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Abstract. Nanometre-sized particles of ferrite, commonly used in magnetic fluids, 
are single-domain. The direction of magnetic moment of these small, uniaxial, 
ferromagnetic particles is known to fluctuate due to thermal agitation, and can 
relax through the Neel-type relaxation mechanism. The relaxation time of such 
fluctuations is usually determined by means of Brown's equations for high and 
low barrier heights. More recently, modified equations cateiing for a continuous 
range of barrier heights have been proposed. Comparison of these equations 
shows that, even in the moa extreme case only a factor of approximately 1.7 
distinguishes the corresponding eigenvalues (which represent the inverse of the 
relaxation time). It is concluded that the major source of error in predicting the 
relaxation time arises, not primarily due to the particular equations used, but 
because of the large uncertainty in obtaining precise experimental data needed to 
determine the components, f, and U ,  of these equations. For example, for a small 
change in anisotropy constant K by a factor of 2.5 (typical values for the system 
considered here are (2-5)x104 J 
times using Brown's equation differ by a factor of about 37. corresponding to times 
of 1.6 x to 4.3 x An experimental value of 5 x s determined 
from the frequency of the maximum of the loss-peak of the imaginary part of the 
complex susceptibility is at the outer limit of these calculated values. 

the calculated values of N6el relaxation 

1. Introduction 

The particles commonly used in magnetic fluids have 
radii ranging from 2 to 10 nm. As these particles are 
in the single-domain region, they can be considered to 
be i n  a state of uniform magnetization with magnetic 
moment, m, given by 

m = Msv (1) 

where M, (Wb m-') denotes saturation magnetization 
and v i s  the volume of the particle. The magnetic 
moment has preferred orientation@) (easy axis) relative 
to the particles due to magnetic anisotropy, K ,  which 
generally arises from a combination of shape and 
magnetocrystalline anisotropy. The magnetic moment 
may change from one easy direction o f  magnetization 
to another by overcoming an energy barrier, which, for 
uniaxial anisotropy, i s  given by Ku. This reversal, 
or switching time, is usually referred to as the N i e l  
relaxation time, z [l] and Nkl, assuming uniaxial 
anisotropy, estimated the relaxation time 5 to he 

5 = f;' exp(u) (2) 
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where fo i s  a constant with an often quoted approximate 
value of IO9 SKI [2] and U i s  the ratio o f  anisotropy 
energy to thermal energy ( K v / k T ) .  

2. Brown's equations 

Brown [3] realized that Nkl's expressions did not 
take into account the fact that the magnetic moment 
could spend some time in directions other than at the 
minimum o f  the potential well (easy axis). He thus 
derived a differential equation to describe the motion 
of the direction of the magnetic moment during i t s  
'random walk' from one energy minimum to another. 
He did not solve the equation but obtained values for 
the eigenfunctions, for high and low barriers with 

her = 4J7-%31' exp(-u) U 2 1 (3a) 

h g r = 2  ( I--U+-U ; 8":: 2) U K 1. (36) 
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Figure 1. Plot of eigenvalues as determined by Bassais’ 
equation, Aea, Aharoni’s equation, AA and Brown’s equation, 
AB,, against Q (the ratio of anisotropy energy to thermal energy 
(KvlkT)). 

where f;’ is a constant. 
Thus from (34  

rN = f;1z1/2u-l/2 exp(W2 U > 1 (5) 
and from (36) 

rN=f;u ’ ( I - - U + - U  ; ;;5 2)-’ u < < l  

=f;lu(l+ $ U ) .  (6) 
For convenience equations (5) and (6) are generally 
written in the familiar form 

An obvious weakness with equations (5) and (6) is that 
they do not cater for a continuous range of values in the 
region of U = 1 and, recognizing this, Bessais et al [5] 
produced, by means of curve fitting, a single empirical 
expression, namely 

suitable for a continuous range of U from small to large 
values of o. Aharoni [6] further developed this concept 
of having a single expression and modified equation (8) 
to arrive at the eigenvalue 

hsa = 2(1+ ~/4 )~ /*exp( -u )  (8) 

which tends to the correct power of in the limit of 
U << 1. 

Figure 1 illustrates how the eigenvalues of the 
respective expressions compare as a function of U,  up to 
a value of U = 10, whilst figure 2 shows that, even in 
the most extreme case, only a factor of 1.7 distinguishes 
the different values of A. 

186 

2 

h 

1 
/ 

I, 
2 L 6 0 40 

Figure 2. Plot of ratio of eigenvalues as determined by 
Bessais’ equation,  AB^. Aharoni’s equation, AA and Brown’s 
equation, against Q (the ratio of anisotropy energy to 
thermal energy (Kvlkn): 1 ,  ABc/Aea; 2, A B ~ I A A ;  3, >.%/AA 
(For v 3 1 )  and 4,  Asr /Aea; and 5, Aar/An (for Q << 1). 

The other factor to be taken into account in the 
determination of rN is the pre-exponential component 
f;’. which can be determined from the expression [7] 

fo = [Ms/2PoYaKl-i (10) 

where y is the gyromagnetic ratio and a is a damping 
constant. An approximate value of 01 of the order 
of magnitude of unity [SI has been suggested for the 
case of small particles whilst values of a have also 
been variously quoted as being 0.1 or 0.01 [8,9]; a 
further problem arises in one’s choice of a because its 



temperature-dependence must be taken into account [SI. 
Furthermore, the problem of determining rN or fo from 
the above equations, in order to make comparisons with 
experimental values, is compounded by the fact that, for 
the experimental systems studied, the particles not only 
have a size distribution but a shape distribution as well. 
This leads, in turn, to a distribution of values of K .  the 
anisotropy constant. Thus one is immediately confronted 
with a large uncertainty in the value of d to be used in 
these expressions. 

As an example, taking M, to be typically 0.4 Wb 
m-' for magnetitehaghaemite particles with a median 
diameter of 11 nm, (Y as 0.4 and K in the range (2- 
5)x104 J m3, fo has values in the range 4.5 x lo9- 
1 x 10" s-' and r~ (using Brown's equations) has values 
in the range 1.6 x to 4.3 x s. Literature 
values for fo range from lo8 to lo'2 s-I [10,11]. It 
is thus perfectly obvious that, in view of the difficulty 
of obtaining particle systems that can be characterized 
with sufficient accuracy and confidence, the choice of 
equation used to determine rN is of little significance in 
situations such as those presented here. 

Thus, in view of the difficulty of predicting at what 
frequency the relaxation should occur, one will perhaps 
have to rely on a technique that measures it directly. 

3. Direct measurement 

One effective and proven technique is the toroidal 
technique of Fannin et a1 [12] whereby, as a result of 
swept measurements taken over a wide frequency range, 
the real and imaginary components of the complex AC 
magnetic susceptibility of a ferrofluid. ~ ' ( w )  and ~ " ( w )  
respectively, are obtained. 

The complex frequency-dependent magnetic suscep- 
tibility, ~ ( w ) .  may be written in terms of its real and 
imaginary components, where 

x ( w )  = ~ ' ( o )  - if(@). (11) 

According to Debye's theory [13] the complex 
susceptibility, x (0). has a frequency-dependence given 
by the approximate equation 

x ( w )  = X O / U  + i6JtN) (12) 

(13) = X O / (  1 + o'r;) - ioresxo/(l + o%;) 
with 

where n is the particle number density. 
Equation (13) demonstrates how ~'(0) falls mono- 

tonically whilst the ~ " ( w )  component has a maximum 
given by 

W-rN = 1. (15) 
Therein lies the relationship with A, for as has previously 
been stated, the relaxation time is inversely proportional 
to A, which means that o,, is directly proportional to 
A. So from a plot of A versus U we can, by inspection, 

xo = nm2/3kTpo (14) 

Nbel relaxation time in terromagnetic pieces 
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Figure 3. Normalized plot of the imaginary component 
of the complex susceptibility ~"(0) against log(f Hz) for 
ferrofluid suspension of magnetitdmaghaemite particles 
with a median diameter of 11 nm. 

determine the effect each of the respective eigenvalues 
have on the position of the loss-peak and, from the 
example given, the maximum error in the position of 
o,, will be 1.7. 

A typical result obtained using the method of Fannin 
et a1 for a distribution of magnetite particles in a solid 
matrix is shown in figure 3. This is a plot of ~"(o) 
versus log(f Hz) over the frequency range 10 Hz to 
1 GHz. The particles in this sample have a median 
diameter of 11 nm for a log-normal volume distribution, 
a U of 5.9 f 2.5 and a Ms of 0.4 Wb m-*. The loss-peak 
has a maximum at a frequency of 30 MHz, which, from 
equation (15). results in a relaxation time of 5.3 x s, 
which is roughly at the outer limit of the range of values 
calculated using Brown's equations in the example given 
in section 2. 

4. Conclusion 

Brown's equations for calculation of the N6el relaxation 
time, ?N, have been compared with recently reported 
modified versions and it has been shown that, at a 
maximum, the calculated values of relaxation time differ 
by only a factor of approximately 1.7. However, the 
possibility of a far greater error exists because of the 
uncertainty in determining values for the components, 
fo and c, of these equations. 

For a typical magnetic fluid containing ferrite 
particles of 11 nm median diameter the calculated value 
of N6eI relaxation time using Brown's equations has 
a wide spread of values, 1.6 x lo-' to 4.3 x s 
for a small range in values of anisotropy constant 
K(2-5) x IO4 J mW3, typically quoted for such systems. 
An experimental value of 5 x s was determined 
from the maximum of the loss-peak of the imaginary 
component of the complex susceptibility, which is at the 
outer limit of the calculated values. 

It is concluded that, in view of the difficulty of 
obtaining particle systems that can be characterized 
with sufficient accuracy and confidence, the choice of 
equation used to determine rN, where the eigenvalues 
differ by no more than a factor of 1.7, is of little 
significance. Thus, in this context, there is little to be 
gained by the exercise of modifying Brown's equations. 

187 



P C Fannin and S W Charles 

Acknowledgment 

Acknowledgment is due to the EC for financial support 
under the BRITE-EUR4M programme. 

References 

[ I ]  N k l  L 1949 Ann. Geophys. 5 99 
121 Kneller E 1963 Maanerisrn vol 111 (New York Academic) . _  - 

p 382 

the theory of the Debye and Nee1 relaxation of single 
domain ferromagnetic particles Adv. Chem. Phys. 83 
264 

Bessais L. Jaffel L Ben and Dommann J L 1992 fhys .  
Rev. 0 45 7805 

(31 Brown W F 1963 Phys. Rev. 130 1677 
[4] Coffey W T, Kalmykov Yu P and Cregg P J 1992 On 

[SI 

[6] Aharoni A 1992 Phys. Rev. B 46 5434 
171 Raikher Y Land Shliomis M I 1975 Sov. Phys.-JETP 40 

[8] Anderson J C and Donovan B 1960 Pmc. Pkys. Soc. B 75 

191 Shliomis M I and Raikher Yu L 1980 IEEE Trans. Magn. 

[IO] Dickson D P E, Reid N M K, Hunt C A, Williams H D. 

526 

149 

16 237 

El-Hilo M and OGrady K 1993 J. Magn. Magn. Marer, 
125 345 

and Trautwein A X 1992 Magnetic Pmperries of Fine 
Parricles (Amskrdam: Elsevier) p 371 

[I21 Fannin P C, Scaife B K P and Charles S W 1986 J. Phys. 
E: Sci. lnsrrum. 19 238 

[I31 Debye P 1929 Polar Molecules (New York The Chemical 
Catalog Company) 

[ I  I ]  Schunemann V, Winkler H, Ziethen H M, Schiller A 


