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Abstract
In this paper we investigate a bidisperse model ferrofluid, where the aggregates
are treated as flexible chains, under the influence of an arbitrary valued external
magnetic field. An extensive comparison of the theoretical predictions to the
results of the computer simulations is provided. Both magnetostatic properties
and structural observables are investigated with the help of the newly developed
theoretical approach and molecular dynamic simulations. It is shown that the
results of the cluster analysis are very sensitive to the cluster definition. Here we
use two different criteria for the particles to be bound: an energy criterion which
is slightly different in the theory and simulations due to technical problems,
and an entropy criterion which is the same for the molecular dynamics and
theoretical model. This enables us to compare qualitatively and quantitatively
theoretical and numerical microstructural observables, as well as the macro
properties of the bidisperse ferrofluids. Finally, an answer to the question which
chain criterion should actually be used is provided in this paper.

1. Introduction

First synthesized in the beginning of the 1960s [1], magnetic fluids (known also as ferrofluids
or ferrocolloids) consisting of single-domain ferro- (ferri-, antiferro-) magnetic particles in a
magnetopassive liquid environment appeared to be an excellent example of magnetocontrol-
lable systems. These particles in ferrocolloids (usually made of Co, Fe, Ni and their oxides)
have a size of less than 25–30 nm, which is why they experience only a very weak concentration
gradient in the gravitational field and almost never sediment. To avoid irreversible aggregation
in a system, particles are stabilized by steric coatings (in nonelectrolytic carrier liquids) or by
electrical double layers (in aqueous solutions). Their unique combination of strong response to
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an external magnetic field together with their liquid state gives rise to numerous applications
of magnetic fluids in engineering and arts, and magnetic fluids also appear to be very useful in
biomedical applications, such as an effective tool in cancer treatment [2, 3].

The first theoretical models treated the ferrofluid as an ideal superparamagnetic gas [4],
in which the magnetization obeys a Langevin law. However, experimental evidence demon-
strated clearly that the magnetic particle did interact. An attempt to apply the Ising model and
directly introduce a molecular Weiss field gave good results for ferrofluids with a low mag-
netic concentration and high fields [5] but was not quite as successful in other cases. This is
because, unlike the exchange interaction with a constant sign, the noncentral magnetic dipole–
dipole interparticle interaction can change sign from attraction to repulsion. Thus, the spon-
taneous magnetization predicted by the Weiss model is improbable in ferrocolloids, and has
never been observed in any experiment. The so-called modified mean field approach [6, 7] and
the first-order perturbation theory [8] allowed the development of a theoretical ferrofluid model
with interparticle interactions taken into account. However, detailed experimental analysis of
magneto-optic [9–11], magneto-viscous [12–14] and diffusion [15] properties of ferrofluids
very soon hinted towards the existence of a complex anisotropy in the ferrofluid microstructure
in an external magnetic field. The reason for this anisotropy was the presence of different aggre-
gates, which were attributed to the following structures: chain aggregates (tens of nanometres
in size), fractal loose aggregates (hundreds of nanometres in size) and drops (micrometres in
size). A number of various computer simulations were used to analyse the microstructure of
a ferrofluid [16–20]. All of these works reported the presence of linear chain-like structures
in the systems investigated. Recently these observations found an experimental proof in cryo-
TEM microscopy [21]. The theoretical description of chaining is usually based on the density
functional approach [22–24]. Unfortunately, until recently, almost all known theoretical studies
dealt with model monodisperse dipolar fluids and magnetic colloids. This was mostly caused
by the mathematical difficulties encountered in building the partition function for the multicom-
ponent system with non-central magnetic interaction (either in terms of hard sphere repulsion
or Lennard-Jones interaction). The next approximation that was usually adopted in these theo-
ries is related to the chain rigidity, i.e. chains were considered to be rod-like structures. Such an
approximation might be valid only for highly interacting particles. The other problem is that the
influence of an external magnetic field was taken into account only in the region of the magnetic
saturation, where the magnetic moment of each particle was aligned with the magnetic field.
This was done since it resulted in a nice factorization of the partition function for each chain.

In the present paper we get rid of the major part of these approximations, namely we
treat a bidisperse model ferrofluid with flexible chains under the influence of an arbitrary
valued external magnetic field. Such a system was recently studied by one of us in computer
simulations [16]. In this work we provide an extensive comparison of the theoretical predictions
to the results of the computer simulations. In the next section we will describe the details of our
computer model. In section 3 we compare the newly developed theoretical approach with the
results of the molecular dynamic simulations on the magnetostatic properties. It turns out that
with the energy criterion for the theoretical cluster definition we can easily reach a nice accord
between theoretically and numerically predicted magnetization curves and initial susceptibility
for different granulometric compositions of our model fluid. However, a more detailed analysis
of the cluster structure shows noticeable deviations in cluster sizes and distributions when
compared to the simulational results. This happens partially because a different energy cluster
criterion for the cluster analysis is used in simulation. Due to technical problems we simply
cannot use exactly the same energy criterion in the theoretical analysis and in the simulations.
In section 4 we prove that the observed differences in the structural analysis is caused exactly
by the difference between cluster definitions. For this we perform an extensive theoretical and
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numerical cluster analysis with the same, now entropic, cluster definition. This enables us to
compare qualitatively and quantitatively theoretical and numerical microstructural observables.
Physical results of the work and the scope of different cluster definitions, for example, which
chain criterion should actually be used, are discussed in the conclusions, which are found in
section 5. From the investigations carried out in sections 2–4 one can easily understand that the
nearest neighbour limitation and the neglect of interchain interaction, which are still present in
the theory, are compensating each other. Our presented newly developed theoretical approach
might be used to describe the ferrofluid macroscopic properties and their microstructure.

2. Bidisperse model: computer simulations

The investigated ferrofluid systems consist of N spherical particles distributed in a cubic
simulation box of side length L. Each particle has a diameter of σi and a permanent point
dipole moment mi at its centre. The dipole–dipole interaction potential between particle i and
j is given by

Ud(i j) = − μ0

4π

[
3
〈mi , ri j〉〈m j , ri j 〉

r 5
− 〈mi , m j 〉

r 3

]
, ri j = ri − r j (1)

where ri j is the displacement vector of the two particles and μ0 = 4π × 10−7 H m−1 is the
vacuum magnetic permeability. Using periodic boundary conditions in all spatial directions,
the dipole–dipole interaction is evaluated by the Ewald summation under metallic boundary
condition, which gives [25, 26]

Ud(i j) = −〈mi ,�〉〈m j ,�〉�(ri j), (2)

with

�(r) = μ0

4π

[∑
n∈Z3

erfc(κ |r + nL|)
|r + nL| + 1

π L

∑
n �=0

n−2 exp

(−π2n2

κ2 L2
+ 2π i

L
〈n, r〉

)]
. (3)

Here the sum in equation (3) is performed in a spherical fashion and extends over all simple cu-
bic lattice points n = (k, l, m) with k, l, m integers, and erfc(x) denotes the complementary er-
ror function. The inverse length κ is the splitting parameter of the Ewald sum which weights the
relative contribution of the real and Fourier space parts. The use of the metallic boundary condi-
tion means that no demagnetization effects occur and the applied external magnetic field coin-
cides exactly with the internal field [25–28]. The related formulae for the dipolar force Fdip

i j and

torque τ
dip
i j can be found in [27], where theoretical estimates of the cutoff errors in the Ewald

summation were derived. They were used to determine the optimal values for the Ewald param-
eters, thereby enabling us to minimize the overall computational time at a predefined accuracy.

The short-range interactions between the particles are represented by a purely repulsive
Lennard-Jones potential. Considering the different sizes of the particles, this potential is written
as

ULJ(i j) = 4ε

[(
σi + σ j

2ri j

)12

−
(

σi + σ j

2ri j

)6
]

+ ε, (4)

with a cutoff radius of Rc = 2−5/6(σi + σ j ). In this way the particles have a purely repulsive
force which smoothly decays to zero at Rc. The molecular dynamics simulation method is the
same as the Langevin dynamics implementation described in [27]. For simulating polydisperse
systems, the size variables can be defined according to a reference diameter that is normally
taken to be the mean size of the particles. In our bidisperse case, we take σs to be the diam-
eter of the small particles. We use reduced variables such as a constant reduced temperature
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T ∗ = kT/ε = 1, and a reduced time t∗ = t (ε/m0σ
2
s )1/2, employing a reduced time step of

�t∗ = 2–3 × 10−3. The accuracy of the Ewald sum was tuned to an absolute root mean square
error in the dipolar forces of �Fdip � 10−4μ0m2

0/4πσ 4
s . The runs were started from initial

configurations with random particle positions and dipole moment orientations. The equilibra-
tion time was found to be about t∗ = 100 for the monodisperse system of small particles, which
could go up to t∗ = 500 for systems with a high fraction of large particles. The total simulation
time was at least 3–4 times longer than the equilibration time. Error bars for the simulation
results were determined by dividing the simulation runs into blocks and calculating an estimate
for the standard deviation of the mean. More simulation details can be found in [16, 29].

Our bidisperse ferrofluid system consists of two fractions of magnetite particles with
saturation magnetization of the material Mm equal to 4.8 × 105 A m−1. The diameter of
small fraction particles σs is taken to be 10 nm, and for the diameter of the large particles
we used σl = 16 nm. Particle magnetic moments are mi = πσ 3

i Mm/6, where the index
i might have two different values: i ∈ {s, l} for small and large particles respectively. So,
three different dipolar coupling constant could be calculated: for the interaction between two
large particles (two small particles) we obtain λll(ss) = μ0m2

l(s)/4πkT σ 3
l(s); for the interaction

between small and large particle the expression for this parameter could be written in a form
λsl = 2μ0msm l/πkT (σs + σl)

3. At room temperature, T = 300 K, these values are found to
be λll = 5.32, λss = 1.3, λsl = 2.42.

Two different cases are studied in the present paper. In the first case the total volume
fraction of particles φ is fixed to the value of 0.07, which is typical for normal commercial
ferrofluids. In order to study the influence of polydispersity on the static magnetic properties
the volume fraction of large particle, φl, could be varied. In our case the following values of
φl are investigated: φl = 0; 0.007; 0.02; 0.05; 0.07. Thus we go from a monodisperse system
consisting of small particles only through the bidisperse cases, and finally to a monodisperse
system composed purely by large particles. The total number N of particles in the simulation
box is mainly taken to be N = 1000. But a much larger number of N (=3029) is used in the
case of φl = 0.007 in order to enhance the statistics with a sufficient number of large particles.

In the second case we analyse the influence of small particles on the cluster structure.
Here the large particle volume fraction is fixed to φl = 0.05 and the volume fraction of small
particles is varied from φs = 0 to 0.05. The number of large particles is taken to be NL = 500.
The total number of particles is increased from N = 500 to 2548.

The cluster analysis in the simulation is based on an energy simulation criterion: two
particles are considered to be bound if the absolute value of their dipolar interaction is larger
than 70% of the contact energy of two perfectly coaligned dipolar particles.

First of all the analysis of the magnetization curves for the fluids with different large
particle concentrations and their initial susceptibility was carried out. The influence of the
external magnetic field H is introduced in a form of dimensionless Langevin parameters for
both fractions, which are given by

αs(H ) = μ0ms H/kT, αl(H ) = μ0m l H/kT .

The analysis showed the strong dependence of the magnetization on the concentration of
large particles at low fields. Thus, when the concentration of large particles is small, the
magnetization behavior is close to the one given by the modified mean field approach for
homogeneous ferrofluids [6, 7]:

Mmf(H ) = ML[He(H )],
χmf = ∂Mmf(H )

∂ H

∣∣∣∣
H=0

, He(H ) = H + 1
3 ML(H ),

ML(H ) = [
ρs/vs

]
L[αs(H )] + [

ρl/vl
]

L[αl(H )],
(5)
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where L(x) denotes the Langevin function, and vs, vl, ρs, ρl are the small and the large frac-
tion particle volumes and volume concentrations, respectively. This means that ML(H ) is
the Langevin magnetization for a bidisperse model. This approach [6, 7] allows us to take
into account the influence of interparticle interactions between all particles in a system on the
magnetization. The additional term in the expression for He follows from the first-order pertur-
bation theory and does not depend on the short-range correlations in a system; in other words,
1/3ML(H ) might be obtained by expanding the free energy into a virial series for low concen-
trated ferrofluids. The modified mean field approach has proved to describe magnetic properties
of moderately concentrated ferrocolloids very accurately. Here the value χmf stands for the ini-
tial susceptibility of the bidisperse ferrofluid in terms of the modified mean field approach. The
higher the portion of large particles is, the more noticeable is the growth of the initial suscep-
tibility. The cluster analysis evidences that the aggregation behaviour becomes evident when
φl = 0.05, and as soon as the system consists of large particles only long chains (3–5 particles)
might be observed. The aggregates with uncompensated magnetic moments are supposed to
react on the fields weaker than the one that single particles react on, which is why the presence
of such aggregates leads to an increase of the initial susceptibility. So, in order to describe the
static magnetic properties of systems with a considerable concentration of large particles, it is
absolutely essential to develop a new approach that allows for the presence of chains.

3. Bidisperse model: theory, energy criterion

The static magnetic properties are studied here on the basis of the free energy density functional
approach. Chains could be composed by particles from both fractions and the equilibrium
volume concentration of chains formed by n large particles and m small particles with topology
i in an arbitrary external magnetic field H is g(i, n, m, H ) (for details, see [30]). The volume
of such chains v(i, n, m) depends on the topological alignment of particles, i.e. on the values of
a, b, c which stand for the number of small–small particle, large–small particle, and large–large
particle bonds in a chain respectively:

v(i, n, m) = v−a
s vm−b

sl vn−c
l , a + b + c = n + m − 1.

Since the interaction energy between two small particles in our investigated system is extremely
low, we omit all chains in which two small particles are neighbours; hence a = 0. In order
to obtain the free energy density one has to sum up the energies of the chains for every value
of n, m and arbitrary topology. The topological summation has to be carried out until the
total number I (n, m) of energetically different chains for every pair m, n is taken into account.
However, for the fixed n, m there are chains having the same energy, but different topology.
To take this into account, the entropic factor K (i, n, m), which is equal to the number of
entropically distinguishable chains with the same energy, is used.

For a bifractional system the following free energy functional appears as a natural general-
ization of Frenkel’s thermal fluctuations theory [31] and the bidisperse model developed in [30]:

F(H ) = Fs(H ) + Fl(H ) + kT
∞∑

n+m�1

I (n,m)∑
i=1

K (i, n, m)g(i, n, m, H )

×
[

ln
g(i, n, m, H )v(i, n, m)

e
− ln Q(i, n, m, H )

]
,

Fs(l)(H ) = −kT
[
ρs(l)/vs(l)

]
ln
[
sinh(αs(l)(H ))/αs(l)(H )

]
,

(6)

where expressions for Fs(H ) and Fl(H ) reflect the field response of small and large particles
regardless of whether they are members of a chain or not. Within this paper we use a special
way of bracketing to simplify mathematical expressions: when written Fs(l)(H ) this means that
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two expressions for small particles Fs(H ) and large particles Fl(H ) have the same form and
differ only in the indices of the variables appearing in them (in equation (6), the difference lies
in volumes vs, vl in particular). The key feature of the functional (6) is hidden in a chain par-
tition function Q(i, n, m, H ), whose evaluation has long been a stumbling block for theorists.
To calculate the chain partition function one has to introduce the chain definition. Here we use
the bidisperse generalization of the approach developed in [32], where the analytical form for
a chain partition function has been obtained for the monodisperse case.

The theoretical cluster criterion which is used here is the following. Two particles i and j
are considered to be bound if the values of differences

〈mi , m j 〉
|mi ||m j | − 1,

〈mi , ri j 〉
|mi ||ri j | − 1,

〈m j , ri j 〉
|m j ||ri j | − 1

are infinitesimals of the second order. In other words two particles are bound if their magnetic
moments are almost coaligned, and both magnetic moments are almost coaligned with the
radius vector. The coupling energy between two bounded particles has to be larger than 2.

Unlike the energy simulation criterion, in which no particular spatial alignment of particles
is demanded, here we have visible restrictions for the magnetic moments and radius vectors.

So, the expression for Q(i, n, m, H ), as a bidisperse extension of the partition function
calculated in [32], has the following form:

Q(i, n, m, H ) = q∞(ll)cq∞(sl)b D(i, n + m, H )

n+m−1∏
j=1

C(i, j, H ), (7)

where Q(i, 1, 0, H ) = Q(i, 0, 1, H ) = 1.

D(i, n + m, H ) =

⎧⎪⎪⎨
⎪⎪⎩

sinh[αs(H ) f 1
n+m]

sinh[αs(H )] f 1
n+m

, if n + m particle is small;

sinh
[
αl(H ) f 2(3)

n+m

]
sinh[αl(H )] f 2(3)

n+m

, if n + m particle is large.

C(i, j, H ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αl(H )

sinh[αl(H )]
sinh

[
αl(H ) f 2(3)

j + a1
j j+1

]

αl(H ) f 2(3)
j + a1

j j+1

× exp

⎡
⎣−a1

j j+1

⎧⎨
⎩1 + αl(H )

f 2(3)
j L

[
αl(H ) f 2(3)

j + a1
j j+1

]

αl(H ) f 2(3)
j + a1

j j+1

⎫⎬
⎭
⎤
⎦,

if j particle is large and j + 1 particle is small;
αl(H )

sinh[αl(H )]
sinh

[
αl(H ) f 2(3)

j + a2
j j+1

]

αl(H ) f 2(3)

j + a2
j j+1

× exp

⎡
⎣−a2

j j+1

⎧⎨
⎩1 + αl(H )

f 2(3)
j L

(
αl(H ) f 2(3)

j + a2
j j+1

)

αl(H ) f 2(3)
j + a2

j j+1

⎫⎬
⎭
⎤
⎦,

if j particle is large and j + 1 particle is large;
αs(H )

sinh[αs(H )]
sinh

[
αs(H ) f 1

j + a1
j j+1

]
αs(H ) f 1

j + a1
j j+1

× exp

⎡
⎣−a1

j j+1

⎧⎨
⎩1 + αs(H )

f 1
j L
(
αs(H ) f 1

j + a1
j j+1

)

αs(H ) f 2(3)
j + a1

j j+1

⎫⎬
⎭
⎤
⎦ ,

if j particle is small and j + 1 particle is large.
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Here the coefficients f 1(2,3)

j+1 have the following recursive definition:

f 1
j+1 = 1 + αl(H )

αs(H )

a1
j j+1 f 2(3)

j L
[
αl(H ) f 2(3)

j + a1
j j+1

]

αl(H ) f 2(3)

j + a1
j j+1

,

if j + 1 particle is small and j particle is large;

f 2
j+1 = 1 + αl(H )

αl(H )

a2
j j+1 f 2(3)

j L
[
αl(H ) f 2(3)

j + a2
j j+1

]

αl(H ) f 2(3)
j + a2

j j+1

,

if j + 1 particle is large and j particle is large;

f 3
j+1 = 1 + αs(H )

αl(H )

a1
j j+1 f 1

j L
[
αs(H ) f 1

j + a1
j j+1

]
αs(H ) f 1

j + a1
j j+1

,

if j + 1 particle is large and j particle is small.

The first coefficient in the set is equal to unity f s
1 = 1 for s = 1, 2, 3. The factors a1(2)

ii+1 could
be found from the following equations:∫

dri i+1

vsl(l)
exp

[
−Ud(i i + 1) + ULJ(i i + 1)

kT

]

= q∞(i i + 1) exp
[
a1(2)

ii+1 (cos ωi+1 − 1)

]
, exp(2λii+1) 	 1;

q∞(i i + 1) =
∫

drii+1

vll(sl)
exp

[
−Ud(i i + 1) + ULJ(i i + 1)

kT

]
,

(8)

where ωi+1 stands for the angle between the direction of an external magnetic field and the
magnetic moment of the particle with number i + 1 in the standard spherical coordinate
system [33]. The theoretical criterion defined above restricts the integration limits in
expression (8). The distance between two particles (i, i + 1) in a chain cannot exceed a certain
value. This distance is to be chosen from the condition that for the coupling energy less than 2
(λi i+1 < 2, i, i +1 ∈ {s, l}), chains are not stable. This energy limitation is based on the results
of computer simulations [17], where no chaining is observed for systems with coupling energy
less than 2. With the increase of the distance between particles the characteristic coupling
energy decreases as λii+1/zii+1, where zii+1 = 8r 3

ii+1/(σi + σi+1)
3. So, the critical value of

zc
ii+1 (the largest allowable distance) is zc

ii+1 = λii+1/2. For such an upper limit in (8), using
the saddle point technique [32], the integrals should be rewritten:

2

3λi i+1

∫ zc
ii+1

0
zii+1 exp

[
−ULJ(i i + 1)

kT

]
exp

[
2λii+1

zii+1

]
exp

[
λii+1

2zii+1
(cos ωi+1 − 1)

]
dzii+1

= exp
[
a1(2)

ii+1 (cos ωi+1 − 1)

] 2

3λii+1

∫ zc
ii+1

0
zii+1 exp

[
−ULJ(i i + 1)

kT

]

× exp

[
2λii+1

zii+1

]
dzii+1. (9)

Finally, the free energy (6) minimum has to be found under the mass balance conditions:

ρs

vs
=

∞∑
n+m�1

I (n,m)∑
i=1

K (i, n, m)g(i, n, m, H )m, (10)

ρl

vl
=

∞∑
n+m�1

I (n,m)∑
i=1

K (i, n, m)g(i, n, m, H )n. (11)
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Figure 1. Magnetization related to the saturation magnetization (Ms) versus small particle Langevin
parameter αs(H ) for different volume fractions of large particles φl. Here computer simulation data
Msim/Ms are given as symbols, and the theoretical predictions (6)–(13) M/Ms are presented in
solid lines. The total particle volume fraction φ is fixed at 0.07.

Using Lagrange’s method we obtain the solution

g(i, n, m, H ) = pm
s (H )pn

l (H )Q(i, n, m, H )/v(i, n, m), (12)

where ps, pl are the Lagrange multipliers to be calculated from equations (10) to (11).
As soon as the free energy of the system in thermodynamic equilibrium is known it is quite

easy to calculate both the static magnetization and the initial susceptibility. We stress that it is
not an external field H that acts on each particle in a system, but the effective field He from
equation (5). It is worth saying, that the chain’s presence does not lead to any changes in the
expression for the effective field, because in the form given by equation (5) it is independent
of the type of short-range interparticle interactions which are responsible for the chaining in a
system. So, finally, the following expressions could be written for static magnetization M(H )

and initial susceptibility χ for a bidisperse ferrofluid with chain aggregates:

M(H ) = −∂ F(H )

∂ H

∣∣∣∣
H=He

; χ = ∂M(H )

∂ H

∣∣∣∣
H=0

. (13)

Here, following the mean field approach, the magnetization of the system depends on He.
This replacement was used before for a monodisperse case [34] and appeared to be a very
good approximation. In order to check the developed theoretical model a comparison between
simulation data and theoretical predictions (6)–(13) is carried out.

Five different samples with total volume fraction of particles fixed at φ = 0.07 are
investigated. We used the volume fraction of large particles φl = 0; 0.007; 0.02; 0.05; 0.07.
For the monodisperse system of small particles, both the modified mean field theory and the
chain model give results very close to the numerical data. The ratio of the magnetization to the
saturation magnetization Ms is plotted versus small particle Langevin parameter αs in figure 1
(computer simulation data Msim/Ms are given in symbols, theoretical predictions (6)–(13)
M/Ms are presented in solid lines) for φl = 0.007, 0.02, 0.05, 0.07. The comparison between
simulation results (dots) and theoretical model (13) (solid line) for the initial susceptibility χ as
a function of large particle volume fraction φl is presented in figure 2. As can be clearly seen,
the results of the theoretical model (6)–(13) are close to the simulation dots. However, the
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Figure 2. Initial susceptibility χ as a function of large particle volume fraction φl. The theoretical
prediction (equation (13)) is plotted as a solid line, and numerical results are given as dots (χsim).
The total particle volume fraction φ is fixed at 0.07.

developed approach overestimates the initial susceptibility, and the deviations grow when the
large particle volume fraction increases. To analyse the reason for these deviations the cluster
analysis is provided.

Here we investigated the average chain length and cluster distributions for different
bidisperse systems. The average cluster size is defined by the expression

N(H, φl, φs) =
∑∞

n+m�1

∑I (n,m)

i=1 ng(i, n, m, H )∑∞
n+m�1

∑I (n,m)

i=1 g(i, n, m, H )
. (14)

This means that the average number of large particles per chain is calculated. According to
the theoretical predictions for the maximal external magnetic field strength this value reaches
N(Hmax, 0.07, 0) = 7.7, Hmax ∼ 90 kA m−1 when the large particle volume fraction equals
φl = 0.07. The calculation of the same quantity in computer simulation gives a value which
appears to be much lower, that is N(Hmax, 0.07, 0) = 4.5. Deviations of this order are observed
between theory and simulations for any granulometric composition and for any value of an
external magnetic field. In other words, the theoretical approach does overestimate the chain
length. This fact might explain the discrepancies in the numerically obtained and theoretically
predicted initial susceptibility. However, the main reason for such a difference in cluster
analysis might be treated in several ways. On the one hand, the proposed theoretical model
neglects interchain interactions which would lead to chain shortening. On the other hand, only
the interaction between nearest neighbours is considered, while in the computer simulations all
short- and long-range correlations are taken into account. It is worth mentioning that analytical
estimates suggest that the chain growth due to the additional consideration of the next-
nearest neighbour interactions is negligible. The discrepancy in quantitative microstructure
observables might also be caused by the difference in the theoretical and simulation cluster
definition. In order to bring the main reason of the deviations in cluster analysis to light we
analyse the tendencies of cluster evolution for different granulometric compositions. The
relative chain growth as a function of large particle concentration is presented in figure 3.
Here the ratio N(0, φl, 0.07 − φl)/N(0, 0.07, 0) is plotted as a function of large particle
concentration in a zero external field for the fixed total concentration φ = 0.07. Here and in
subsequent figures dots correspond to the simulation data, and solid curves describe theoretical
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Figure 3. The relative chain growth N(0, φl, 0.07−φl)/N(0, 0.07, 0) as a function of large particle
concentration φl in zero external field. The total particle volume fraction φ is fixed at 0.07. The
solid line describes the theoretical prediction, and simulation data are plotted as dots.

results. As is seen, the qualitative behaviour predicted by the above-mentioned theoretical
model is similar to the one in the computer simulations. In other words, when the large
particle concentration increases so that we start with model monodisperse system of small
particles and through bidisperse systems come to a monodisperse large particle ferrofluid,
the mean chain length increases by approximately 50%. Theoretically obtained values are
N(0, 0.007, 0.063) = 1.6, N(0, 0.07, 0) = 4.0; the same values in the computer simulations
appear to be relatively twice as small: N(0, 0.007, 0.063) = 1.1, N(0, 0.07, 0) = 2.4.
The influence of an external magnetic field on the chaining for model binary mixtures
with different granulometric composition is reflected by figure 4. In this figure the ratio
N(H, φl, 0.07 −φl)/N(Hmax, φl, 0.07 −φl) is plotted for four different values of large particle
concentration as a function of small particle Langevin parameter αs(H ). In figure 4(a) the
system is composed by large particles only (φl = 0.07); in figures 4(b)–(d) φl is equal to 0.05,
0.03, and 0.007 correspondingly. So, the less the large particle concentration is, the less is
the relative field induced chain lengthening. For example, for the monodisperse system of large
particles only the value of N(Hmax, 0.07, 0) in a strong field is almost twice as large than the one
in a zero field (figure 4(a)). At the same moment the system in which the concentration of small
particles is comparatively high (figure 4(d)) exhibits much lower aggregation tendency (some
25%) under the influence of an external magnetic field. The relative comparison between theory
(curves) and simulations (dots) in figure 4 again gives us a very nice agreement. However, the
characteristic difference between theoretically predicted and computationally obtained absolute
values remains. Thus, as was mentioned above, the values of N(Hmax, 0.07, 0) differ by almost
50% in the theoretical model and computer simulations.

To analyse the influence of small particles on cluster sizes the total volume fraction of
large particles is fixed at φl = 0.05 and the small particle concentration is increased. In figure 5
the relative chain shortening N(0, 0.05, φs)/N(0, 0.05, 0) is presented. Here dots stand for the
simulation results and the theoretically obtained ‘poisoning effect’ is illustrated by a solid line.
It is clearly seen that the qualitative behaviour in the computer simulation and the theoretical
model is the same: with an increase of small particle concentration the number of large particles
per chain decreases by approximately 25%. The number of large particles per chain in theory
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Figure 4. The ratio N(H, φl, 0.07 − φl)/N(Hmax, φl, 0.07 − φl) for four different values of large
particle concentration as a function of small particle Langevin parameter αs(H ): φl = 0.07 (a), 0.05
(b), 0.03 (c), 0.007 (d). The total particle volume fraction φ is fixed at 0.07. Solid lines correspond
to theoretical results, and simulation data are plotted as dots.

Figure 5. The relative chain shortening N(0, 0.05, φs)/N(0, 0.05, 0) as a function of small particle
concentration. The volume fraction of large particles is fixed at φl = 0.05. The theoretical result is
plotted as a solid line, and the simulation data are given as dots.

decreases from N(0, 0.05, 0) = 3.5 to N(0, 0.05, 0.05) = 3 in comparison to the results
of simulations which are the following: N(0, 0.05, 0) = 2.5 and N(0, 0.05, 0.05) = 1.8.
The field influence might be studied by looking at figures 6 and 7, where field dependences
of the relative average number of large and small particles per chain respectively are plotted
versus small particle Langevin parameter αs(H ). Figure 6 allows us to analyse the influence of
small particle concentration on the value of N(H, 0.05, φs)/N(Hmax, 0.05, φs). The relative
field induced chain lengthening lies in between 30 and 50% for different small particle
concentrations (in figure 6(a) φs = 0, figure 6(b) φs = 0.01, figure 6(c) φs = 0.03,
figure 6(d) φs = 0.05). The average number of small particles per chain Ns(H, φl, φs) has the
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Figure 6. Field dependence of the relative average number of large particles per chain
N(H, 0.05, φs)/N(Hmax, 0.05, φs) versus the small particle Langevin parameter αs(H ) for
different small particle concentrations: φs = 0 (a), 0.01 (b), 0.03 (c), 0.05 (d). The total volume
fraction of large particles is fixed at φl = 0.05. Theoretical results are presented by solid lines, and
simulation data are plotted as dots.

Figure 7. Field dependence of the relative average number of small particles per chain
Ns(H,0.05, φs)/Ns(Hmax, 0.05, φs) versus the small particle Langevin parameter αs(H ) for
different small particle concentrations: φs = 0.05 (a), 0.03 (b), 0.01 (c), 0.005 (d). The volume
fraction of large particles is fixed at φl = 0.05. Solid lines stand for theoretical results, and
simulation data are given as dots.

following form:

Ns(H, φl, φs) =
∑∞

n�3,m>0

∑I (n,m)

i=1 mg(i, n, m, H )∑∞
n�3,m>0

∑I (n,m)

i=1 g(i, n, m, H )
. (15)

The summation in this expression is carried from n = 3; in other words, only aggregates
with more than two large particles are allowed for. In figure 7(a) (φs = 0.05),
figure 7(b) (φs = 0.03), figure 7(c) (φs = 0.01), figure 7(d) (φs = 0.005) the ratio
Ns(H, 0.05, φs)/Ns(Hmax, 0.05, φs) is presented. These figures also reflect a perfect agreement
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in qualitative behaviour between the theoretical model with the energy cluster definition and
computer simulations. However, the absolute values do not match so nicely: the theoretically
predicted average number of small particles per chain Ns(Hmax, 0.05, 0.05) = 0.48 as opposed
to the numerically obtained Ns(Hmax, 0.05, 0.05) = 0.38.

Summing up the results of this section, our investigations showed that with the
energy criterion for the theoretical cluster definition in demand a nice agreement between
theoretically and numerically predicted magnetization curves and initial susceptibility for
different granulometric compositions of a model fluid can be obtained. However, a more
thorough analysis of the cluster structure reveals noticeable deviations in cluster sizes and
distributions. Taking into account the total agreement between the simulation and the
theoretical qualitative (relative) behaviour of different model binary ferrofluids which has just
been shown for every microstructural observable, the following conclusion can be drawn. The
deviations in cluster analysis between theory and computer simulations are not qualitative. In
the next section we will actually demonstrate that they are caused by the difference in the cluster
criterion. Unfortunately since neither can the theoretical energy criterion be applied to analyse
the simulations, nor can the cluster definition of the simulations be used in the theoretical model
directly, we will demonstrate the agreement by constructing a cluster criterion based on a pure
geometric criterion, which we call henceforward entropic.

4. Bidisperse model: theory, entropy criterion

To prove that the differences in structure analysis is caused exactly by the gap between cluster
definitions an entropic cluster definition is introduced in this section, which has the advantage
that it can be used in the theory as well as in the simulations. Two particles (i, i + 1) are
considered to be bound if the following relations hold true:

|ri i+1| � Rc(i i + 1), 〈mi , mi+1〉 � 0, 〈mi , rii+1〉〈mi+1, rii+1〉 � 0,

where Rc(i i + 1) = 21/6dii+1 stands for the Lennard-Jones potential cutoff radius (see
section 2). The second inequality means that the angle between neighbouring particle magnetic
moments has to be equal to or less than 90◦. The allowable region for the second particle is
presented in figure 8(a). The third item forbids the artificial mutual alignment of magnetic
moments, presented in figure 8(b). The latter inequality demands for the scalar products
〈mi , ri i+1〉, 〈mi , rii+1〉 to have the same sign, which means that the angles between mi(i+1)

and ri i+1 are either both acute, or both obtuse.
With the new cluster definition the free energy of a ferroparticle dimer in the absence of an

external magnetic field might be written as follows:

q0(i i + 1) = 6

d3
ii+1

∫ Rc(ii+1)

0
r 2

ii+1 drii+1

∫ π

0
sin (θii+1) dθii+1

∫ π

0
sin (ωii+1) dωii+1

× exp

{
λii+1d3

ii+1

r 3
ii+1

[
cos(ωii+1)(1 − cos2(θii+1))

]}

× exp

(
−ULJ(i i + 1)

kT

)
I0

(
λii+1d3

ii+1

r 3
ii+1

cos(θii+1) sin(θii+1) sin(ωii+1)

)
,

(16)

where I0(·) designates the modified Bessel function of zero order. When the applied magnetic
field is strong, and the magnetic moments of the ferroparticles are coaligned with the external
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Figure 8. Illustration for the entropic cluster criterion. The sector shown in (a) in light grey
describes the allowable region for the second particle. The radius of this sector is equal to the
Lennard-Jones cutoff radius Rc. Marked angles m∧

i mi+1, m∧
i rii+1 , m∧

i+1rii+1 are acute here; this
means that all necessary scalar products are positive. Part (b) explains the necessity of the third item
in the criterion. Two particles, which are not bound, are presented here. Nevertheless the distance
is limited by Rc and the angle m∧

i mi+1 is acute, and the scalar products 〈mi , rii+1〉, 〈mi+1, rii+1〉
have different signs: 〈mi , rii+1 〉 < 0, 〈mi+1, rii+1〉 > 0.

magnetic field, the expression (16) might be simplified:

q∞(i i + 1) = 12

d3
ii+1

∫ Rc(ii+1)

0
r 2

ii+1 drii+1

∫ π

0
sin (θii+1) dθii+1

× exp

{
λii+1d3

ii+1

r 3
ii+1

[
(1 − 3 cos2(θii+1))

]}
exp

(
−ULJ(i i + 1)

kT

)
. (17)

In regions of zero and infinitely intensive magnetic field the chain partition function
Q(i, n, m, 0(Hmax)) can be presented in a form much easier than in expression (7), because
factorization takes place:

Q(i, n, m, 0(Hmax)) = qb
0(∞)(sl)qc

0(∞)(ll). (18)

In order to check whether it is the criterion which is responsible for the deviations in cluster
analysis, there is no necessity to generalize expression (18) for the arbitrary valued external
magnetic field. In case the deviations vanish (remain) in two (or one of the) limiting cases this
will be a positive (negative) confirmation. So, all theoretical microstructural observables were
recalculated in zero and infinite external magnetic field with the new expression for the chain
energy (18). The simulation data was reanalysed in accordance with the above-mentioned
entropic criterion. Here an extensive comparison of the theoretical predictions to the newly
obtained simulation results is carried out. The chain growth as a function of large particle
concentration is presented in figure 9. Here the values of N(0, φl, 0.07 − φl) (figure 9(a)) and
N(Hmax, φl, 0.07 − φl) (figure 9(b)) are plotted as functions of large particle concentration in
a zero (figure 9(a)) and maximal (figure 9(b)) external field for the fixed total concentration
φ = 0.07. Here and in subsequent figures again dots correspond to the simulation data, solid
curves describe theoretical results, and computational errors are presented by error bars. As is
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Figure 9. The chain growth as a function of large particle concentration. In (a) the value of
N(0, φl, 0.07 − φl) is plotted. In (b) the value N(Hmax, φl, 0.07 − φl) is presented. In both (a)
and (b) the total concentration is fixed at φ = 0.07. Dots correspond to the simulation data, solid
curves describe theoretical results, and computational errors are presented by error bars.

seen, both the qualitative and the quantitative behaviours are similar in theory and in computer
simulations when the unified entropy criterion is used.

It is not only the mean chain length which characterizes the aggregated system. The
number of such chains is also important in a cluster analysis. This information could be
extracted from the number of large particles which take part in cluster formation. In terms
of chain concentrations this observable is

S(H, φl, φs, n) = ng(i, n, m, H )

φl
. (19)

In figures 10(a)–(d) the average number of large particles which take part in forming clusters,
named S(0, φl, 0.07 − φl, n), is presented versus the number of large particles n for different
large particle concentration in the absence of an external magnetic field (φ = 0.07). The
analysis of these curves show that with the growth of small particle concentration (from φs = 0
in figure 10(a), figure 10(b) φs = 0.02, figure 10(c) φs = 0.05 to φs = 0.063 in figure 10(d))
the number of singlets increases sufficiently. In the monodisperse large particle system the
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Figure 10. The average number of large particles which take part in forming clusters, named
S(0, φl, 0.07 − φl, n), versus the number of large particles n per chain for different large particle
concentration in the absence of an external magnetic field: φs = 0 (a), 0.02 (b), 0.05 (c), 0.063 (d).
The total particle volume fraction φ is fixed at 0.07. Dots correspond to the simulation data, solid
curves describe theoretical results, and computational errors are presented by error bars.

function S(H, 0.07, 0, n) has a maximum at n ∼ 5. This means that the majority of chains are
composed by approximately five particles, which is in good agreement with mean chain length
shown in figure 9(a) (the last point). When the concentration of small particles is equal to 0.063
almost all particles remain single and the curve S(H, 0.007, 0.063, n) decreases monotonically
to zero. The agreement between the computer simulation and the theoretical model might easily
be called quantitative.

In the next part of this section the concentration of large particles is fixed at φl = 0.05. In
figures 11(a), (b) the chain length N(H, 0.05, φs) as a function of small particle concentration is
presented for zero (figure 11(a), N(0, 0.05, φs)) and infinite (figure 11(b), N(Hmax, 0.05, φs))
external magnetic field. Here dots stand for the simulation results and the theoretically obtained
chain shortening is illustrated by a solid line; the vertical lines represent error bars of the
numerical cluster analysis with the entropy criterion. This figure appears to be another example
of quantitative coincidence between the theoretical results and simulation data with the same
cluster definition.

In figures 12(a)–(d) the average number of large particles which take part in forming
clusters, S(H, 0.05, φs, n), is presented versus the number of large particles n for different
small particle concentration in the absence of an external magnetic field (H = 0, φl = 0.05).
The same function S(H, 0.05, φs, n), but for an infinite external magnetic field (H = Hmax),
is plotted in figures 13(a)–(d) (φl = 0.05). In both sets of figures 12 and 13 plots 12(13)a
correspond to the value of small particle concentration φs equal to φs = 0, 12(13)b—to
φs = 0.005, in 12(13)c φs = 0.03, and in 12(13)d the small particle concentration reaches
the value φs = 0.05. The tendency observed in these figures is close to the one discussed for
figure 10. The larger the concentration of small particles is, the shorter are the chains. Under
the influence of an external magnetic field no qualitative difference in the system behaviour is
observed; only the maximum of S(H, 0.05, φs, n) is shifted to larger values of n, which means
that the number of long chains increases. In both figures the theoretical curves fit into the
simulation error bars.

In the last figure (figure 14) the average number of small particles per chain Ns(0, 0.05, φs)

is given. It is plotted versus small particle concentration in the absence of an external
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Figure 11. (a) Mean chain length N(0, 0.05, φs) as a function of small particle concentration for
zero external magnetic field. (b) Mean chain length N(Hmax, 0.05, φs) as a function of small
particle concentration for infinite external magnetic field. The concentration of large particles is
fixed at φl = 0.05. Dots stand for the simulation results and the theoretically obtained chain
shortening is illustrated by a solid line; the vertical lines represent error bars of the numerical cluster
analysis with the entropy criterion.

magnetic field. The comparison of the simulation data (dots) to the theoretical results (solid) is
encouraging here.

Finally, the introduction of a new entropy cluster definition into both theory and
simulations allowed us to obtain total quantitative agreement between simulation and
theoretical microstructural observables. Another important conclusion is the following. The
nearest neighbour limitation and the neglect of interchain interaction which are still present in
the theory are compensating each other, because no visible deviations due their absence were
found in the cluster analysis. Unfortunately it is worth saying that this entropy criterion is
unacceptable in the theoretical description of ferrofluid macroscopic properties. The point is
that according to this criterion even slightly correlated particles which occasionally appeared
to be close to each other are treated as a new kinetic stable unit. So, the theoretical approach
with the entropic cluster definition overestimates the chain length, and as a consequence, the
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Figure 12. The average number of large particles which take part in forming clusters,
S(H,0.05, φs, n), versus the number of large particles n per chain for different small particle
concentrations in the absence of an external magnetic field (H = 0, φl = 0.05): φs = 0 (a), 0.005
(b), 0.03 (c), 0.05 (d). Dots correspond to the simulation data, solid curves describe theoretical
results, and the computational errors are presented by error bars.

Figure 13. Function S(H,0.05, φs, n) for an infinite external magnetic field versus the number
of large particles n per chain for different small particle concentrations (H = Hmax, φl = 0.05):
φs = 0 (a), 0.005 (b), 0.03 (c), 0.05 (d). Dots correspond to the simulation data, solid curves
describe theoretical results, and computational errors are presented by error bars.

influence of chains appears to be much stronger than in reality. Thus, the initial susceptibility
calculated with this criterion is approximately twice as large as the observed one.

5. Conclusion

To summarize our theoretical achievements, we got rid of the major part of the approximations
usually adopted in theoretical models devoted to the chain formation in ferrofluids. We
treated a bidisperse model ferrofluid with flexible chains under the influence of an arbitrary
valued external magnetic field theoretically and compared the results to the data obtained
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Figure 14. The average number of small particles per chain Ns(0, 0.05, φs) as a function of small
particle concentration in zero external magnetic field. The concentration of large particles is fixed at
φl = 0.05. Dots correspond to the simulation data, the solid curve describes the theoretical results,
and computational errors are presented by error bars.

via simulations of the fully interacting fluid. A novel theoretical approach was developed to
describe the magnetostatic properties of a bidisperse model ferrofluid with chain aggregates.
The chain partition function was calculated analytically allowing for the chain flexibility in an
arbitrary valued external magnetic field. The presence of chains leads to an increase of the
initial susceptibility in comparison with that of a homogeneous ferrocolloid. We were able
to successfully describe this susceptibility growth which was found in computer simulations in
binary model ferrocolloids with different granulometric compositions in terms of the developed
approach. The chain flexibility which was taken into account in this approach allowed us
to reach a convincing quantitative accord between theoretically and numerically obtained
magnetization curves and the initial susceptibility for different granulometric compositions of
a model fluid. However, a deeper analysis of the cluster structure showed noticeable deviations
in cluster sizes and distributions. This occurs due to the use of different energy cluster criteria
for the cluster analysis. The energy criterion used to analyse the simulations could not be
used in the same way in the theoretical approach, and vice versa, due to technical problems.
Nevertheless we found a convincing agreement between simulational and theoretical results for
the qualitative (relative) behaviour of microstructural observables for various different model
binary ferrofluids. This demonstrated that the deviations in cluster analysis were not qualitative,
but were caused by the difference in the applied cluster criterion. To check this assertion
we carried out an extensive theoretical and numerical cluster analysis using this time the
same entropic cluster definition. This resulted in a full qualitative and quantitative agreement
between simulation and theoretical microstructural observables. This also demonstrated that
the nearest neighbour limitation and the neglect of interchain interaction which are still present
in the theory are compensating each other in the region of investigated parameters of our
systems. Unfortunately, the entropy criterion cannot be used for the theoretical description of
ferrofluid macroscopic properties, because according to this criterion even slightly correlated
particles which occasionally appeared to be close to each other are treated as a new kinetic
stable unit, resulting in a large overestimation of the number of clusters, and as a consequence,
this results in wrong macroscopic observables. However, one should keep in mind that an
analysis of entropic chains is still valuable, since they are those very chains which are visible in
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simulation snapshots and cryo-TEM images. As a result a natural question arises: ‘What kind
of chains should be taken into account?’ Our presented results suggest that the chain definition
has to be chosen according to the phenomena one wants to describe. Even if the snapshots or
cryo-TEM images show the presence of chains in a system, this is not a reason to conclude that
all of those chains are kinetically stable and correlated enough to influence the macroscopic
properties of the investigated ferrocolloid.
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