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Abstract. An approach leading to a statistical theory of magnetic fluids is proposed for the 
first time. It is shown that magnetic fluid can be treated as a combination of two subsystems: 
(i) magnetic dipoles and (U) molecules of a solvent fluid contained in cells with a potential 
field. The contributions from these subsystems to the thermodynamic properties of a mag- 
netic fluid are additive quantities. The basic model of a magnetic fluid is justified by means 
of the thermodynamic perturbation theory for non-ideal systems. It is argued that the 
emergence of aggregates in magnetic fluids is a first-order phase transition. The densities of 
coexisting phases and the critical parameters are estimated. 

A magnetic fluid is a colloidal suspension of ferromagnetic particles dispersed in the 
usual classical fluid (Shliomis 1974, Rosensweig 1979). The ferromagnetic particles 
are a system of strongly interacting magnetic dipoles and they influence the thermal 
properties of the fluid substantially. Until now magnetic fluids have been investigated 
by means of hydrodynamic models where the solvent fluid is treated as a continuous 
medium (Isaev and Kashevsky 1980, Maugin and Drouot 1983). However, it is impos- 
sible to study the thermal properties of magnetic fluids (magnetisation, specific heat, 
surface tension etc) without a correct assessment of the interparticle interactions. Phase 
transitions and the appearance of aggregates are of great interest (Krueger 1980). 
Therefore the construction of a statistical theory of magnetic fluids is a current problem. 

Let us consider a magnetic fluid of volume V ,  containing N solvent molecules and n 
ferromagnetic particles. It is assumed that the particles are spherical, consist of a single 
domain, have a magnetic moment, s, Is1 = const, and a diameter d - 50-150 A. In order 
to prevent coagulation each ferromagnetic particle is enveloped in a surfactant layer, 
the thickness of this layer being U, - 10 A. The system is subject to the action of a 
magneticfieldH,. In the temperature range in question, T - 200-400 K, the total change 
in the internal energy of the ferromagnetic particles, AU,, is negligible compared with 
the change in the internal energy of the solvent, AUL, as AUJAU, - qv (qv is the 
volume concentration of the particles), so the internal structure of the particles can be 
neglected. 

Let us use the following notation: qj ( j  =. 1, . . . , N) are the coordinate vectors of the 
molecules, t, (a = 1, . . . , n) are the coordinate vectors of ferromagnetic particles, e,, 
q,are the angularcoordinatesof the particle magneticmomentss,andi, = (r,, e,, q,). 
The partition function for the magnetic fluid in a magnetic field is 

Q 3 ( N + n ) / 2  
~ 3 n / 2 ~ 3 N / 2  - 

N!n! 
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where M and m are the masses of the particles and molecules, respectively. In the 
configuration integral, 

the system potential energy is U = U + U ,  where 

It consists of the interactions of four types. (i) The interactions of molecules described 
by the pair potentials vu. (ii) The interactions between molecules and particles described 
by the potentials e,.. (iii) The interactions between ferromagnetic particles described 
by the potentials 

Yap = Y;$ + Ys,, 

where 

is the usual dipole-dipole interaction potential, and Y kp is a short-range potential caused 
by the surfactant, rap = r,  - rp. (iv) The interactions of particles with the external 
magnetic field, Y,= - S a , .  We shall assume that the potentials qij and Qai have 
spherically symmetric asymptotics. 

As is known (Shliomis 1974) the ratio of the ferromagnetic particle concentration to 
the concentration of molecules is very low, 

n / ~  - 10-7-10-9. (3) 
We use this fact to simplify the integral for Q in equation (2). Let us divide the physical 
space into n cells in such a way that each cell contains one particle and a number of 
solvent molecules. The mean number of molecules per cell is No = N / n  - 107-109. 

The following assumptions are plausible. ( a )  The energy of interaction between 
molecules of different cells is negligible compared with the energy of interaction between 
molecules of the same cell (the corresponding error in calculation of the energy is 
-(N0)-ll3). (b )  The interaction of each ferromagnetic particle with molecules of only a 
specific cell is taken into account. As the particle is much larger than a molecule, and 
due to the power decrease of e,. with distance (Barash and Ginzburg 1984), one can 
conclude that the corresponding error in the energy calculation is less than about 
(No)-1/3. In view of these two assumptions, the cells can be treated as independent 
systems, and the configuration integrals over the coordinates of molecules in every cell, 
QA, are all equal. Thus the expression (2) is reduced to 

and the subscript A means that the molecules contained in a single cell of volume V are 
examined. The factor of N!/(No!)" in (4) represents the number of various distributions 
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of molecules between the cells. Using (4), one obtains the system free energy, 
9 = -kTln 2, 

Thus Qf describes the magnetic properties of the magnetic fluid, and QA describes 
the properties of the solvent in the field of @. The most important consequence from ( 5 )  
is the additivity of the thermodynamic quantities in both components of the magnetic 
fluid. For example when the potentials qij and @~ have spherical symmetry, we obtain 
an expression for pressure: 

P = - ( a % / a V ) T , N , n , H ,  = P A  + Pf 

where we have introduced the notation uo = V / N ,  uf = V/n ,  df = d + 2as. Two types 
of correlation functions are present in (6): Fl(q), F2(q1, 4,) and Fl(r), F2(P1, i2). The 
subsystems being independent, each type of the correlation functions can be obtained 
from an independent chain of Bogolyudov equations (Fischer 1963). Mathematical 
simulation methods (Zamalin et a1 1977) or perturbation theory (Zelener et a1 1981) can 
also be used to obtain the correlation functions. Note that in the thermodynamic limit, 
N+ E, n- m, V+ E, N/V  = const, n/N+ 0, expression (6) is reduced to the cor- 
responding expression for a homogeneous fluid (Fischer 1963). 

Strictly speaking, the interaction potentials are not known, yet the properties of the 
magnetic fluids can be investigated by means of the following approach. We propose 
a 'reference model' with approximate potentials. The difference between the exact 
potentials and those in the reference model can be taken into account by means of various 
versions of the thermodynamic perturbation theory for non-ideal systems (Zelener et 
a1 1981). As the subsystems are independent, this procedure can be performed for every 
subsystem separately. 

For the magnetic subsystem the reference model is a system of particles with a 
centrally symmetric potential W, chosen in such a way that the first coefficients in the 
virial expansions for the reference model and for the real system are identical: 

exP[-Pw(lrijl>l = (exP(-Pwj))ui,uj /3 = l / k T  

where ( stands for averaging over the different orientations of the magnetic 
moments of the particles. The perturbation is the difference between Y and W and 
the interaction of ferromagnetic particles with the external field He. An appropriate 
reference model for the solvent fluid subsystem is a system of molecules interacting with 
the potential qii and, in addition, interacting with particles as if they were hard spheres. 
Here the perturbation is the attractive part of the potential e,,.. 
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Using the method described by Ruelle (1969) and by Zelener et a1 (1981), one can 
express the free energy given in ( 5 )  via the free energy of the reference model and a 
number of generalised group integrals: 

(sinh a/a - l ) j  
bj - nkT 2: - ui 

U U !  j=1 U ~ J !  
9 = 9 0 - k T C  

j = l  

3(N f n)/2 ~ 3 n / 2 ~ 3 N / 2  

[( 2) n!(N0!)" 
Bo = -kTln QB - nkTln Qi - kTln (7) 

Here a = sH,/kT, QB and Qi are the configuration integrals for the reference model, 
bj and uj depend on the correlation functions of the reference model and on the difference 
between the model potentials and the real potentials (Zelener et a1 1981). The series 
converge rapidly, if the perturbation energies are small ( (Y 6 1 , 

One of interesting phenomena discovered in magnetic fluids is the appearance of 
aggregates (Krueger 1980). We shall consider this effect o n  the basis of the suggested 
approach for the case He = 0. The thermodynamics of the magnetic subsystem is deter- 
mined completely by the reference model with the configuration integral QB , where the 
particles interaction potential W is spherically symmetric and at distances r b df can be 
presented as (Chan and Henderson 1984) 

6 1). 

w = -p + 0 ( ~ 4 )  (8) 
where x = /3s2/r3, p = l / kT  and at distances r < df it is positive and tends to infinity. 
In view of (8), the magnetic subsystem behaves like the Lennard-Jones liquid. The 
parameters of the Lennard-Jones potential (Fischer 1963) are 

E = /3s4/3dp U = df. (9) 
The suggested analogy makes it possible to treat the appearance of aggregates in 

magnetic fluids as a first-order phase transition of the vapour-liquid type. The critical 
parameters of this transition, i.e. the temperature, T,, and the density of the ferro- 
magneticparticles, pf , can be obtainedfrom the corresponding states law (Fischer 1963), 

kT,/E(T,) = 1.3 d:pf = 0.3. 

The compatible solution of (9) and (10) is 

kT, = (1.3/3)'/2sZ/d: 

or, in the dimensionless form, A, = 1.52, where A = s2/kTd:. For T > Tc(A < A,) there 
are no aggregates. The estimate of the critical value of A ,  obtained here in a simple 
manner, coincides with the result of Tsebers (1982) calculated within the framework of 
the mean-field theory. 

For temperatures close to T,( \A  TIT,/ Q 1, so that ~ A E / E (  T,)I Q 1) the corresponding 
states law enables one to obtain the ratio 6 of the ferromagnetic particle concentrations 
in strongly and weakly condensed phases. 

For magnetite particles (the saturation magnetisation of magnetite is Mf = 450 G, 
s = 4Mfnd3) having a diameter d = 120 A, the above estimates are 

TC=400K pi = 1.1 x IO1' cm-3 
Note, in conclusion, that the results presented support a hypothesis by de Gennes 

and Pincus (1970) that the phase diagrams of magnetic fluids are similar to that of the 
usual van der Waals liquid. 

6(T = 300 K) = 10. 
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It is reasonable to expect that experimental investigations of the structure factor, 
correlation functions, the behaviour of T, as a function of df and Mf, combined with the 
present approach and mathematical simulation methods, will make it possible not only 
to specify the potentials, but also to calculate reliably the thermodynamic properties of 
magnetic fluids. 
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