Eqs. (21a) and (21b).
If not, use the rule models, such asR9–R12, and
adjustment laws, such as Eqs. (24)–(26), to adjust
Gg andVbg, and return to step 3. If so, go to the next
step.

Step 5. Check ifGg andVbg are in the empirical range. If
so, take theGg, Vbg, Sbg and Abg obtained in
steps 1–4 to be the allowable value of the
coal blend quality, and stop the algorithm. If
not, choose other empirical values ofG and Vb

as the initial values ofGg and Vbg, and return
to step 3. If suitableGg and Vbg cannot be
obtained in a given number of iterations, stop
the algorithm and report that the allowable
values ofG and Vb do not exist.

Just as in algorithm 1, the target percentages are also
obtained by an iterative computation algorithm. First, select
empirical percentages for the coal to be blended as the initial
values of the target percentages. Next, compute the
predicted valueŝG, V̂b, Ŝb andÂb from BP2L-G and math-
ematical model (6) based on the initial percentages. Then
check if the computed̂G, V̂b, Ŝb and Âb satisfy inequality
(22). If not, adjustxi as follows:

xi � xi 1 Dxi ; �27�

wherexi are determined by the errors between the allowable
and predicted values of the coal blend quality taking the
quality of each type of coal into account. For instance,
whenĜ , Gg andGi . Gg,

Dxi � g1�Gg 2 Ĝ� �28�

is selected according to rule modelR13; and whenÂb . Abg

andAbi , Abg,

Dxi � g2�Âg 2 Abg� �29�

is selected according to rule modelR20, whereg1 andg2 are
empirically determined positive values.

Algorithm 2 is obtained from the above discussion.
Algorithm 2 (Computes Target Percentages):

Step 1. Select a set of empirical percentages of coal to be
blended from the knowledge base as the initial
values of the target percentagesxi (i � 1,2,…,7).
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Step 2. Predict the coal blend quality, i.e.,Ĝ, V̂b, Ŝb and
Âb, from the quality and the selected percentage of
each type of coal using BP2L-G and mathematical
model (6).

Step 3. Check if (22) is satisfied. If not, use adjustment
laws, such as Eqs. (27)–(29), and rule models,
such asR13–R20, to adjustxi, and return to step
2. If so, go to the next step.

Step 4. Check if the percentages obtained in steps 1–3 are
in the empirical range. If so, take the obtained
percentages to be the target percentages, and
stop the algorithm. If not, choose other empirical
percentages from the knowledge base and return
to step 2. If suitablexi (i � 1,2,…,7) cannot be
obtained in a given number of iterations, stop the
algorithm and report that useful percentages do
not exist.

The target flow rate of each type of coal is determined
from the following expression:

Qi � xi

1 2 bi
Q; �30�

whereQi andbi are the target flow rate and moisture content
of the ith type coal, andQ is the total flow rate of the coal
blend. The target flow rates are tracked by the distributed
controller to obtain the desired coal blend and thus the
desired coke.

5. Practical application and run results

The expert control strategy proposed was implemented in

an expert control system, which carried out real-time control
of the coal blending process in an iron and steel plant. The
validity of this strategy has been proved by the results of
actual runs.

5.1. Implementation

The expert control system has the structure shown in
Fig. 6, which corresponds to Fig. 2. It consists mainly
of an expert control computer system, a distributed
control system and a quality measurement system. The
expert control computer system uses an IPC 810 type
computer, and the distributed control system uses an
S9000 series controller made by the Honeywell
Corporation. The expert controller was implemented in
the expert control computer system. The S9000 control-
ler is a distributed controller connected to seven control
loops so as to ensure that the actual flow rate tracks the
target flow rate for each type of coal.

One very important issue in the implementation of
the expert controller is to determine suitable weights
and biases for the backpropagation networks, and
empirical values for the mathematical models. The
initial weights and biases were obtained by training
the backpropagation networks based on statistical data
collected in 1995 and 1996, and the initial empirical
values were culled from the statistical data of those
two years. In addition, the rule models, such asR1–
R8, were also used to check if the initial weights, biases
and empirical values were suitable.

In order to adapt to changes in the environment and oper-
ating conditions, the backpropagation networks, mathema-
tical models and rule models should be modified using new
statistical data and empirical knowledge. This adaptation is
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Fig. 6. Structure of the constructed expert control system.



carried out by learning functions of the expert control
system, which mainly

1. renew the statistical data used in the training of the back-
propagation networks;

2. update the weights and biases of the backpropagation
networks, and the empirical values of the mathematical
models and rule models; and

3. add new rule models and delete unnecessary old rule
models.

The coke and coal quality is measured every eight hours.
New statistical data is culled from the measured process
data by an arithmetic mean method. The number of statis-
tical data used in training the backpropagation networks is
fixed. These data are renewed and the oldest data are deleted
when new data are added. The training of the backpropaga-
tion networks for determining new weights and biases is
based on the renewed statistical data and the previous
weights and biases.

The functions of the expert controller, which mainly
computes the target percentages and the target flow rates,
were implemented in a special program package written in
Borland C11. The functions of the distributed controller,
which mainly performs the tracking control of the target
flow rates, were implemented by configuring the S9000
controller, which employs a PI control algorithm and a
single-loop control technique to perform the distributed
tracking control of the target flow rates.

5.2. Run results

The proposed expert control strategy was applied to the
control of the coal blending process. Tables 4 and 5 show

some run results. The quality index of coke and the
empirical values used in computing the target percentages
were

M40g� 76:5; M10g� 9; Sg � 0:7; Ag � 14:5;

�31a�
DM40r � 3; DM10r � 2; DGr � 8: �31b�
The types of coal in the sixth and seventh hoppers were the
same as those in the first and second hoppers, respectively. It
is clear that the quality of coke produced using the
computed target percentages satisfied the quality require-
ments described in Eqs. (20).

Fig. 7 shows the measured and predicted values of the
quality of coke during one month. The quality index of coke
and the empirical values in Eqs. (31) were used to compute
the target percentages. The mean measured values ofM40,
M10, SandA are 78.18, 8.27, 0.63 and 13.78, and the mean
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Table 4
Quality and computed percentages of each type of coal

i Gi Vbi Sbi Abi xi

1 72.03 22.29 0.73 8.31 14.04
2 75.98 30.47 0.54 12.78 17.48
3 86.68 23.84 0.85 11.80 15.20
4 36.32 15.92 0.46 10.29 13.76
5 84.13 23.49 1.10 12.21 8.00
6 72.03 22.29 0.73 8.31 14.04
7 75.98 30.47 0.54 12.78 17.48

Table 5
Predicted and measured quality of coal blend and coke

Coal blend G Vb Sb Ab

Predicted value 74.72 24.60 0.67 10.99
Measured value 75.12 24.71 0.66 11.06

Coke M40 M10 S A

Predicted value 79.06 8.29 0.61 13.91
Measured value 79.20 8.20 0.59 13.82

Fig. 7. Measured and predicted values of quality of coke during one month.



predicted values are 78.28, 8.24, 0.62 and 13.89, respec-
tively. The results show that the measured values of coke
quality satisfied the following general quality requirements:

M40 $ 76:5; M10 # 9; S# 0:7; A # 14:5;

�32�
and the measured values approach the predicted values very
closely. The run results show that the control requirements
of the coal blending process are satisfied.

6. Conclusions

A model-based expert control strategy using backpropa-
gation networks is proposed for the control of the coal
blending process in an iron and steel plant. It involves the
computation and tracking of the target percentage of each
type of coal to be blended. The computation is implemented
through two iterative algorithms that are based on a combi-
nation of backpropagation networks, mathematical models
and rule models, and use forward chaining and model-based
reasoning. The prediction of the coal blend and coke quality
is carried out repetitively based on the backpropagation
networks and mathematical models during the computation
of the target percentages. The backpropagation networks,
mathematical models and rule models that are used to
express the relationships among the parameters of the
process are constructed based on statistical data and empiri-
cal knowledge. The tracking of the target percentages is
achieved by a distributed control technique employing a
PI control algorithm. An expert control system designed
using the proposed expert control strategy was applied to
the control of the coal blending process. The run results
show that the proposed strategy is an effective way to
control the coal blending process.
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