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Abstract
Starting from the Landau–Lifshitz equation, with resonant frequency f0 =
ω0/2π , it is demonstrated that, in the case of a magnetic fluid, the measured
resonant frequency, fres is always different from f0, except for the case of pure
resonance (i.e. zero damping parameter of Landau–Lifshitz equation) where
fres = f0. It is also shown that fres and the corresponding maximum absorption
frequency, fmax , are different, thus supporting the deductions of Scaife, who
arrived at this conclusion using an alternative theoretical approach.

Furthermore, based on complex magnetic susceptibility measurements,
over the frequency range 100 MHz–6 GHz, the dependence of the ratio
fmax/ fres on an external polarizing magnetic field, Hpol, over the approximate
range 0 and 1.3 kOe and on particle concentration has been examined for
different magnetic fluid samples. It is demonstrated how the ratio fmax/ fres

tends to unity both by (i) increasing the polarizing field and (ii) decreasing the
particle concentration of the samples.

1. Introduction

Magnetic fluids are colloidal systems that consist of single-domain ferro-ferrimagnetic particles
dispersed in a carrier liquid and coated with a surfactant to prevent agglomeration [1]. The
magnetic properties of magnetic fluids have been studied intensively because they have multiple
applications, ranging from instrumentation to medicine. Also, magnetic fluids seem to be
an advantageous model system for the simulation and study of disordered systems, as their
structure and particle concentration can be controlled easily, depending on the production
process, temperature or presence of external fields [2].
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Taking into account the thermal fluctuations of the magnetic moment of the particles and
neglecting interparticle interactions, Scaife has shown theoretically [3] that, for a magnetic
fluid, the resonant frequency, fres , and the frequency of maximum absorption, fmax , are
always different except for the case of pure resonance (i.e. zero damping parameter of the
Landau–Lifshitz equation [4]) where fres = fmax .

Here we use an alternative theoretical approach to that of Scaife and demonstrate that, for
a magnetic fluid, the resonant frequency, fres , is always different to the theoretical resonant
frequency, f0, except for the case of pure resonance where fres = f0. It is also shown that
fres and the frequency of maximum absorption, fmax , are different.

For magnetic fluids, we have analysed the effect that a polarizing field has on the
ratio of fmax/ fres at constant particle concentration. Furthermore, by changing the particle
concentration, n, of the magnetic fluid we have been able to observe and report on the effect
that interparticle interaction has on the ratio of fmax/ fres . For this purpose, room-temperature
measurements of the complex magnetic susceptibility, χ(ω) = χ ′(ω)− iχ ′′(ω), were obtained
for a number of magnetic fluid samples with different values of particle concentration over the
frequency and polarizing field ranges of 100 MHz–6 GHz and 0–1.3 kOe, respectively.

2. Theoretical considerations

The usual approach for the theoretical description of the magnetic resonance of systems
consisting of single-domain particles (such as magnetic fluids) is based on the analysis of the
free magnetic energy per unit volume of a representative particle [5, 6]. In order to calculate
the susceptibility of the magnetic fluid, the susceptibility of the representative particle has to
be averaged over all particle sizes, over all orientations of the anisotropy axes and over all
orientations of the dipolar field [5, 6].

In [6], starting from the equation of motion of the magnetization vector of the representative
particle in the Landau–Lifshitz form, the resonance condition and the line width are calculated.
As the Landau–Lifshitz equation can be written for every magnetic system, starting from the
equation of motion of the magnetization vector, M , of the magnetic fluid (equation (1)),

d �M
dt

= −gγ ( �M × �H) − α
gγ

M
[ �M × ( �M × �H )] (1)

the resonance condition (equation (2)) and the line width (equation (3)) of the magnetic fluid
will have the same form as in [6]:

ω0 = gγ (1 + α2)1/2

M sin θ0
(Fθθ Fϕϕ − F2

ϕθ )
1/2 (2)

�ω = gγα

M

(
Fθθ +

Fϕϕ

sin2 θ0

)
. (3)

In equations (1)–(3), H is the effective magnetic field, g is the spectroscopic splitting factor,
γ is the gyromagnetic electronic ratio, and α is the damping parameter of the magnetic fluid.
Also, ϕ and θ are the angular coordinates of the magnetization, while Fθθ , Fϕϕ and Fθϕ are the
second derivatives of the free energy per unit volume of the magnetic fluid at the equilibrium
position of its magnetization (ϕ0, θ0), where F has a minimum.

The real and imaginary components of the frequency-dependent complex magnetic
susceptibility, χ(ω) = χ ′(ω) − iχ ′′(ω), of magnetic fluids are shown in appendix A to have
the following form:

χ ′ = A

(ω2
0 − ω2)2 + ω2 D2

[(ω2
0 − ω2)B + ω2 DC] (4)
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χ ′′ = Aω

(ω2
0 − ω2)2 + ω2 D2

[DB − (ω2
0 − ω2)C]. (5)

From equation (4), the frequency, fres , at which χ ′(ω) becomes zero (i.e. the resonant
frequency) is found to be:

fres = f0

(
B

B − DC

)1/2

. (6)

In equation (6) D is a positive number (because it is the line width, �ω) and C is also
a positive number (see appendix A). Because χ ′′ has to be positive for all frequencies, it
follows from equation (5) that B is also a positive number (otherwise χ ′′ < 0 when ω < ω0 in
equation (5)). Consequently, equation (6) shows that the resonant frequency, fres , is always
(in the real cases) larger than f0. Since D and C are directly proportional to the damping
parameter, α, and B is a positive number, equation (6) shows that, for a magnetic fluid, f0 and
fres are equal only for the case of pure resonance (i.e. α = 0).

It is shown in appendix A that

dχ ′′

dω
(ωres) = A(BC D2 + C2 Dω2

0 − B2 D − 2BCω2
0)(C D − B)

D2(BC D − B2 − C2ω2
0)ω

2
0

. (7)

It follows that, if fres is equal to the maximum absorption frequency, fmax , then the
derivative (7) must be zero. Therefore, from the associated equation of relation (7), it is
found that the frequency corresponding to the resonance condition at which the derivative (7)
is zero is

ω0 = ±1

C(DC − 2B)

√−C(DC − 2B)DB(DC − B). (8)

From equation (6) it follows that B − DC > 0 (otherwise fres will be an imaginary number).
As B, C and D are positive numbers and B > DC , from equation (8) ω0 is found to be
an imaginary number. This result is obviously absurd, and therefore one deduces that the
derivative, dχ ′′/d(ω), calculated at ω = ωres cannot be zero. Consequently, we can assert that
fres is not equal to fmax . This result concurs with that reported by Scaife [3], who used an
alternative theoretical approach.

In the following section we present an experimental analysis concerning:

(i) the polarizing field effect on the ratio fmax/ fres , at constant particle concentration, and
(ii) the effect of interparticle interaction on the ratio fmax/ fres in zero polarizing field.

3. Samples and experimental details

The magnetic fluid samples used in this study were magnetic fluids with magnetite particles
dispersed in kerosene and stabilized with oleic acid. The colloidal particles of magnetite
were obtained by chemical co-precipitation of Fe2+ and Fe3+ ions in aqueous solution with
an excess of NH3. The stabilization of magnetite particles was done by hydrofobization with
technical oleic acid in the absence of a dispersion medium [7]. Finally, the magnetic fluid
was filtered in a magnetic field gradient in the presence of magnetic wool, consisting of steel
wires of approximately 17 µm in diameter, which was placed in the filter vessel [8]. The
resulting sample was denoted sample A. From the initial magnetic fluid (sample A), four other
samples—namely A1, A2, A3 and A4—were obtained by successive dilution of each sample
with kerosene, with a dilution ratio of 2:3.

The saturation magnetization of the initial magnetic fluid was M∞(A) = 46.3 magnetic
moment cm−3 (i.e. 46.3 kA m−1), measured using the ballistic method. Particle concentration



4742 P C Fannin et al

Figure 1. A plot of χ ′ and χ ′′ (normalized to the value of χ ′ at 0.1 GHz corresponding to
zero polarizing field) against frequency, for ten values of polarizing field, for the initial sample
(sample A): H1 = 0, H2 = 191.4 Oe, H3 = 307.5 Oe, H4 = 443.3 Oe, H5 = 580.3 Oe,
H6 = 717.2 Oe, H7 = 860.8 Oe, H8 = 997 Oe, H9 = 1.14 kOe, H10 = 1.29 kOe.

within the initial magnetic fluid, n, and mean particle magnetic diameter, Dm , were determined
using the Chantrell method [9], resulting in n(A) = 3 × 1017 cm−3 and Dm = 8.5 nm.

The complex magnetic susceptibility measurements, over the frequency range 100 MHz–
6 GHz, were made using the short-circuited coaxial transmission line method [10], at room
temperature. The short-circuited coaxial transmission line that contained the magnetic fluid
sample was placed between the pole faces of an electromagnet, with the axis of the coaxial
line perpendicular to the field. Automatically swept measurements over the entire frequency
range of the input impedance of the line containing the sample were measured using a Hewlett
Packard network analyser (HP 8753 C) and, from these measurements, the components χ ′(ω)

and χ ′′(ω) of the complex magnetic susceptibility of the samples were determined.

4. Results and discussions

The results of the frequency-dependent complex magnetic susceptibility, at different values of
the polarizing field, for sample A are presented in figure 1. Magnetic resonance is observed
for each value of polarizing field, indicated by the transition of the real part of the complex
magnetic susceptibility from a positive to a negative value. As is shown in figure 1, fres

increases from 1.8 to 5.4 GHz in response to an increase in the polarizing field from 0 to
1.29 kOe.

The frequency of maximum absorption at resonance, fmax , also increases from 1.2 to
5.4 GHz by increasing the polarizing field from 0 to 1.29 kOe, as we can observe from figure 1.

The dependence of the ratio of fmax/ fres as a function of the external magnetic field, Hpol,
is plotted in figure 2 for sample A. As can be observed, the ratio fmax / fres is different from
unity—a result that is in agreement with our theoretical considerations as well as with those
of Scaife [3]. An increase in polarizing field leads to an increase in the ratio of fmax/ fres , with
the ratio approaching unity in the case of the strongest polarizing field (see figure 2).
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Figure 2. The dependence of the ratio of the maximum absorption frequency, fmax , and the resonant
frequency, fres , on an external magnetic field, Hpol , for sample A. The full curve is an eye-guiding
line having the equation r(x) = a +b/(1+exp(−(x −c)/d)), with a = 0.57, b = 0.39, c = 153.74
and d = 127.93.

Figure 3. A plot of χ ′ and χ ′′ (normalized to the value of χ ′ at 0.1 GHz) against frequency, at zero
polarizing field, for samples A, A1, A2, A3 and A4.

The effect of the interparticle interactions on the ratio fmax/ fres was analysed from the
dependence of the ratio fmax/ fres on particle concentration, n, in zero polarizing field at room
temperature. The particle concentration within the magnetic fluid sample was changed by
successive dilution with kerosene, with a dilution ratio 2:3, starting from sample A. Figure 3
shows the results obtained for the frequency-dependent complex magnetic susceptibilities, χ ′
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Figure 4. The plot of the ratio fmax/ fres against normalized particle concentration, n/n0, at
zero polarizing field. n0 is the initial particle concentration (of sample A) and n is the particle
concentration of the diluted samples. The full curve is an eye-guiding line having the equation
r(x) = a + b/(1 + exp(−(x − c)/d)), with a = 0.67, b = 0.21, c = 0.46 and d = −0.11.

and χ ′′, for all dilutions of sample A. All data from the plot are normalized to the value of χ ′
of sample A at 0.1 GHz.

As can be seen from figure 3, the resonant frequency, fres , decreases with dilution from
1.81 GHz for the most concentrated sample (sample A) to 1.41 GHz for the most diluted
sample (sample A4). We also note that the magnitude of χ ′ and χ ′′ decreases with dilution,
as expected, and that fmax is approximately constant, at 1.2 GHz.

The plot of the ratio fmax/ fres as a function of particle concentration at zero polarizing field
is presented in figure 4. It can be observed that the ratio fmax/ fres increases with decreasing
particle concentration.

Any explanation of the dependence of the ratio fmax/ fres on an external magnetic field
and on particle concentration must start from the structure of the magnetic fluids.

A magnetic fluid consists of single-domain particles, which obey a dimensional
distribution and are dispersed in a carrier liquid. In zero magnetic field, the orientation of
the uniaxial anisotropy axes of the particles is uniform while, with increasing biasing field,
the anisotropy axes tend to align close to the direction of the magnetic field [11]. Also, an
external magnetic field can induce particle agglomerations, resulting in a change in the local
interparticle interaction field [12].

The resonance condition of a particle within the magnetic fluid depends on the particle axis
orientation, on particle size [11], and on local interparticle interactions [12]. The measured
resonance line comprises a great number of single particle lines, which have centres shifted
relative to each other and which have different line widths. Consequently, for the case of a
small polarizing field and high particle concentration (see figures 2 and 4), the superposition
of the single particle resonance lines is possibly responsible for the large difference between
fres and fmax .

In a small polarizing field, the distribution of the anisotropy axes of the particles in a
magnetic fluid is approximately uniform [11]. Also, we would expect a large spread in the
values and in the orientations of the dipolar magnetic field acting on a particle due to all
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others particles in the sample. This will result in a large spread in the values of the theoretical
resonant frequency of a particle within the magnetic fluid, f0,p , and in the values of line width
of the particles (see equations (B.3) and (B.4) in appendix B). Therefore, the values of χ ′ and
χ ′′ corresponding to the individual particles within the magnetic fluid will also have a large
spread. This will probably lead to a large difference between fres and fmax of the magnetic
fluid. In the case where the polarizing field is large (relative to the interparticle interaction
field and to the anisotropy field), the contribution of both the dipolar and anisotropy terms to
the expressions for resonance and line width can be neglected. Consequently, the resonance
condition (equation (B.5)) and the line width (equation (B.6)) will be the same for all particles.
As a result, the resonance condition and the line width of one particle within the magnetic
fluid will be the same as those of the magnetic fluid. In this case, fres

∼= fmax = f0 (see
appendix B). This result is in agreement with our experimental findings (see figure 2).

For the case of zero polarizing field and small interactions (by comparison with the
anisotropy field), there exists a large spread in the values of frequency corresponding to the
resonance condition of a particle, f0,p , and in the values of line width of a particle within the
magnetic fluid (see equations (B.13) and (B.14) in appendix B). Consequently, this will result
in a large spread in the values of χ ′ and χ ′′ corresponding to the individual particles of the
magnetic fluid and manifest itself in the form of a large difference between fres and fmax . For
the diluted magnetic fluids, the dipolar magnetic field acting on the particle due to all others
particles in the sample can be neglected. Therefore the resonance condition (see appendix B)
will be the same for all particles. In this case, the resonance condition and the line width of
one particle will be the same as those of the magnetic fluid, and one obtains fres

∼= fmax = f0

(see appendix B)—a result that is in agreement with our experimental findings (see figure 4).

5. Conclusions

Measurements of the complex magnetic susceptibility, χ(ω) = χ ′(ω) − iχ ′′(ω), as a function
of frequency, f , over the range 100 MHz–6 GHz and the external polarising field, Hpol, up
to 1.3 kOe, are obtained by means of the coaxial transmission line technique. Ferromagnetic
resonance, indicated by the χ ′(ω) component going from a positive to a negative quantity at
a frequency fres , is observed in the case of five magnetic fluid samples, namely samples A,
A1, A2, A3 and A4. In the case of sample A, the variation in the polarizing field results in
fres covering the frequency range 1.8–5.5 GHz. The corresponding χ ′′(ω) profiles have fmax

values covering the frequency range 1.8–5.4 GHz.
From these dynamic measurements we investigate the factors which influence the ratio

between the maximum absorption frequency, fmax , and the resonance frequency, fres . These
experimental results show that the ratio fmax / fres is always less that unity, thereby confirming
the deductions of Scaife.

It is further shown how the ratio f max/ fres increases, approaching unity,with (i) an increase
in polarizing field, Hpol, and (ii) a decrease in interparticle interactions; the interparticle
interactions being reduced by means of changing the particle concentration of the magnetic
fluid samples.

It is also demonstrated that, for the case of an unpolarized magnetic fluid sample, the
measured resonant frequency, f res, and the resonant frequency of the Landau–Lifshitz equation,
f0, are always different, with fres > f0. The exception is the case of pure resonance
(i.e. null damping parameter of the Landau–Lifshitz equation). Again, the influence that
the polarizing field and/or interparticle interactions have on fres is investigated theoretically
and it is proven that, under conditions of strong polarizing field and/or small interparticle
interactions, fres

∼= f0.
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Appendix A. The behaviour of f0, fmax and fres in magnetic fluids in the general case

The susceptibility of the magnetic fluid χ will have the following form, as in [6]:

χ = γ 2g2(1 + α2)

ω2
0 − ω2 + iω �ω

[
l2

(
Fθθ +

iωαM

γ g(1 + α2)

)

+ s2

(
Fϕϕ

sin2 θ0
+

iωαM

gγ (1 + α2)

)
+ 2ls

Fθϕ

sin θ0

]
. (A.1)

The parameters l and s are:

l = sin δ sin(ϕ0 − λ) (A.2)

s = cos θ0 sin δ cos(ϕ0 − λ) − cos δ sin θ0. (A.3)

In the above equations δ and λ are the angular coordinates of the microwave magnetic field.
To separate the real and imaginary parts of the complex magnetic susceptibility, the expression
of the complex susceptibility is multiplied by ω2

0 − ω2 − iω�ω, resulting in:

χ = g2γ 2(1 + α2)(ω2
0 − ω2 − iω�ω)

(ω2
0 − ω2)2 + ω2(�ω)2

[
l2

(
Fθθ +

iωαM

γ g(1 + α2)

)

+ s2

(
Fϕϕ

sin2 θ0
+

iωαM

gγ (1 + α2)

)
+ 2ls

Fθϕ

sin θ0

]
. (A.4)

Expanding expression (A.4), one obtains

χ = g2γ 2(1 + α2)

(ω2
0 − ω2)2 + ω2(�ω)2

[
(ω2

0 − ω2)l2 Fθθ + (ω2
0 − ω2)l2 iωαM

gγ (1 + α2)

+ (ω2
0 − ω2)s2 Fϕϕ

sin2 θ0
+ (ω2

0 − ω2)s2 iωαM

gγ (1 + α2)
+ 2ls(ω2

0 − ω2)
Fθϕ

sin θ0

− iω �ωl2 Fθθ + �ωl2 ω2αM

gγ (1 + α2)
− iω�ωs2 Fϕϕ

sin2 θ0

+ �ωs2 ω2αM

gγ (1 + α2)
− 2iω�ωls

Fθϕ

sin θ0

]
. (A.5)

Separating equation (A.5) into its real and imaginary components, one obtains

χ ′ = g2γ 2(1 + α2)

(ω2
0 − ω2)2 + ω2(�ω)2

[
(ω2

0 − ω2)

(
l2 Fθθ +

s2 Fϕϕ

sin2 θ0
+

2ls Fθϕ

sin θ0

)

+
ω2�ωαM

gγ (1 + α2)
(l2 + s2)

]
(A.6)

χ ′′ = g2γ 2(1 + α2)

(ω2
0 − ω2)2 + ω2(�ω)2

[
ω�ω

(
l2 Fθθ +

s2 Fϕϕ

sin2 θ0
+ 2ls

Fθϕ

sin θ0

)

− ωαM(ω2
0 − ω2)

gγ (1 + α2)
(l2 + s2)

]
. (A.7)

To simplify matters, the following notation is used:

A = g2γ 2(1 + α2) (A.8)

B = l2 Fθθ + s2 Fϕϕ

sin2 θ0
+ 2ls

Fθϕ

sin θ0
(A.9)

C = αM

gγ (1 + α2)
(l2 + s2) (A.10)
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and

D = �ω (A.11)

resulting in χ ′(ω) and χ ′′(ω) being expressed in the form

χ ′ = A

(ω2
0 − ω2)2 + ω2 D2

[(ω2
0 − ω2)B + ω2 DC] (A.12)

χ ′′ = Aω

(ω2
0 − ω2)2 + ω2 D2

[DB − (ω2
0 − ω2)C]. (A.13)

From (A.12) one obtains

fres = f0

(
B

B − DC

)1/2

. (A.14)

The first derivative of χ ′′ with respect to ω is
dχ ′′

dω
= A

[(ω2
0 − ω2)2 + ω2 D2]2

{[DB + 2ω2C − (ω2
0 − ω2)C][(ω2

0 − ω2)2 + ω2 D2]

− [ωDB − (ω2
0 − ω2)ωC][2ωD2 − 4ω(ω2

0 − ω2)]} (A.15)

and
dχ ′′

dω
(ωres) = A(BC D2 + C2 Dω2

0 − B2 D − 2BCω2
0)(C D − B)

D2(BC D − B2 − C2ω2
0)ω

2
0

. (A.16)

Expression (A.16) is zero when

BC D2 + C2 Dω2
0 − B2 D − 2BCω2

0 = 0 (A.17)

resulting in

ω0 = ±1

C(DC − 2B)

√−C(DC − 2B)DB(DC − B). (A.18)

Appendix B. The behaviour of f0, fmax and fres in magnetic fluids: the case of strong
polarizing field and small particle concentration

Assuming that the particle has uniaxial anisotropy, the free magnetic energy per unit volume
of the particle within the magnetic fluid is

F = −MS Hpol(�e · �eH ) − MS HD(�e · �eD) − K (�e · �eA)2. (B.1)

In equation (B.1), e, eH , eD and eA are the unit vectors that define the directions of the
magnetization, MS , the static polarizing magnetic field, Hpol , the dipolar magnetic field, HD ,
and the anisotropy axis, respectively.

Under the assumption of small anisotropy field, 2K/(MS Hpol) � 1, and small
interactions, HD/Hpol � 1, the magnetization of the representative particle at the equilibrium
position is approximately parallel to the polarizing field. Also, assuming that the static magnetic
field is parallel to the y axis, after calculation of the free energy derivatives of the particle, Fθθ ,
Fϕϕ and Fϕθ , equation (2) written for the particle becomes

ω0,p = gγ (1 + α2
p)

1/2

{[
Hpol + HD sin θD sin ϕD − 2K

MS
(cos2 θA − sin2 θA sin2 ϕA)

]

×
[

Hpol + HD sin θD sin ϕD − 2K

MS
sin2 θA cos(2ϕA)

]

− 4K 2

M2
S

sin2 θA cos2 θA cos2 ϕA

}1/2

. (B.2)
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In the equation (B.2), (θD, ϕD) and (θA, ϕA) are, respectively, the angular co-ordinates of the
dipolar magnetic field and of the unit vector, which define the direction of the anisotropy
axis. Also, in equation (B.2), αp is the damping parameter of the particle. For the case of
small anisotropy field and small interactions, the terms (HD/Hpol)

2, 2K HD/(MS H 2
pol) and

(2K/Hpol MS)
2 can be neglected and, using the approximation (1 + x)1/2 ∼= 1 + x/2 (for

x < 0.5), equation (B.2) becomes

ω0,p = gγ (1 + α2
p)

1/2

[
Hpol + HD sin θD sin ϕD

+
K

MS
(2 sin2 θA sin2 ϕA − cos2 θA − cos2 ϕA sin2 θA)

]
. (B.3)

Using the same approximations, the line width of the particle is

�ωp = 2gγαp

[
Hpol + HD sin θD sin ϕD

+
K

MS
(2 sin2 θA sin2 ϕA − cos2 θA − cos2 ϕA sin2 θA)

]
. (B.4)

For the case in which the dipolar term and the anisotropy term can be neglected, equations (B.3)
and (B.4) become

ω0,p
∼= gγ (1 + α2

p)
1/2 Hpol (B.5)

�ωp
∼= 2gγαp Hpol. (B.6)

Also, the derivatives of the free magnetic energy per unit volume of the particle become
Fθθ = Fϕϕ = MS Hpol and Fθϕ = 0. Introducing these expressions into (A.6), the frequency
at which χ ′ becomes zero will be

fres,p = f0,p

√
1 + α2

p

1 − α2
p

. (B.7)

As is known, for the majority of the ferro-ferrimagnetic materials αp ≈ 10−2 [13, 14] therefore,
for a particle within the magnetic fluid in a strong polarizing field (2K/(MS Hpol) � 1 and
HD/Hpol � 1), one obtains for a particle, fres,p

∼= f0,p . In the case of a strong polarizing
field, the resonance condition (equation (B.5)) and the line width (equation (B.6)) will be
the same for all particles. Consequently, the resonance condition and the line width of one
particle within the magnetic fluid will be the same as those of the magnetic fluid. In this case,
equation (B.7) can also be written for the magnetic fluid, following that for a magnetic fluid
in a strong polarizing field, fres

∼= f0.
From equation (A.15), the first derivative with respect to ω of the imaginary part of the

complex magnetic susceptibility, χ ′′, in ω0 results in

dχ ′′

dω
(ω0,p) = A

ω2
0,p D2

[2ω2
0,pC − DB]. (B.8)

For the case of a strong polarizing field, the constant B defined in equation (A.9) becomes

B = MS Hpol(l
2 + s2). (B.9)

Inserting (A.10), (A.11) and (B.9) into (B.8), one obtains:

dχ ′′

dω
(ω0,p) = A(l2 + s2)MS

ω2
0,p D2

[
2ω2

0,p

αp

gγ (1 + α2
p)

− �ωp Hpol

]
. (B.10)
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Using equation (B.5) and (B.6) in (B.10), results in:

dχ ′′

dω
(ω0,p) = 0. (B.11)

This means that in the case of strong polarizing field, for each particle within the magnetic
fluid, the frequency corresponding to the resonance condition, f0,p, is equal to the maximum
absorption frequency at resonance, fmax,p . Also, for the magnetic fluid, the frequency
corresponding to the resonance condition, f0, is equal to the maximum absorption frequency
at resonance, fmax .

In zero polarizing fields, the density of the free magnetic energy of the particle is:

F = −MS HD(�e · �eD) − K (�e · �eA)2. (B.12)

Under the assumption of small interactions by comparison with the anisotropy field, the
magnetization of the particle at the equilibrium position is approximately parallel to the
anisotropy axis. Therefore, from equations (2) and (3) written for the magnetic particle,
using equation (B.12) in the calculation of Fθθ , Fϕϕ , and Fθϕ one obtains:

ω0,p = gγ (1 + α2
p)

1/2

(
2K

MS
+ HD sin θD sin ϕD

)
(B.13)

and

�ωp = 2gγαp

(
2K

MS
+ HD sin θD sin ϕD

)
. (B.14)

In the case of a diluted magnetic fluid, Fθθ = 2K , Fϕϕ = 2K sin2 θA and Fθϕ = 0.
Equations (B.13) and (B.14) become:

ω0,p = gγ (1 + α2
p)

1/2 2K

MS
(B.15)

�ωp = 4gγαp
K

MS
. (B.16)

Substituting the expressions for the derivatives of the density of free magnetic energy into
equation (A.6), it becomes equal to equation (B.7). As a result of small particle concentration,
the resonance condition (equation (B.15)) and the line width (equation (B.16)) will be the same
for all particles. Consequently, the resonance condition and the line width of one particle within
the magnetic fluid will be the same as those of the magnetic fluid. In this case, equation (B.7)
can be written also for the magnetic fluid, following that for a diluted magnetic fluid fres

∼= f0.
In diluted magnetic fluids, the constant B defined in equation (A.9) becomes:

B = 2K (l2 + s2). (B.17)

Inserting (A.10), (A.11) and (B.17) in (B.8), one obtains:

dχ ′′

dω
(ω0,p) = A(l2 + s2)

ω2
0,p D2

[
2ω2

0,p

αp MS

gγ (1 + α2
p)

− 2K�ωp

]
. (B.18)

Using equation (B.15) and (B.16) in (B.18), one obtains:

dχ ′′

dω
(ω0,p) = 0. (B.19)

This shows that in the case of a diluted magnetic fluid, the frequency corresponding to the
resonance condition of a particle within the magnetic fluid, f0,p, is equal to the maximum
absorption frequency of the particle, fmax,p . Furthermore, for the magnetic fluid having small
particle concentration, the frequency corresponding to the resonance condition, f0, is equal to
the maximum absorption frequency at resonance, fmax .
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