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Abstract: The stress-strain dependence of dry networks at unidirectional extension and 
compression is studied. The phenomenological van der Waals equation of state is com- 
pared with different molecular models in order to provide an interpretation of the van der 
Waals corrections. It is shown that the stress-strain behavior predicted by the phantom, 
Langevin, and constrained junction fluctuation models are altogether covered by the van 
der Waals approach. The relationship between the suppression of junction fluctuation 
parameter introduced by Dossin and Graessley and the van der Waals corrections has 
been worked out. The effect of junction functionality on the small strain modulus as well 
as on the second Mooney-Rivlin coefficient is also presented. 
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Introduction 

According to the Gaussian theories of rubber elas- 
ticity, the network is considered as a permanently 
linked assembly of independent entropic springs 
represented by volumeless phantom chains [1,2]. 
Regarding the fluctuation of junctions, two physically 
different approaches have been introduced: 

1) In the affine network model it is assumed that the 
junctions do not fluctuate at all. As a result of this, on 
deformation the position of cross-links must be affi- 
nely transformed with respect to the macroscopical 
strain [3]. 

2) The phantom model provides maximal freedom 
to the network chains. The junctions are allowed to 
fluctuate freely about their mean positions [4]. If the 
junction fluctuations are changed by deformation the 
instantaneous cross-link positions are not longer affine 
with the macroscopical strain. 

The affine and phantom models are now considered 
to provide the upper and lower limits of the mechani- 
cal response [5-7]. It is generally accepted that real 
networks should show a behavior intermediate be- 
tween these two extremes. 
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From experiments it was deduced that at small 
strain, real networks show a behavior close to the 
affine model. At large deformation, on the other hand, 
phantom behavior should predominate. Accordingly, 
on moderate deformation a network should undergo a 
transition from affine to phantom behavior as is shown 
in Fig. 1. 

In phenomenological terms this transition is often 
characterized with the aid of the Mooney-Rivlin equa- 
tion [1, 2]. It is usually assumed that 2C~ is the modulus 
of the phantom network so that 2C2 may be taken as a 
measure of "non-phantomness" [7-9]. 

One of the purposes of the recent research on poly- 
mer networks is to understand the reasons behind the 
failure of known models. We believe that these 
attempts can be sucessful only if two fundamental 
aspects are accounted for: 

i) Real network chains have volume and finite 
length; 

ii) Topological constraints restrict conformational 
abilities of chains and junctions. 

Until now, no molecular theory has dealt with both 
of these effects. Non-Gaussian approaches have been 
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Fig. 1. A schematic diagram showing the dependence of reduced 
stress old  on reciprocal elongation. The phantom and affine net- 
work behaviors are represented by broken lines. The solid line 
stands for the real network behavior. The dotted line denotes the 
Mooney-Rivlin representation. (--)  corresponds to the predic- 
tions of Langevin network model. The corresponding small strain 
moduli (Oph, Ga, Go, and Or) are also presented 

advanced taking finite chain extensibility into consid- 
eration [2,10,11]. With the aid of these theories it is in 
principle not possible to fit experimental data (see Fig. 
1). 

Using the entanglement concept, two different 
treatments are known: in the constrained junction 
fluctuation model entanglements are assumed to 
impose strain dependent restrictions onto fluctuations 
[7]. Tube and slip-link models lead to constraints 
affecting mainly conformational freedoms of chains 
[12,13,40,41]. 

Experimental evidence uniquely supporting the res- 
tricted fluctuation or slip-link concept has not been 
available until now. In these circumstances, it suggests 
itself to seek at least phenomenological modifications 
of the Gaussian network theory. Dossin and Graessley 
[14] introduced the phenomenological parameter h 
which is considered as an empirical measure for entan- 
glement constraints onto fluctuation of junctions. The 
small strain modulus is rewritten as 

G = (1 - 2h/f) Ga (1) 

where G and Ga stand for the modulus of real and 
affme networks, respectively, and f denotes the aver- 
age functionality of cross-links. According to Eq. (1) 
the mean strain energy per chain is reduced by junc- 
tion fluctuation. Complete suppression of junction 
fluctuation (h = 0) results in affine behavior- no sup- 

pression (h = 1) leads to the phantom network behav- 
ior. By defining Eq. (1) it is implicated that fluctuation 
of junctions play an increasingly minor role when the 
functionality of crosslinks is increased. The network 
should asymtoticaly approximate the affine deforma- 
tion mode. The parameter h is often considered as an 
appropriate empiricall characterization of the non- 
Gaussian behavior of real networks [9,14,23]. 
Because of modifying the modulus only, the Dossin- 
Graessley characterization is reasonable at small 
strains only. 

The van der Waals network equation of state [15] as 
a phenomenological modification of the Gaussian net- 
work theory accounts for finite chain extensibility and 
"global interactions". For simple extension the van der 
Waals equation of state reads 

G = Gv D [Dm/(D m - D) - aD] (2) 

where G~ is the van der Waals modulus, o is the nomi- 
nal stress. In Eq. (2) the deformation function, D, is 
defined by 

D = ~ - 4 -2 (3) 

where ~ is the strain ratio related to the unstrained sys- 
tem, measured in the direction of force. D m is defined 
as D with ~ replaced by the maximum strain ~m which 
is related to the strain invariant unit of the network 
chains. 

In Eq. (2) a denotes the phenomenological global 
interaction parameter. This parameter should include 
restrictions to junction fluctuation as well as topologi- 
cal entanglement constraints. It is important that the 
sigmoidal stress-strain curve of real networks can be 
fully fitted with the aid of van der Waals equation of 
state [15-17]. 

Eq. (2) has been cast into another form in order to 
be capable of describing every mode of deformation 
(simple extension, biaxial and triaxial deformational 
modes) [16] 

G = G v D [1/1(1- #71/2) - a@~b 1/2] (4) 

where ~b = 1/2(1 - 3) and I stands for the first strain 
invarianc 11 = ( I  - 3 ) ~ ( I r a  - -  3), where I m  denotes the 
maximum value of I. The relationship between the 
global interaction parameters is simply % = 1/~ a. 

The van der Waals parameters (a or % and ~,,) can 
be deduced by appropriate calculation with the aid of 
Eqs. (2) or (4) applied to experiments. It turns out that 
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Table 1. The van der Waals and suppression of junction fluctuation 
parameters for some polymers. The hv values were calculated by 
Eq. (17) with f = 4 

system a Am u hv 

natural rubber 0.26 7.7 0.12 0.44 
poly chloroprene 0.21 10.05 0.10 0.51 
polybutadiene 0.24 12.5 0.16 0.08 
TPR 0.24 11.0 0.15 0.18 
SBR 0.19 13.5 0.11 0.46 
PDMS 0.20 11.0 0.11 0.52 
PVAc 0.26 6.8 0.11 0.49 

the global interaction parameter does not vary consid- 
erably among networks with different crosslinking 
density. The van der Waals parameters for some poly- 
mers are listed in Table 1. 

It seems to be of great interest to provide a compari- 
son between the various models which take non- 
Gaussian effects into consideration. The main purpose 
of the present paper therefore is: 

- to relate the phantom modulus and the van der 
Waals modulus; 

- to interpret the finite chain-extensibility parame- 
ter of the van der Waals model with the aid of the Lan- 
gevin model; 

- to interpret the parameter which describes the 
suppression of junction fluctuation with the aid of the 
van der Waals model; 

- to relate the parameters of the constrained junc- 
tion fluctuation model with the van der Waals parame- 
ters. 

In addition, effects of junction functionality on the 
mechanical properties will be discussed. 

Experiments performed on dry networks will be 
described with the different models in order to come 
to a direct test of their abilities. 

The re lat ionship be tween  the  p h a n t o m  m o d u l u s  
and van  der Waals m o d u l u s  

In order to relate the van der Waals modulus to the 
phantom modulus, we follow others [7, 9] in assum- 
ing that at large extension the reduced stress should 
reach the phantom network limit under the heuristical 
assumption of neglecting finite chain extensibility 
effects. In other words, the first Mooney-Rivlin coeffi- 
cient (2Q) is considered as the phantom network 
component of the real modulus. For small strains far 

below the finite chain extensibility region it is, of 
course, possible to express the Mooney-Rivlin coeffi- 
cients in terms of the van der Waals parameters. For 
uniaxial extension Kilian and Vilgis derived the rela- 
tions on the basis of Eq. (2) [17] 

2Cl = Q ( 1 - 3 u )  (5) 

2C2 = 3u G~ (6) 

where 

u = (a - l/Din). (7) 

It follows from 2C1 = Gph that the van der Waals 
modulus is then definied by 

Q = GpU(1  - 3u) .  (8) 

The phantom modulus is related to the structural 
parameters of the network according to 

Gph = (1 -- 2if) v*RT = Go/~2m (9) 

where v* denotes the moles of network chains per unit 
volume, f stands for the junction functionality and Go 
incorporates molecular characteristics of the polymer 
(bond angles, characteristic ratio, density) as well as 
the temperature. 

The linear dependence of Gph on v* is the consequ- 
ence of equipartition of kinetical conformational 
energy. Equal amounts of free energy are stored by 
each of the chains in the Gaussian network. The stored 
free energy per network chain does not depend on the 
chain length or cross-linking density. This is not the 
case for van der Waals networks. Equation (8) says 
that the linear relationship between Q and v* is lost. 

A non-linear dependence of measured modulus on 
the cross-linking density is a well known phenomenon 
which is the subject of many discussions 
[1, 2, 9,18, 23]. The effect is interpreted either by the 
non-completeness of cross-linking reaction, or by 
trapping of entanglements. In view of the meaning of 
the van der Waals parameters, it is concluded that the 
strain energy density (per chain) is modified by the 
global interactions and as a result, the small strain 
modulus is increased by a factor of 1/(1 - 3u) as pre- 
dicted by Eq. (8). 

Figure 2a shows the small-strain moduli as a func- 
tion of concentration of network chains for randomly 
cross-linked poly(dimethylsiloxan) (PDMS) net- 
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Fig. 2a. Small strain modulus G against concentration of network 
chains for tetrafunctional PDMS networks. The experimental data 
were taken from [23]. The solid line was calculated with the aid of 
Eq. (8) using the parameters a = 0.2, Go = 22 MPa and y* = 13 225/ 
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Fig. 2b. Small strain modulus versus concentration of network 
chains. + = natural rubber; O = potyisoprene (IR 98); x = polyiso- 
prene (IR 92) random cross-linking by dicumyl peroxide. The ex- 
perimental data of Gleim et al. were taken from [19]. The solid line 
was calculated with the aid of Eq. (8) using the parameters a = 0.22, 
Go = 36 MPa and v* = 104/51, 2 

works with tetrafunctional crosslinks. The solid line 
was calculated with the aid of Eqs. (8) and (9) and the 
known van der Waals parameters listed in Table 1. For 
natural rubbers and polyisoprene networks the analo- 
gue representation is depicted in Fig. 2b. It is evidently 
seen that the non-linear relationship between G and v* 
can be described by our approach without introducing 
new parameters like, e.g., the trapping factor [18]. 

On the basis of our approach it is possible to formu- 
late the Mooney-Rivlin equation in terms of van der 
Waals parameters 

G 
D - 2C1 + 2C1 3u/(1-3u) 2-'  (10) 

where the small strain modulus (G/D at .~-1 = 1) de- 
pends on the van der Waals parameters, while Gph or 
2G1 (G/D at 2 -1 = 0) is independent from u. This 
result is consistent with our assumption according to 
which only 2C1 (Gph) can be uniquely related to the 
cross-linking density. The small strain modulus (Gv) 
depends not only on the cross-linking density, but also 
on the global interaction parameter. 

The Langevin and the van der Waals network 
models 

The van der Waals equation of state implicates 
effects due to finite chain extensibility. It is interesting 
to ask under which circumstances Eq. (2) gives the 
Langevin type of behavior. 

For a network of non-Gaussian (Langevin) chains 
the mechanical equation of state was derived 
[1, 2, 21, 22]. When2m is not too small the stress is writ- 
ten as 

G = @ - (11) 

w h e r e  ~1 = ~ *  ( a /&) ,  = (1/2m 21/2) and ~';* (x) 
being the inverse Langevin function [11]. Introducing 
the series representation of ~*(x)  [2] 

~*(x)  = 3x + 9/5 x 3 + 297/175 

+ 1539/875 x 7 + . . . .  + (12) 

we are led at small strains to the Langevin modulus 

GL = Gph (1 + 6/5 22). (13) 

Taking it for granted that the maximum strain parame- 
ter, 2m, is identical in both approaches and combining 
Eqs. (8) and (13), we are led to the ratio of the Langevin 
modulus to that of the van der Waals model 

GL 5,t~ + 6 
G~ - 5t~ 

- -  (1 - 3u). (14) 
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Both moduli coincide if a = aL 

aL = 2/(522 + 6) + l I D  m = l I D  m (15) 

where aL is used as adjusting parameter. Since the first 
term in Eq. (15) is usually much smaller than the 
second one, it is possible to approximate aL with 1~Din. 
In Fig. 3 model calculations for three networks with 
different cross-linking density are shown in the Moo- 
ney-Rivlin fashion. It can be seen that the van der 
Waals equation of state with a proper choice of a is able 
to cover the Langevin type behavior fairly well. For 
moderate simple extension the "Langevin 2C2" is in 
principle negative, in contradiction with the experi- 
mental findings from which 2C2 > 0 was always 
deduced. Figure 4 shows the stress-strain dependence 
for natural rubber cross-linked in undiluted state [33], 
as well as for poly(vinyl acetate) network prepared at 
high dilution (vc = 0.08 wt0/0), but measured in dry 
state. Although solution cross-linked networks are 
supposed to have smaller degrees of entangling, in 
PVAc networks 2C2 is observed to not be diminished. 
Not  only in simple extension, but also at unidirecti- 
onal compression, large values of 2C2 have been 
reported (see Figs. 4 and 10). Non-zero 2C2s may 
be taken as manifestation of "global interactions" 

which seem to occur in any case, independent of how 
the networks have been prepared, in dry or in swollen 
state. 

These results underscore that just regarding finite 
chain extensibility does not lead to a perfect theoretical 
fit to the experimental data. Other effects, possibly due 
to junction fluctuation and entanglements, must be 
accounted for. 

In terms of the van der Waals model it is possible to 
separate the finite chain extensibility and the global in- 
teraction effects by rewriting Eq. (2) 

G = G. [ D + D 3 / [ D m ( D m - D ) ]  - uD2] .  (16) 

The first term in brackets represents the ideal 
(Gaussian) behavior, the second stands for the Lange- 
vin correction, and the third one for the global interac- 
tions. 

The quantity u can be considered as the "cross- 
linking density-dependent effective global interac- 
tion parameter". Since 2C2 is proportional with u 
(see Eq. (6)), positive 2C2 requires u > 0, that is, 
a > 1 /D m. Within the scope of our knowledge 
this inequality is supported by experimental results 
(Table 1). 
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Fig. 3. Mooney-plot for Langevin (-) and for van der Waals (- -) 
networks. The inverse Langevin function as approximated by 
Treloar [2] 

S'~*(x) = 3x/(1 -- 0.rx 2 - 0.2x 4 - -  0 . 2 X  6) 

is used. The van der Waals data were computed with the aid of Eq. 
(2) using the parameters a = aL (Eq. (15)) and Gph = 12 000/22. The 
three different degrees of crosslinking are characterized by 2m. The 
value of this parameter is indicated with each curve 
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Fig. 4. Mooney-Rivlin plot for vulcanized rubber (O), (the data 
were taken from [33]), and for PVAc network (-) prepared in solu- 
tion, measured in dry state. (--) denotes reduced stress calculated 
with the aid of van der Waals equation of state, Eq. (2). The parame- 
ters are given in Table 1 
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The relationship between the supression of junc- 
tion fluctuation parameter and the van der 
Waals corrections 

Since both the Dossin-Graessley- and the van der 
Waals-approach describe the true moduli, it suggests 
itself to relate their phenomenological parameters. By 
combining Eqs. (1) and (8) with Q = G(h) and Gph = 
(1 - 2ff)G a we arrive at (h = by) 

hv = (2 - 3uf)/(2 - 6u). (17) 

In Table I the van der Waals corrections and the cal- 
culated h~ are presented for some networks. On the 
basis of these data hv is between 0 and i in accordance 
with the expectation. Deduced in a completely differ- 
ent manner, Dossin and Graessley found for polybuta- 
diene rubbers h = 0 [14], which compares fairly well 
with hv = 0.08. For tetrafunctional PDMS networks, 
Queslel and Mark reported Graessley parameters in 
the range of 0.13 < h < 0.588 [9], while Gottlieb et al. 
arrived at h = 0.69 [23]. This again is in good corre- 
spondence with h~ = 0.52. 

According to our approach the parameter of sup- 
pression of junction fluctuation seems not to have the 
general meaning it was supposed to have [14]. Accord- 
ing to Dossin and Graessley, h should not vary appre- 
ciably among different networks. On the basis of Eq. 
(17) we expect, on the contrary, rather strong effects if 
the cross-linking density or the junction functionality 
is varied. This finding is in agreement with the recent 
results of Queslel and Mark (9). The PDMS networks 
show a decisive dependence of h on the cross-linking 
density and average junction functionality. Table 2 
shows strong influence of the molecular mass of net- 
work chains on the Dossin-Graessley parameter of 
end-linked PDMS networks. Values calculated on the 

Table 2. Dependence of the parameter of suppression of junction 
fluctuation on the molecular mass (Mn) of the network chains of tri- 
functional end-linked PDMS networks, hv was calculated by Eq. 
(17) with f = 3, a = 0.24 and ,;t, m = 0 . 1 -  M 1/2 

Mn h hv 

4 000 0.99 0.82 
4 700 1 0.79 
9 500 0.61 0.64 

11300 - 0.52 
18500 0.15 0.49 
25 600 0.13 0.43 
32 900 0.21 0.37 

basis of Eqs. (7) and (17) are shown for comparison. 
Despite uncertainties in a and Din, the van der Waals 
approach gives the basic trend. 

The dependence of the global interaction param- 
eter on the junction functionality 

It is well known that the junction functional@ plays 
an important role in rubber elasticity. It was found that 
2C2 decreases with increasing junction functionality 
[26]. In case of filler networks, multifunctionally 
cross-linked model networks constituted by only 
tying the filler particles to the polymer matrix with 
many bonds, negative 2 Q s  were deduced from 
simple extension experiments [24]. 

With the aid of van der Waals' equation of state it is 
possible to discuss crosslink functionality effects. This 
was already done by Kilian et al. [34] by introducing 
an empirical relation between the global interaction 
parameter and the junction functionality. 

To describe quantitatively the a(J) dependence we 
use the resuk of Vilgis and Kilian [25]. They have, on 
the basis of modelling the interaction on permanent 
crosslinks as a scattering problem, shown that 2 C  2 c a n  

be written as 

ff--1)2 -1~Din] (18) 2C2 = 3G~ a~ f3 

where ac is a characteristic constant. Its value can be 
determined from the global interaction parameter at 
known junction functionality (see Eq. (19)). By com- 
bining Eq. (18) with Eqs. (1), (6), (7), and (8) we arrive 
a t  

( J - l )  2 1 
ac f3 Dm 

a(f) = f _  2 [ ( f -  1) 2 1 ] + i/Dm" (19) 
f +3at[  f3 /Sin ] 

It follows from Eq. (19) that as the functionality 
increases, the global interaction parameter decreases. 
In the limit f = co we are led to a = - 3/[Din (Dm --  3)], 
which is practically zero for not too short chain net- 
w o r k s .  

With the aid of Eq. (19) it is predicted that affine be- 
havior predominates if the junction functionality is 
large. According to Eq. (1) the quantity 2hff controls 
the ratio of G/Ga. Since the global interaction parame- 
ter depends on the functionality, the suppression of 
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Fig. 5. G/Ga against the junction functionality f for end-linked 
PDMS networks. O denotes the experimental points of Llorente 
and Mark [26]. The solid line is calculated by Eq. (1), taking into 
account the functionality effect by Eqs. (17) and (19). For the calcu- 
lation,,tm = 11 and a(f = 4) = 0.2 are used. The dotted line repre- 
sents the phantom network behavior 

junction fluctuation parameter should also dependend 
on f. Queslel and Mark have reported that for trifunc- 
tional endlinked PDMS networks h was found to be 
much larger than for tetrafunctional ones [9]. The a(f) 
dependence modifies the ratio G/Ga accordingly. 
This effect is shown in Fig. 5. It is to be seen by evi- 
dence that the deviation of experimental data from the 
phantom network behavior is rather significant at 
small strains. By calculations with the aid of the van 
der Waals model, the experimental data can fairly well 
be fitted. 

Not only the modulus, but also the whole stress- 
strain pattern is influenced by the junction functional- 
ity which is fully reproduced with the aid of our 
approach. 

It is customary to consider the ratio of 2C2/2C1 as a 
measure of deviation from the Gaussian theory. With 
the help of Eqs. (5) and (6) it is possible to relate 
2C2/2C 1 to the van der Waals parameters 

2 C 2 1 2 C 1  = 3u(f)/[1 - 3u(f)]. (20) 

According to Eqs. (19) and (20), 2C2/2C1 is predict- 
ed to decrease with increasing functionality. That this 
holds true is demonstrated in Fig. 6 on the basis of ex- 
perimental data from Mark and Llorente [26]. It can 
be seen that calculations with the van der Waals model 
deliver a rather good description. According to Eq. 
(20) there is a critical functionality predicted at which 
2C2/2C1 dissapears. 2C2/2C1 switches beyond this 
limit to a negative sign. This mechanical "theta-point 

2C 2 

201 

0.6 
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Fig. 6.2C2/2C1 as a function of junction functionality f for end- 
linked PDMS networks [26]. The dotted line is calculated by Eqs. 
(19) and (20) with the parameters a(f = 4) = 0.2 and ;~m = 11 

situation" is bound to the condition u(f) = 0, which is 
fulfilled if 

(f-- 1)2/f 3 = 1/(gcDm). (21) 

In the case of regular networks ac lays between 1 
and 2, establishing Dm= 10; the change in the sign of 
2C2 should occur between 10 < f < 20. In this matter, 
the behavior of "filler networks" is of interest. These 
model networks are constituted only by introducing 
chemical silica-to-rubber bonds to filler particle [24]. 
Functionality and mass of the "junctions" have very 
large values (200-400 bonds per filler particle of a 
mean radius of about 5-10 nm). For these networks 
very negative 2C2 s have been deduced [24]. 

Comparison of van der Waals- and constrained 
junction fluctuation models at unidirectional 
extension 

The constrained junction fluctuation model devel- 
oped by Flory and Erman [7] is based on the assump- 
tion that in real networks the diffusion of junctions 
may be severely restricted by neighboring chains shar- 
ing the same region of space. At small strains entangle- 
ment constraints onto junctions should predominate 
and the stress is larger than for a phantom network. 
Constraints should then be released at higher deforma- 
tion, so that restrictions onto junction fluctuation 
should vanish. The phantom network behavior is ap- 
proximated in this limit. In the Flory-Erman model 
the parameter x measures the severity of entanglement 
constraints and ~ characterizes the non-affine transfor- 
mation of the domains of constraints with strain. The 
phantom limit corresponds to ~e = 0, while affine 
deformation should occur at ~e = oo. 
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For dry networks ~ is usually very small, becoming 
less important than z; ~ is therefore often set to zero. 

The stress-strain relation is given by 

G = Gph D [1 + [gK(0/~) - ~-2K(0/2)] D -1] (22a) 

where 

B t 3 B t Beg t O(Btgt) 
K(0/t) - (1 + B t ~  aa~ + (1 + Btgt) a0/~ 

(22b) 

g, = [x + 4 ( 0 / , -  1)] (22c) 

B t = ( 0 / t - 1 ) [ l + 0 / t - 4 a  2](1+&)-2 
t = 1 , 2 .  (22d) 

The principal components of strain 0/t = 0/, and at = 
0/2 = a3 are 

[VI1/3 (22e) 
cq = ,~ \ V o /  

0/2 = 0/3 "~-1/2 I VI 1/3 
\ V o l  " 

(22f') 

In Eqs. (22e, f) V o refers to the volume at which the 
crossliks are introduced. 

Despite the molecular interpretation given for x and 
{, these parameters do not follow from the theory 
itself; their values must be deduced by fitting stress- 
strain experiments. 

From Eq. (22a) the small strain modulus is derived 
to be defined [9] by 

c = G h  E1 + 4)] (23a) 

where 

1 ( )2 X2 (2r + 1) (23b) 
H(~c, 4) = ~  2 - r  (x+l )  2 

at 

By comparing Eqs. (23a, b) with Eq. (8) one arrives 

1 H(z, ~) (24) 
u =~- 1 +H(z, ~)" 

This result strongly supports the assumption of Kil- 
ian [15] that the global interaction parameter should 
be governed by restrictions to the junction fluctua- 
l i o n s .  

U 

0.12 

O.O8 

O.OZ. 

o.1 o . 5 1   '2o 
Fig. 7. The dependence of effective global interaction parameter on 
the parameters of constrained junction fluctuation model. The 
dotted line denotes the upper limit of u 

Figure 7 shows how the effective global interaction 
parameter depends on the measure of severity of 
entanglement constraints, calculated with the aid of 
Eq. (24) at two different values of 4. It becames clear 
that the entanglement effect by which the junction is 
restricted (x --* oo) should enlarge the global interaction 
parameter until its upper limit is reached. This results 
in that both sides of Eq. (24) are functions of the cross- 
linking density, the lefthand side via Dm and the righ- 
thand side via x. When the crosslinking density is 
increased, ~c decreases. According to Eq. (24) u must 
then become smaller as well. 

For networks with a small junction functionality 
(f = 4), the constrained junction fluctuation model 
delivers an upper and a lower limit of u 

0 < u = (a - 1~Din) < 1/6. (25) 

According to Table 1 this inequality seems to be 
satisfied by experiment. 

On the basis of Eq. (24) stress-strain behavior of the 
van der Waals approach can now be compared with 
the constrained junction fluctuation model. Figure 8 
presents the Mooney-plot for crosslinked natural 
rubbers according to Mullins [33]. In the Flory-Erman 
representation with ~ = 0, x was computed with the 
aid of Eqs. (23b) and (24) by using the known van der 
Waals parameters. At small strains, ,a. -~ = 1 - 0.5, the 
data computed with the aid of the van der Waals- and 
the constrained junction fluctuation theory are in 
satisfactory agreement. At large strains, ,~-1 < 0.5, 
only the van der Waals equation of state fits the typical 
upturn. 
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Fig. 8. Mooney-plot of measurements on natural rubber according 
to Mullins [33]. + = calculated by Eq. (22a); - = calculated by Eq. 
(2) (a~ = 0.34). The additional parameters used in the calculations 
are indicated with each curve 
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Fig. 9. Reduced stress versus strain according to the constrained 
junction fluctuation (--) ,  and to the van der Waals ( - )  model. The 
parameters are: Gph = 175 kPa, x = 8. The globalinteraction param- 
eter a~ = .32 is deduced from Eq. (24) with ~ = 0 and km= 10 

The stress-strain dependence of dry networks at 
unidirectional compression 

The mechanical behavior of dry rubber-like mate- 
rials at unidirectional compression has continued to be 
the subject of controversial discussions. For different 
molecular theories rather different stress-strain pat- 
terns are computed. 

The constrained junction fluctuation model [7], as 
well as the tube model of Gaylord [27] predict in the 
Mooney-Rivlin representation a maximum lying in 
the compression region. The slip-link model [13] gives 
no maximum and positive 2C2s. The primitive path 
approach [28] yields negative 2C2s. 

The experimental findings are also controversial. 
Results obtained on natural rubber [29], on PDMS 
networks [30, 35], and on polyurethane elastomer 
[43] deliver, in general, negative 2C2s. Mark et al. 
found, on the other hand, that PDMS networks pre- 
pared in solution and studied afterwards in the un- 
swollen state show positive 2C2s. Oppermann and 
Rennar deduced for end-linked PDMS networks posi- 
tive 2C2s as well [32]. 

In Fig. 9 calculations are depicted which are carried 
out with the aid of the constrained junction fluctuation 
model, and with the van der Waals equation of state. In 
order to relate the parameters of these models to each 
other, Eq. (24) was used. At small and moderate exten- 
sions the agreement is excellent. At large extensions, 
where finite chain extensibility comes into play, one 
can of course observe large differences. These two 
approaches deliver a completely different behavior un- 
der uniaxial compression. It is now crucial that the 

constrained junction fluctuation model predicts a 
maximum, and the van der Waals model, a minimum 
at intermediate strains (which is not to be seen in Fig. 
9). At small compression 2C 2 is positive for the Flory- 
Erman theory, while the van der Waals model yields to 
negative 2C2s. 

It is a crucial test to make accurate compression 
measurements at very small uniaxial strains (1 < ~-1 < 
1.5-2). Figs. 10a, b show small strain compressional 
data of PVAc networks prepared in solution, measured 
in dry state. These PVAc networks have apparently 
negative 2C2s under compression. These results sup- 
port the van der Waals concept. The problem remains 
for the correct interpretation of the careful measure- 
ments of Oppermann and Rennar [32]. 
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Fig. 10a. Mooney-Rivlin plot for PVAc networks which were pre- 
pared in the highly diluted state, but measured in the dry state. The 
solid lines were calculated by Eq. (4) with the parameters a~ = 0.34, 
~m = 15 (1), and km= 20 (O), respectively 
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Fig. 10b. Mooney-plot in the unidirected compression region of a 
PVAc network prepared in highly diluted state, measured in dry 
state. The dotted line was calculated by Eq. (4) with the parameters 
a~ = 0.34 and Im= 9.8 

C o n c l u s i o n s  

Let us briefly summerize some of the significant 
results: 

- The new formulation of the van der Waals modu- 
lus delivers a non-linear dependence of the small strain 
modulus on the crosslinking density in accord with 
observation. 

- The global interaction parameter can be related to 
the junction functionality. 

- The suppression of junction fluctuation parame- 
ter, h, can be interpreted in terms of the van der Waals 
parameters. It comes out that hv should depend on the 
cross-linking density and the junction functionality. 

- By comparing the van der Waals and the con- 
straint junction fluctuation models, the entanglements 
constraint-parameters can be expressed in terms of the 
van der Waals parameters. 

- In the region of small- and moderate extensions 
the van der Waals and the F1ory-Erman theories give 
the same result. At large deformations only the van der 
Waals equation of state delivers a quantitative repre- 
sentation of experimental data. 

- In the region of unidirectional compression the 
van der Waals model is characterized by negative 
2C2s being in accord with experiments on dry PVAc 
networks. 

In view of these results the relevance of two non- 
Gaussian effects, finite chain extensibility and global 
interaction among network chains, is beyond doubt. 
These two effects play a different role at different 
strains. This illustrated with the plot in Fig. 11. At small 
strains the finite chain correction (the second term in 
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Fig. 11. Non-Guassian stress-strain components in comparison 
with the Gaussian behavior (-) .  Finite chain (Langevin) correction 
( - - - )  and interaction correction (...) was calculated with the aid of 
the second and third terms in Eq. (16), respectively. The stress- 
strain dependence for a real (van der Waals) network (-.  -) was cal- 
culated by Eq. (16) with a = 0.2 and kin = 10 

Eq. (16)) is negligibly small so that mainly the global in- 
teraction term (the third part in Eq. (16)) makes its in- 
fluence felt. Finite chain extensibility induces the sharp 
upturn in the vicinity o f l  = ;tin. It is interesting to note 
that finite chain effects give, in principle, a positive cor- 
rection of the Gaussian behavior, while the global in- 
teraction (the fluctuation) term, on the other hand, 
reduces the "ideal" stress. Both non-Gaussian effects 
together lead to a minimum behavior at moderate 
deformations. This can be seen in Fig. 12. At small 
strains the negative interaction term overpowers the 
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X 

Fig. 12. Deviation A from the ideal stress-strain behavior as a func- 
tion of strain. A = (G~aw - Gph)/Gph was calculated with the aid of 
Eq. (4) using the parameters a = 0.2 and Am = 10 
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finite chain effects. As the strain increases this negative 
term is gradually compensated, becoming finally 
smaller than the finite chain correction. At a certain 
deformation, where the relationship holds 

q~112 = ucdb~2[(1 + UcpCm) (26) 

where 

ur = a - l/~bam/2 (27) 

both terms compensate each other: the network seems 
to behave like an affine network. 

In conclusion, it must be emphasized that finite 
chain effects and interactions between chains and junc- 
tions are both important. It is imperative for every 
molecular theory of rubber elasticity to take this into 
consideration. The recent papers of Edwards and Vil- 
gis [40, 41] who developed a combined version of the 
tube and slip-link models, might be seen as a step in 
this direction. 

Experimental 
Unidirectional extension and compression measurements were 

performed on poly(vinyl acetate) (PVAc) networks. The PVAc 
samples were obtained by acetylation of poly vinyl alcohol (PVA) 
gels. These gels according to a previously described method [36- 
38] were prepared by crosslinking of aqueous PVA solutions hav- 
ing concentrations, vc, between 6-12 wt %, with glutaric dial&- 
hyde. The acetylation was performed in a mixture of 40 vol % acetic 
anhydride, 50 vol % pyridine and 10 vol % acetic acid at a tempera- 
ture of 90 ~ for 8 h. After acetylation the swollen networks were 
washed in acetone. The acetone was renewed several time until the 
reactants of acetylation were completely removed. Cylindrical 
samples to be used in unidirecitonal compression, and films for 
simple extension measurements were prepared. The swollen gels 
were carefully dried at 60 ~ 

Dry cylindrical samples (diameter 0.4-0.8 cm, height 0.4-0.8 
cm) were unidirectionally compressed by using a homemade appa- 
ratus [39]. This equipment enables determination of force and 
deformation in the range of 0.1 mN to 2 N, and 6 [2m to 3.33 mm, 
with an accuracy of 0.1 mN and 6 ~rn, respectively. The reproduci- 
bility of mechanical measurements, including sample preparation, 
was better than 8 %. 

Since the PVAc has a glass temperature at Tg = 32 ~ the com- 
pressional measurements were performed at 60 ~ At each stress 
we waited 5 h until mechanical equilibrium was attained. The 
simple extension was performed at 100 ~ by using the Zwick 1445 
eqmpmenc 
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