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Abstract
Magnetoviscous and viscoelastic phenomena in ferrofluids are intimately
related to their internal structures. The available kinetic models describing the
rheological behaviour rely on strong assumptions and simplifications of these
structures. Using equilibrium and nonequilibrium computer simulations, here
we discuss the validity of the crucial assumption of rigid, chain-like aggregates
underlying the chain model. The simulation results support the existence of
chain-like aggregates in strongly interacting ferrofluids, at least for sufficiently
strong magnetic fields. In addition, shear-induced degradation of the clusters is
observed, which apparently is related to strong shear thinning behaviour. For
weakly interacting ferrofluids, only slightly anisotropic spatial structures are
observed. In this regime, the simulation results of the magnetoviscous effect
are in good agreement with the predictions of a dynamical mean-field theory.
Further, we explore some first steps towards a unified kinetic model that is
applicable in both, the weakly and strongly interacting regimes.

1. Motivation

Recent experimental results on strongly interacting cobalt ferrofluids have revealed a huge
magnetoviscous effect, strong shear thinning behaviour as well as shear-induced structural
changes [1, 2]. Despite its strong assumptions, the so-called chain model [3, 4] appears to
provide the best theoretical description of these phenomena in strongly interacting ferrofluids
available at present [5, 6]. It has been shown recently, that a slightly modified version of
the chain model is able to predict the equilibrium magnetization very accurately also for
intermediate interaction strengths [7]. However, it has been argued that the assumption of
rigid, rod-like aggregates underlying the chain model is an oversimplification and that the
flexibility of the chains has a significant influence on the equilibrium properties [8–10]. As
far as flow properties are concerned, the assumption of rigid, rod-like aggregates seems even
more problematic. From polymer kinetic theory, for example, it is known that the degree of
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chain flexibility has a major effect on dynamical properties [11]. The chain model was recently
extended to strong flow regimes by introducing phenomenologically a maximum chain length
in order to capture the effect of flow-induced breaking of chains [5].

In the following, we address some of the main assumptions made within the chain
model by comparison with equilibrium (BD) and non-equilibrium Brownian dynamics (NEBD)
simulations. For weak dipolar interactions, no chain-formation occurs and the chain model is
inapplicable. In this regime, systematic cluster [12] and perturbation expansions [13] have been
employed, which predict equilibrium properties very accurately [7, 14]. An extension of these
approaches to describe rheological behaviour within a dynamical mean-field theory has been
proposed in [15, 16]. Comparisons to simulation results show that the dynamical mean-field
(DMF) model provides an accurate description in the weakly interacting regime. Apparently,
the chain model and DMF model are applicable in different regimes. A unified model that is
valid for all interaction strengths would be desirable.

The remainder of this paper is organized as follows. The model system, the interaction
potential, as well as the time evolution equations are defined in section 2. Equilibrium
properties of the model are discussed in section 3. Section 4 deals with structural and
rheological properties of the model in shear flow. Thereby, the regime of weak interactions
is considered in section 4.1, while strongly interacting ferrofluids are treated in section 4.2.
Some first steps towards a unified kinetic model applicable in the weak and strongly interacting
regime are explored in section 5, before some conclusions are offered in section 6.

2. Model formulation

The ferrofluid model studied here is identical or very similar to those studied in previous
works [14, 17–26].

2.1. Interaction potential

The model system under study consists of N interacting spherical particles in a volume V with
number density ρ = N/V . Let ri and mi denote the position and embedded magnetic point
dipole of particle i , respectively. In the presence of a magnetic field H , the magnetic dipole
mi contributes UH (i) = −μ0mi · H to the total potential energy U of the system, which is
given by U = ∑

i UH (i) + ∑
i< j �(i j). The interaction potential between two particles is

�(12) = �s(r12) + μ0m1m2

4πr 3
12

[
u1 ·u2 − 3(u1 · r̂12)(u2 · r̂12)

]
, (1)

where 1 (2) denotes the spatial and orientational coordinate of particle 1 (2) and r12 = |r12|
the distance between particle 1 and 2 with r12 = r1 − r2. The strength and orientation of the
magnetic moment of particle i is denoted by mi and ui , respectively, and r̂12 = r12/r12. Here
we consider a monodisperse system with mi = m. The magnetic field and dipolar interactions
introduce two energy scales into the system. Their respective strengths relative to the thermal
energy is measured by the Langevin parameter α and dipolar interaction parameter λ,

α = μ0m H

kBT
, λ = μ0m2

4πkBT d3
m

, (2)

where H = |H| and dm denotes the magnetic diameter of the particles. In order to
prevent permanent agglomeration, the magnetic particles are usually covered with a polymeric
shell [27]. The resulting steric interactions between the magnetic particles is modelled by
the potential �s(r). Specifically, a repulsive Lennard-Jones potential or an entropic repulsion
proposed by Rosensweig [27] is employed. In the former case, �s(r) = 4ε[C(r) − C(rc)],
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C(r) = (dm/r)12 − (dm/r)6 for r � rc and �s(r) = 0 else, with rc = 21/6dm. This
potential was chosen, for example, in [14, 22–25]. The interpretation of the Lennard-Jones
energy parameter ε in ferrofluids is, however, not obvious. Therefore, Rosensweig’s potential
is sometimes preferred [17–21]. By considering the entropic repulsion of two rod-like polymers
attached to solid walls, Rosensweig estimated the interaction potential of two polymer-coated
spheres as [27]

�s(r) =
⎧
⎨

⎩

NpkBT

2δ

{
d̃h + r [ln(d̃h/r) − 1]

}
for dm � r � d̃h

0 else.
(3)

The number of polymer molecules on the surface and their effective lengths are denoted by Np

and δ, respectively. The quantity d̃h = dm + 2δ gives the range of the repulsive interaction.
Typical values are Np ≈ 100–300 and δ ≈ 2 nm [27]. We assume the stabilizing shell to be
thick enough, such that van der Waals attraction can be neglected.

2.2. Model dynamics

As was done in previous studies, we assume that the particles are magnetically hard, i.e. they
are large enough such that the magnetic moment remains frozen within the particle [27]. The
magnetic particles experience friction forces and torques due to the solvent, leading to an
overdamped motion [11], which is often called Brownian dynamics (BD). In the presence
of a macroscopic flow field V (r) with vorticity Ω(r) = 1

2∇r × V (r), the corresponding non-
equilibrium Brownian dynamics (NEBD) reads [21, 28]

dri = [
V (ri ) + ξ−1

t Fi
]

dt + √
2Dt dWt,i (4)

dui = (1 − uiui ) · [(Ω + ξ−1
r Ni) × ui dt + √

2Dr dWr,i ] − Drui dt . (5)

The potential forces and torques are given by Fi = −∇ri U and Ni = −Li U , respectively,
with the rotational operator Li = ui × ∂/∂ui . Wa,i , a = {t, r} denote three-dimensional,
independent Wiener processes. We adopt the Itô interpretation of the stochastic differential
equation (5) such that the norm of the unit vector is strictly conserved, d(u2

i ) = 0 due to Itô’s
formula [28].

The single-particle translational and rotational diffusion coefficients are related to the
corresponding friction coefficients by Da = kBT/ξa . For hard spheres of diameter dh, the
translational and rotational friction coefficients appearing in equations (4), (5) are given by
ξt = 3πηsdh and ξr = πηsd3

h , respectively, where ηs denotes the viscosity of the solvent. For
smooth repulsive interactions �s(r), a hydrodynamic diameter dh is defined with the help of the
equivalent hard sphere diameter dh = ∫ ∞

0 dr (1 − exp [−β�s(r)]), β = (kBT )−1, as proposed
by Barker and Henderson [29]. Since �s vanishes for r � d̃h, the equivalent hard sphere
diameter is smaller than the range of Rosensweig’s repulsive interaction potential dh � d̃h. The
alternative definition �s(dh) ≡ kBT leads to very similar values. It should be noted that, due
to the steric repulsion, the minimal distance between particles is given by dh instead of dm.
Therefore, the dipole–dipole energy of two dipoles aligned head-to-tail at contact is −2λ∗kBT ,
with λ∗ = (dm/dh)

3λ. For this reason, it has been emphasized [30] that the physically relevant
quantity is λ∗ rather than λ. For a typical ferrofluid, dm ≈ 10 nm, dh ≈ 12–14 nm, and λ∗ is
smaller than λ by a factor of 2–3.

Equations (4), (5) describe the time evolution of the interacting N-particle system subject
to a given flow field. Numerical solutions of the model by NEBD simulations are presented
in the following sections together with different approximations to the full model systems. In
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particular, we will be interested in the case of planar Couette flow V (r) = γ̇ yex with shear
rate γ̇ .

It should be mentioned that equations (4), (5) apply in the so-called free-draining
limit where hydrodynamic interactions between colloidal particles can be neglected. These
interactions arise due to flow disturbances of the solvent which are created by moving
colloidal particles and felt by other particles [31]. Brownian dynamics simulations of
ferrofluids including hydrodynamic interactions for neighbouring particles have been carried
out in [17, 18]. Unfortunately, no estimation on the importance of hydrodynamic interactions
was made therein. Preliminary results on diffusion coefficients [32] seem to indicate only mild
influence of hydrodynamic interactions on the dynamics. Work in this direction is currently in
progress.

2.3. Definition of macroscopic quantities

The macroscopic magnetization of the system is given by the ensemble average of the
individual magnetic moments, M = Msat〈u〉, where Msat = ρm is the saturation
magnetization and 〈u〉 = N−1

∑N
j=1 u j denotes the average orientation of the magnetic

dipoles.
The definition of the pressure tensor in magnetic fluids has been the subject of a number

of studies [2]. The orientational motion leads to an antisymmetric contribution to the viscous
pressure tensor pa if the average angular velocity of the particles 〈ω〉 does not match the local
vorticity of the flow, pa = 3ηsφ ε ·(〈ω〉−Ω) [11]. The total antisymmetric tensor of rank three
(Levi-Civita) is denoted by ε. Inserting ωi from equation (5) and averaging over the particles,
one obtains the familiar expression pa = μ0M × H . Summing the viscous and Maxwell’s
magnetic pressure tensor, PM = −BH + pM1 with B = μ0(H + M) [33], the total pressure
tensor is found to be symmetric, expressing the conservation of total angular momentum. Using
the standard virial expression [34] for the symmetric traceless part, the total viscous pressure
tensor is given by

P = p1 − 2ηsΓ + 1

2V

N∑

j<k

r jkF jk +μ0

2
(MH − HM), (6)

where Γ ≡ 1
2 [∇rv + (∇rv)T] is the symmetric velocity gradient, F12 = −∇r1�(12) and . . .

denotes the symmetric traceless part.
In a planar shear flow, V (r) = γ̇ yex , the shear viscosity is defined by η = −Pxy/γ̇ . Note

that no contribution of the Maxwell pressure tensor to the shear stress arises because of the
boundary conditions for the magnetic fields H and B (see e.g. chapter 8.12. of [27]). Similarly
to the Miesowicz viscosities of liquid crystals [11, 26, 35], different viscosity coefficients ηi

can be defined if the magnetic field is oriented in flow (i = 1), in gradient (i = 2), or in
the vorticity direction (i = 3). In addition, a fourth viscosity coefficient is needed to fully
characterize the viscous behaviour. This coefficient can be chosen as η4, the viscosity that is
measured if the magnetic field is oriented along the bisector of the flow and gradient direction.

2.4. NEBD simulations

The coupled dynamical equations (4) and (5) are solved numerically for a system of N =
10 976 particles. A second-order predictor–corrector scheme was used for the translational
motion (4), while a first-order scheme was employed for the rotational dynamics which
conserves exactly the norm of the unit vectors ui [28]. The long-range parts of the dipolar
interactions were treated by the reaction field method [24]. The cut-off radius was chosen as
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Figure 1. Equilibrium pair correlation functions g(2)
j defined in the text as a function of distance

for different dipolar interaction strengths. All data were obtained in the presence of a magnetic field
with strength α = 10. Further parameters are φ = 0.05, Np = 314 and d̃h/dm = 1.2 for the steric
potential (3).

rcut = 5 dm. Some tests with a larger value of 8 dm gave very similar results. Lees–Edwards
periodic boundary conditions were employed to deal with shear flows in finite systems. Starting
from arbitrary initial conditions, the system was evolved until a stationary state was reached.
With a typical time step of �t = 3 × 10−4τB, the equations were numerically integrated
for 3 × 105 steps. We verified that the system had reached a stationary state after this time.
Structural and rheological data were extracted from time averages for another integration period
of 4 × 105 time steps.

3. Equilibrium structure

Like other complex fluids, ferrofluids show interesting equilibrium properties due to their
internal structure. It is therefore important to understand the equilibrium properties before
studying their dynamical behaviour [11, 36]. Determining the equilibrium structure of dipolar
fluids is a long-standing issue in statistical physics [37–39]. For weak dipolar interactions,
perturbation theories around an ideal reference state apply [13, 40], leading to weakly
anisotropic structures. For strong dipolar interactions, on the other hand, the formation of
chain-like structures is expected [3, 4]. The dynamical and rheological behaviour in these
regimes will be considered in section 4.

For anisotropic liquids with uniaxial symmetry around the direction Ĥ = H/H , the
pair correlation function g(2) can be expanded as g(2)(r) = ∑∞

j=0 c j g
(2)

j (r)Pj (r̂ · Ĥ) with

c j = [4π(2 j + 1)]−1 and g(2)
j (r) = ∫

d2r̂ Pj (r̂ · Ĥ)g(r) [36, 41, 42]. For symmetry

reasons, only even terms appear in this sum. While for isotropic liquids only g(2)
0 is non-

zero, the functions g(2)

j with j � 2 quantify the anisotropy of the structure. Figure 1 shows

BD simulation results of g(2)
j for the model system described in section 2. The entropic

repulsion (3) was chosen with Np = 314 and d̃h/dm = 1.2, leading to an equivalent hard
sphere diameter of dh/dm ≈ 1.17. Different dipolar interaction strengths λ = 2, 4, and 6
have been chosen, corresponding to λ∗ ≈ 1.25, 2.5, and 3.75, respectively. The magnetic field



S2762 P Ilg et al

2 4 6 8 10 12 14 16 18
n-mer

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

re
l. 

fr
eq

ue
nc

y
λ = 2
λ = 4
λ = 6
λ = 8

2 4 6
n-mer

0,0

0.5

1.0

re
l. 

fr
eq

.

0 2 4 6 8 10 12 14 16 18 20
n-mer

0

2

4

6

8

10

12

ax
is

 r
at

io
 R

 

λ = 2
λ = 4
λ = 6
λ = 8

Figure 2. Left: equilibrium chain size distribution gn on a semi-logarithmic scale in the presence
of a magnetic field with α = 10 for different dipolar interaction strengths λ. The same parameters
as in figure1 have been chosen. The inset shows the same data but on a linear scale. Right: the axis
ratio R of the clusters defined in the text as a function of the number n of particles in the cluster.
The same conditions as in the left panel are chosen. Solid and dashed line correspond to R = nν

with ν = 0.82 and 1, respectively.

α = 10 and the volume fraction φ = 0.05 were held constant with φh ≈ 0.08. For weak dipolar
interactions, the structures are almost isotropic and g(2)

0 resembles the pair correlation function
of a dilute gas. For strong dipolar interactions, however, figure 1 clearly shows the formation
of anisotropic spatial structures with almost equally spaced maxima.

For sufficiently strong dipolar interactions, the formation of anisotropic, chain-like
aggregates of magnetic particles has been observed in many simulations [37]. In thin films
of iron ferrofluids, chain structures have been observed by cryo-TEM (transmission electron
microscopy) imaging methods [43, 44]. Small-angle neutron scattering experiments suggest
the existence of chain-like structures also in bulk ferrofluids under certain conditions [45].

Different methods have been used in order to calculate the average chain size 〈n〉 and
the chain size distribution gn. Here, we focus on the chain model, since this model has
been extended successfully to also describe dynamical and rheological properties [3, 4]. The
equilibrium chain size distribution gn has been worked out in [3, 4], assuming rigid, rod-like
aggregates with only nearest-neighbour interactions, also neglecting inter-chain interactions.
The latter have been included recently within a mean-field approach [46]. For strong magnetic
fields, the chain model predicts

gn ∝ e−n/〈n〉, 〈n〉 ∝ √
φh eλ∗

, α 
 1. (7)

Analogous expressions have been derived for micellar solutions in [47].
Figure 2 shows gn obtained from BD simulations of the model system described in

section 2. The same parameters as in figure 1 have been chosen. Following [14], clusters
are defined by an energy criterion: two particles are considered to be in the same cluster
if their dipolar interaction energy is less than Edd/kBT = −1.5λ∗. Although the precise
value of Edd influences the calculated cluster sizes, similar results are obtained between
Edd/kBT = −1.7 and −1.3. Remember that the minimal dipolar interaction energy at contact
dh is Edd/kBT ≈ −2λ∗. From figure 2 we observe that significant chain formation occurs for
λ∗ � 3, in agreement with results obtained in [14]. In addition, the chain size distributions
gn are found to decrease exponentially with n, in agreement with the prediction of the chain-
formation model, equation (7).

In order to address the shape of the clusters, we define an effective axis ratio R = �‖/�⊥
of an n-cluster by its length in the field direction �‖ = dm + ∑n−1

i=1 |(ri+1 − ri ) · Ĥ|
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and its extension in the perpendicular direction, �⊥ = dm + 〈(�r⊥)2〉1/2, with (�r⊥)2 =∑n−1
i=1 |(ri+1 − ri) · (1 − ĤĤ)|2. The dashed line in the right panel of figure 2 corresponds

to a rod-like aggregate with R = n. The axis ratio of the clusters observed in the simulations
increases as R = nν with ν ≈ 0.82±0.05. With the exponent ν intermediate between rigid rod-
like (ν = 1) and random coil behaviour (ν ≈ 0.6 with excluded volume interactions [11]), the
aggregates can at least be considered as chain-like due to their moderate size. It is interesting
to note that the increase R = n0.8 seems to be roughly the same for all cluster sizes n � 18
observed and investigated here.

4. Non-equilibrium structure and rheology of ferrofluids

The kinetic model of isolated magnetic dipoles proposed in [48–50] has been used extensively
over the last few years in order to explain magnetoviscous effects in ferrofluids (see, for
example, [51] and Shliomis in [2]). The idealization of non-interacting particles, however, is a
serious limitation of the theory, such that the model is applicable only for dilute ferrofluids with
weak dipolar interactions. Improved theories that incorporate dipolar interactions are discussed
in sections 4.1 and 4.2, together with some comparisons to simulation results.

4.1. Rheology of weakly interacting ferrofluids

In the weakly interacting regime, systematic cluster expansion and perturbation theory provide
accurate descriptions for the equilibrium magnetization of ferrofluids [14]. Building upon
these results, a dynamical mean-field theory has been proposed in [15] that incorporates weak
dipolar interactions and flow-induced structural changes. With the help of the effective field
approximation, explicit expressions for the viscosity coefficients ηi are derived in [15],

ηi = η0 + 3

2
ηsφh

3S2
1

2 + S2

[

(1 − δi,3) + c̃iκχL
2 + S2

3

]

, (8)

where i = 1, 2, and 3 correspond to orientations of the magnetic field in flow, gradient, and
vorticity direction, respectively. The coefficients c̃i are defined in [15] and depend on the
detailed shape of the steric potential. The parameter κ is given by κ = 72τg/35τB, where τg

denotes a translational relaxation time. For weak flows, the orientational order parameters S j

can be approximated by their equilibrium values Sj = L j (αe), where L2(x) = 1 − 3L1(x)/x
and L1(x) = coth(x) − x−1, the Langevin function. Then, the reduced effective field αe can
be taken from the modified mean-field approximation [52], αe = α + χL L1(α). In the absence
of dipolar interactions, equation (8) reduces to the familiar expression of the non-interacting
model, ηi = η0 + 3

2ηsφhαL2
1(α)/[α − L1(α)].

Figure 3 shows the relative viscosity increase �η/η(0) = [η2(α) − η(0)]/η(0) as a
function of the Langevin parameter α, where the magnetic field was oriented in gradient
direction of the flow. NEBD simulations of the model system described in section 2 have
been performed with φ = 0.07 and λ = 1.3. The entropic repulsion (3) has been chosen with
Np = 314 and d̃h/dm = 1.4, leading to an equivalent hard sphere diameter of dh/dm ≈ 1.35,
such that φh ≈ 0.17 and λ∗ ≈ 0.53. A very weak dependence of �η/η(0) on the shear
rate is observed. The simulation results are in good agreement with the predictions of the
DMF model with τg/τB = 1, whereas the model of non-interacting dipoles underpredicts the
magnetoviscous effect. A detailed comparison with simulation results of the model system
adopting the truncated Lennard-Jones potential showed the validity of the DMF model for weak
dipolar interaction strengths λ∗ � 0.5 [24, 25].
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shear rates γ̇ ∗. The same parameters as in figure 1 have been chosen. Right: shear viscosity η/ηs

as a function of shear rate.

4.2. Rheology of strongly interacting ferrofluids

The equilibrium, chain-like structures present in strongly interacting ferrofluids have a strong
influence on the dynamical behaviour. For weak velocity gradients, the chain model assumes
that the equilibrium chain size distribution gn is not affected by the flow [3, 4]. In order to
account for flow-induced structural changes that occur, for example, in strong shear flows [1],
rupture of chains was introduced phenomenologically into the theory by imposing a maximum
possible chain length nc at a given shear rate [5]. The magnitude nc ≈ 1

3

√
λ∗/γ̇ ∗, γ̇ ∗ = γ̇ /2Dr,

was estimated from the balance of dipolar and viscous forces [53].
Figure 4, left panel, shows the cluster size distribution in the presence of shear flow for

various shear rates γ̇ . Here and below, the magnetic field is oriented in the gradient direction of
the flow, if not stated otherwise. The other parameters have been chosen as in figure 1. The non-
equilibrium cluster size distributions are still well described by an exponential form, however
with a smaller average cluster size. The gradual decrease in large clusters with increasing shear
rate is qualitatively consistent with the idea of shear-induced rupture of chains proposed in [5].

The right panel of figure 4 shows the shear viscosity η2 normalized by ηs as a function of
shear rate for the same conditions as used in the left panel. For the lowest dipolar interaction
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strength λ = 2, hardly any chain formation is observed at all; see figure 2. Therefore, no
dependence of η2 on the shear rate is found. Increasing dipolar interaction strengths lead to an
increase in shear viscosity. This increase is due to a larger contribution of the interparticle forces
to the symmetric part of the viscous pressure, see equation (6), as well as due to an increase in
the non-equilibrium magnetization. The shear-induced degradation of clusters observed in the
left panel of figure 2 is reflected by a pronounced shear-thinning behaviour.

5. Towards a unified kinetic model

In sections 4.1 and 4.2, two different kinetic models of ferrofluid dynamics have been discussed.
While the DMF model presented in section 4.1 is applicable for weak interactions, the chain
model of section 4.2 deals with the strongly interacting regime. A unified model that is
applicable for arbitrary interaction strengths would be highly desirable, but unfortunately does
not exist at present.

Here, we explore some first, simple-minded steps in this direction. We start with the
observation that the kinetic equation and the expression for the pressure tensor within the DMF
model resemble the corresponding formulae for the chain model. Since both are simplified
mean-field models, we might generously ignore the differences and postulate that the chain
model applies also to the weakly interacting regime. In the non-interacting (NI) case, this is true
since the chain model reduces to the NI model for spherical particles. For weak interactions,
the shape parameter deduced from the DMF model is B ≈ − 2

7χL [15]. A negative value of the
shape parameter corresponds to oblate particles. No chain-like structures exist in this regime.
However, the head-to-tail attraction and side-by-side repulsion of parallel magnetic moments
by dipolar interactions can, in a mean-field sense, approximately be described by effective
oblate particles. For strong dipolar interactions, the chain model in its original form applies.
While strong dipolar interactions can lead to broad size distributions of chain-like clusters, we
expect no such effects in the weakly interacting regime.

This very simple approach to a unified model of ferrofluid dynamics might serve as a
useful starting point in guiding the way towards more sophisticated models. As a first test of
this hypothesis, the translational self-diffusion in ferrofluids is studied within the chain model.

5.1. Translational diffusion

Anisotropic, field-dependent diffusion in ferrofluids has been observed in experiments, both
for gradient diffusion [54–56] and self-diffusion [57]. The field dependence of the gradient
diffusion coefficients have been studied theoretically in [58, 59]. A hydrodynamic theory of
self-diffusion in ferrofluids is presented in [60, 61]. However, these studies were performed in
the absence of a magnetic field.

In [62], one of the present authors proposes an approach to self-diffusion in ferrofluids
within the chain model. In order to study translational diffusion, one needs to re-introduce
translational motion into the chain model. The time-evolution of the spatial and orientational
one-particle probability distribution function ρ(1)(r,u; t) can be written as ∂tρ

(1) = (L̂B
r +

L̂B
t )ρ(1), where L̂B

r corresponds to the Fokker–Planck operator of the original chain model [3, 4].
For rigid ellipsoids, the translational part reads [11, 63, 64]

L̂B
trans • = ∇r · [D0

‖uu + D0
⊥(1 − uu)] · {β[∇rU ] • +∇r •}, (9)

where D0
‖, D0

⊥ are the parallel and perpendicular diffusion coefficients of the isolated chain-
like aggregate, respectively. For spherical particles, one has D0

‖ = D0
⊥. In equation (9),

U is the mean-field interaction potential U/kBT = −αeu · Ĥ, with the dimensionless
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Figure 5. Left: average diffusion coefficient as a function of volume fraction. Circles and squares
correspond to α = 0 and 20, respectively, while solid and open symbols denote the results for
λ = 1 and 4. Right: parallel and perpendicular diffusion coefficients are plotted versus the second
Langevin function L2 for λ = 2. Circles and squares correspond to φ = 0.02 and 0.05, respectively.
Adapted from [21].

effective field αe. In view of the success of the modified mean-field approximation, we might
choose αe = α + χLL1(α). Due to the coupling of translational and orientational motion,
anisotropic self-diffusion is found within this model. Explicit expressions for the parallel and
perpendicular self-diffusion coefficients in terms of orientational order parameters are worked
out in [62]. Results for both nematic liquid crystals and magnetic fluids are presented therein.
For ferrofluids, the self-diffusion coefficients parallel and perpendicular to the magnetic field
found in [62] read

D⊥ = D − 1
3 (D0

‖ − D0
⊥)L2(αe)c(αe)

D‖ = D + 2
3 (D0

‖ − D0
⊥)L2(αe)c(αe). (10)

In equations (10), we have defined c(αe) = 1 −ρ(∂αe/∂ρ)L1(αe) and L2(x) = 1 − 3L1(x)/x .
The average diffusion coefficient D ≡ (D‖ + 2D⊥)/3 is D = D0c(αe), where D0 =
(D0

‖ + 2D0
⊥)/3. In the dilute, weakly interacting regime, αe ≈ α. Using Maxwell’s equation

∇ · (H + M) = 0, we find c(α) = 1 + 3χL L1(α)/[1 + 3χL L ′
1(α)].

These predictions are tested for the ferrofluid model of section 2 by comparison to
numerical simulations of the unapproximated model. Diffusion coefficients have been obtained
numerically from the anisotropic, mean-square displacements of the particles in the course of
the simulations. The average self-diffusion coefficient is found to decrease with increasing
concentration (see left part of figure 5) and dipolar interaction strength, but to be independent
of the magnetic field strength. These results are in agreement with the predictions of a
simplified mean-field model [62]. In the presence of a magnetic field, the parallel and
perpendicular diffusion coefficients are found to scale as D‖,⊥ ∝ L2(α), in agreement with
the mean-field predictions (see right part of figure 5). Interestingly, we find D‖ < D⊥
for moderate concentrations and dipolar interaction strengths, which corresponds to effective
oblate particles. Note, however, that permanent, chain-like aggregates exist only for stronger
dipolar interactions, where one expects a cross-over to D‖ > D⊥. Further studies on diffusion
properties in the strongly interacting regime would therefore be very interesting.

5.2. Consistency of the model?

The results on self-diffusion presented in the previous section are in agreement with the
interpretation of effective oblate particles, which was suggested by the DMF model in the
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Figure 6. Left: rotational viscosity as a function of the Langevin parameter α. Squares and
diamonds correspond to λ = 0.25 and 0.5, respectively. Right: shape parameter B as a function of
the Langevin susceptibility, χL. Squares and circles indicate the magnetic field oriented in flow and
in gradient direction, respectively. Filled and open symbols correspond to φ = 0.05 and φ = 0.1,
respectively. Diamonds denote the results of fits to self-diffusion data. The dashed line is the
prediction of the DMF model.

weakly interacting regime. In this section, we try to also interpret the viscosity data in this
regime obtained from the numerical simulations within the chain model.

Figure 6 shows the shear viscosity obtained by NEBD simulations in planar Couette flow
as a function of the magnetic field. The magnetic field was oriented either in flow or gradient
direction. Different concentrations and dipolar interaction strengths are considered. Also
shown are fits to the simulation results by the chain model, where the shape parameter B
was used as a fitting parameter. The fits are found to describe the numerical data rather
well. The shape parameters B obtained from those fits are shown in the right panel of
figure 6. For weak dipolar interactions, the predictions of the DMF model B ≈ − 2

7χL,
the diffusion data (diamonds) and the viscosity data for the case where the magnetic field is
oriented in the flow direction (open squares) are in fair agreement with each other. For stronger
dipolar interactions, the viscosity data (filled squares) are also described by effective oblate
particles, however with an even lower value of the shape parameter B . Therefore, B cannot
be considered as a function of χL only, but depends on λ and φ separately. If the magnetic
field is oriented in the gradient direction of the flow, however, the viscosity data (circles) are
described by effective prolate ellipsoidal particles with B > 0 also depending on λ and φ

separately.
Although these studies are only first steps towards a unified mean-field model valid for all

interaction strengths, it appears that the chain model could indeed be a candidate for such a
model. Of course, further investigations are necessary to verify or falsify this conjecture. In
addition, determining the value of the shape parameter B seems not obvious, since it does not
only depend on λ and φ but also on the orientation of the magnetic field with respect to the
flow geometry. In the case of strong dipolar interactions, for which the model was developed
originally [3], this difficulty seems less pronounced at least for weak flows. In order to obtain
a better theoretical estimate of B in the weakly interacting regime, a careful study of the flow-
induced structures would be very helpful. In particular, special attention should be paid to
the differences between the structures if the magnetic field is oriented in flow and in gradient
directions. Such studies could also answer the question whether the value of B obtained in the
fits corresponds to real physical quantities or should rather be considered as an artefact of the
description with an oversimplified model.
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6. Conclusion and perspectives

We have performed equilibrium and non-equilibrium Brownian dynamics simulations of a
ferrofluid model system with realistic interaction potentials. For sufficiently strong effective
dipolar interaction strengths λ∗ � 3, the formation of chain-like structures in the presence
of a magnetic field is observed. The cluster sizes are found to be exponentially distributed,
in agreement with the predictions of the chain model. In the presence of a shear flow, the
cluster size distribution is still of exponential form, but shifted towards smaller values. This
flow-induced rupture of chains has already been anticipated for some time [5, 41, 53]. We
also provide numerical evidence that this rupture of chains is responsible for pronounced shear
thinning behaviour. The simulation results therefore support the main assumptions and results
of the chain model for strongly interacting ferrofluids. More quantitative comparisons are
neccessary in order to discuss the accuracy of the chain model predictions for rheological
properties.

For weakly interacting ferrofluids, the DMF model is found to provide an accurate
description of the magnetoviscous effect, supporting the results found in [24, 25]. Within
the DMF model, weak dipolar interactions can be described approximately by effective oblate
ferromagnetic particles. Since effective prolate, chain-like particles are present in the strongly
interacting regime, we propose that the chain model can be extended to the moderate and weak
interaction regime by allowing the shape factor of the effective particles to vary over the whole
admissible range. By comparing the shape factor deduced from diffusion and rheological
results with the estimate based on the DMF model, we observe fair agreement in the dilute,
weakly interacting regime. If, however, the field is oriented in the gradient direction of the
flow, the rheological data suggest effective prolate particles, contrary to the findings in the
other cases. These results may serve as starting point for the development of a unified kinetic
model applicable for all interaction strengths, for diffusion as well as rheological properties.
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