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Abstract

An analysis of the stability of a basic £ow of streaming magnetic £uids in the
presence of an oblique periodic magnetic ¢eld is made. The particular inves-
tigated pro¢le is the classical Kelvin-Helmholtz pro¢le modi¢ed by the addition
of the in£uence of mass and heat transfer across the interface. In the case of a
uniform ¢eld, the dispersion relation is obtained and discussed both analytically
and numerically and the stability diagrams are also obtained. It is found that the
e¡ect of the ¢eld depends strongly on the choice of some physical parameters of
the system. For a time dependent ¢eld, the characteristic values and intervals
of stability are investigated through Hill’s di¡erential equation.The special case
of an oscillatory ¢eld is governed by the Mathieu equation, which is also dis-
cussed. The presence of mass and heat transfer resulted in a damped Mathieu
equation. The analysis near the marginal state as well as Rayleigh-Taylor
instabilities are discussed. Regions of stability and instability are identi¢ed.
It is found that the mass and heat transfer parameter has a destabilizing in£u-
ence regardless of the mechanism of the ¢eld. It is also found that the ¢eld
frequency plays a dual role in the stability picture.

1. Introduction

Magnetic £uids, also known as ferro£uids, are ultrastable
colloidal suspensions of subdomain ferro- or ferri-magnetic
particles-e.g., magnetite (Fe3O4)-dispersed in various carrier
liquids (Rosensweig [1]). These materials behave like a quasi-
homogeneous strongly magnetizable liquid due to the
presence of approximately 1017^1018 magnetic particles in
one cubic centimetre. Many experimental results con¢rmed
that colloidal particles in magnetic £uids coagulate and form
chain clusters as a result of their mutual interactions, this pro-
cess being enhanced in the presence of a magnetic ¢eld. The
chain formation process, together with the reorientation of
individual particles in the presence of a magnetic ¢eld, are
responsible for the anisotropy of the physical properties of
the magnetic £uids [2]. For example, magneto-optical e¡ects
induced in thin magnetic-£uid layers are well explained by
the above-mentioned microstructural process [3]. The sound
velocity and the acoustic-attenuation coe⁄cient in magnetic
£uids are also dependent on the angle between the sound
propagation direction and the external magnetic ¢eld.

The instability of the plane interface separating two
Newtonian £uids when one is accelerated towards the other
or when one is superposed over the other has been studied
by several authors. Chandrasekhar [4] has given a detailed
account of these investigations. The model for the classical
Kelvin-Helmholtz instability involves a horizontal interface
between two £uids with di¡erent parallel, uniform, hori-
zontal velocities. This instability, which arises as a conse-
quence of a relative drift velocity of two £uids along the
surface of discontinuity, has great relevance to various phy-
sical phenomena such as cometary tails and the magneto-
spheric boundary. The Kelvin-Helmholtz instability due to

shear £ow in strati¢ed £uids has attracted the attention of
many researchers because of its determinant in£uence on
the stability of planetary and stellar atmosphers and in
practical applications. The study of the Kelvin-Helmholtz
instability has a long history in hydrodynamics. It is well
known that in two-dimensional inviscid, incompressible
hydrodynamics, there are two invariants of £uid motion,
i.e., the total kinetic energy and the enstrophy (mean square
vorticity). The existence of these two invariants requires
that, in two-dimensional inviscid incompressible hydro-
dynamics, the energy cascades to long wavelength or
vortices with similarly signed vorticity must tend to group
together [5]. Indeed, hydrodynamical experiments have
shown at the late stage of the Kelvin-Helmholtz instability
two vortical structures combine to form a single, larger
vortical structure. Such a nonlinear evolution of the Kelvin-
Helmholtz instability has been reproduced by numerical
experiments and theoretical investigations [6].

The linear formulation of the Kelvin-Helmholtz insta-
bility in the context of magnetic £uids was investigated by
Rosensweig [1]. His analysis revealed that the velocity di¡er-
ence that can be supported by the £uids before the instability
sets in is enhanced if the di¡erence in the permeabilities of
the £uids across the interface and the strength of the
applied magnetic ¢eld are increased. These £uids di¡er
from magnetohydrodynamic £uids since no electric current
£ows in these £uids. Because of the wide range of import-
ant industrial applications, there has been a growing in-
terest in the study of magnetic £uids when subjected to
normal and tangential magnetic ¢elds. The propagation of
plane waves in magnetic £uids in the presence of a
tangential magnetic ¢eld has been investigated theoretically
as well as experimentally by Zelazo and Melcher [7]. These
authors have demonstrated that the magnetic ¢eld exerts a
stabilizing in£uence on the stability of the £uid surface. In
their experiment, a plane wave of speci¢c wavelength, con-
sistent with the boundary conditions, was imposed on the
interface, and the subesquent frequency shift for various
strengths of the magnetic ¢eld was measured. Both theor-
etical and experimental results show an upward shift of
frequency of the imposed wavelength as a function of the
magnetic ¢eld. Cowley and Rosensweig [8] reported that
an instability sets in when the applied magnetic ¢eld, which
is normal to the £uid surface, exceeds the critical magnetic
¢eld. Their pioneer experiment demonstrated the existence
of an instability leading to the appearance of regular hex-
agonal cells. In their investigation of the nonlinear evol-
ution of wave packets on the surface of a magnetic £uid,
Malik and Singh [9] showed that the wave train solution
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of constant amplitude is unstable against modulation if the
product of the group velocity rate and the nonlinear inter-
action coe⁄cient is negative. Elhefnawy [10] studied the
nonlinear evolution of ferromagnetic £uids in the presence
of an oblique magnetic ¢eld. He found that the stability
of the system depends on the direction of the magnetic
¢eld.

The phenomenon of parametric resonance arises in many
branches of physics and engineering. One of the important
problems is that of dynamic instability which is the
response of mechanical and elastic systems to time-varying
loads, especially periodic loads. There are cases in which
the introduction of small vibrational loading can stabilize
a system which is statically unstable or destabilize a system
that is statically stable. Faraday [11] ¢rst studied experi-
mentally the patterns of standing waves in a vessel
subjected to vertical oscillation. He found that the fre-
quency of the surface oscillation was one half of that of
the external forcing. Benjamin and Ursell [12] explained
the excitation of standing waves of an inviscid liquid,
which is associated with the instability of the Mathieu
equation for a parametric resonant mode. Kelly [13] con-
sidered the e¡ect of an oscillatory component in the basic
velocity on the stability of the classical Kelvin-Helmholtz
pro¢le. There are some physical situations when one needs
a limited band of wave numbers to achieve instability. For
example, in biophysics, Zimmerman [14] showed that the
cell membrane is formed by a number of adjacent cells if
they are subjected to a periodic ¢eld. Also, the membrane
breaks down if a ¢eld, at a given strength, is applied to it.
The treatment of parametric excitation systems having
many degrees of freedom and distinct natural frequencies
is usually operated by using the multiple time scales as
given by Nayfeh [15]. The behavior of such system is
described by an equation of the Hill or Mathieu types
[16,17]. It is well known that the stability of such solutions
may be described by means of the characteristic curves of
Mathieu functions which admit regions of resonance
instability. Bashtovoi and Rosensweig [18] have reported
the parametric excitation of surface waves in a cylindrical
vessel containing a magnetic £uid when the externally
applied magnetic £uid acts normally to the £uid surface.
In their experiment, the surface waves get excited when
the magnetization ¢eld is less than the critical one. An
interesting experimental observation of period doubling in
the normal ¢eld instability problem has been observed by
Bacri et al. [19].

On the other hand, the mechanism of mass and heat
transfer across an interface is of great importance in
numerous industrial and environmental processes. These
include the design of many types of contacting equipment,
e.g. boilers, condensers, evaporators, gas absorbers, piplines,
chemical reactors, nuclear reactors, and in other problems
such as the aeration of rivers and the sea. In most cases
of practical importance, the liquid is turbulent and the
transport across the gas-liquid interface is governed by the
liquid side. In early investigations, Hsieh [20] formulated
the general problem of interfacial £uid £ow with mass and
heat transfer and applied it to discuss the Kelvin-Helmholtz
instability problem. In nuclear reactor cooling [21] of fuel
rods by liquid coolants, the geometry of the system is in
many cases cylindrical. Therefore, Nayak and Chakraborty

[22] studied the problem of Kelvin Helmholtz stability with
mass and heat transfer in cylindrical geometry using
Hsieh’s simpli¢ed formulation and compared their results
with those in plane geometry. The e¡ect of a magnetic ¢eld
on the stability of cylindrical £ow with mass and heat
transfer has been investigated by Elhefnawy and Radwan
[23]. They found that the instability criteria is independent
of mass and heat transfer coe⁄cients, but it is di¡erent
from that in the same problem without heat and mass
transfer.
The classical Rayleigh-Taylor problem deals with the

stability of a heavy £uid supported by a ligher one.
Because of gravity, the former is accelerated in the direction
of the later. In the absence of main £ow or shear, the
Rayleigh-Taylor instability is left as the source of pertur-
bation growth in the case of an unsteady strati¢ed medium.
Recently, new advances in Rayleigh-Taylor instability for
non-dissipative incompressible £uids have been made in
which a continuously strati¢ed £ow is subjected to a gen-
eral strati¢ed horizontal magnetic ¢eld [24].
The aim of this paper is to study the stability and insta-

bility conditions of a Kelvin-Helmholtz problem of a liquid
layer over a vapour layer of ¢nite depth, in the presence
of an oblique time-dependent magnetic ¢eld. The transfer
of mass and heat across the interface is taken into account.
The e¡ect of nonlinearity on the problem at hand will not
be discussed here but will be the subject of a subsequent
paper.

2. Formulation of the problem

We shall study two-dimensional progressive waves at the
interface z ¼ 0, which separates two incompressible inviscid
magnetic £uids. Without any loss of generality, the cartisian
coordinates ðx; zÞ are taken into consideration, where the sur-
face wave propagates in the x-direction and gravity g acts
in the negative z-direction. The x-axis is the mean level of
the wave. The £uids are bounded by horizontal planes at
z ¼ h2 and z ¼ �h1. The subscripts 1 and 2 refer to the lower
and upper £uids, respectively. The £uid of density r1 with
magnetic permeability m1 occupies the region �h1 < z < 0,
and the £uid of density r2 with magnetic permeability m2
is in the region 0 < z < h2. The basic unperturbed £ow
has a constant velocity u1 in the x-direction in the lower layer
ð�h1 < z < 0Þ and a constant velocity u2 in the upper layer
ð0 < z < h2Þ. The temperatures at z ¼ �h1, z ¼ h2 and
z ¼ 0 are taken as T1, T2 and T0, in order, where
T1 > T0 > T2.
The two £uids are in£uenced by an oblique time dependent-

magnetic ¢eld,

H j ¼ HjðtÞðcos yjex þ sin yjezÞ; j ¼ 1; 2 ð2:1Þ

where ex and ez are unit vectors in the x and z-directions,
respectively, and yj is the angle between the ¢eld H j and
the x-axis.
We shall assume that there are no free currents at the

surface of separation in the equilibrium state. Therefore,
the tangential component of the ¢eld is continuous at the
interface, while the normal one is discontinuous by the
ratio of the permeabilities, i.e.

H1ðtÞ cos y1 ¼ H2ðtÞ cos y2; ð2:2Þ
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and

m1H1ðtÞ sin y1 ¼ m2H2ðtÞ sin y2: ð2:3Þ

We also consider all ‘‘functions H1ðtÞH2ðtÞ of class P’’
which are de¢ned by

p
Z p

0
jH1ðtÞH2ðtÞjPdt

� �1
P

¼ 1; ð2:4Þ

where P ¼ 1; 2; 3; . . ., or P ¼ 1. If P ¼ 1 Eq. (2.4) means
that

max jH1ðtÞH2ðtÞj ¼ 1: ð2:5Þ

We assume that H1ðtÞH2ðtÞ is continuous except for a
¢nite number of points, where H1ðtÞH2ðtÞ may have a
jump.

The motion considered here is irrotational in both of the
magnetic £uids and there exists a velocity potential f. For
an incompressible £uid, the potential f satis¢es the Laplace
equation.

In a magneto-quasistatic system, with a negligible dis-
placement current, Maxwell’s equations in the absence of
free currents are

HL ~HH ¼ 0 and H � ðm ~HHÞ ¼ 0; ð2:6Þ

because there are no free currents. Therefore, the magnetic
¢eld is a curl free vector having magnetic scalar potential
C such that

~HH j ¼ H j � HCj; j ¼ 1; 2; ð2:7Þ

where H j is given by Eq. (2.1).
It follows from Eqs (2.6) and (2.7) that the magnetic

potential also satis¢es the Laplace equation.
Thus, the equations governing the velocity potential f

and the magnetic potential C are

H2f1 ¼ H2C1 ¼ 0; �h1 < z < Zðx; tÞ; ð2:8Þ

H2f2 ¼ H2C2 ¼ 0; Zðx; tÞ < z < h2; ð2:9Þ
with the conditions

@f1

@z
¼ 0 at z ¼ �h1;

@f2

@z
¼ 0 at z ¼ þh2;

@C1

@x
¼ 0 at z ¼ �h1;

@C2

@x
¼ 0 at z ¼ þh2;

3
777777777775
; ð2:10Þ

where z ¼ Zðx; tÞ denotes the elevation of the interface at
time t.

The solutions for fj and Cj ð j ¼ 1; 2Þ have to satisfy the
boundary conditions, so that, if we assume that the inter-
face between the two magnetic £uids is given by Sðx; z; tÞ ¼
z� Zðx; tÞ ¼ 0, the linearized boundary conditions at the
interface z ¼ Zðx; tÞ are [1,20]:

(1) The conservation of mass across the interface is
given as

r1
@S
@t

þ v1 � HS
� �

¼ r2
@S
@t

þ v2 � HS
� �

or r1
@f1

@z
� @Z

@t
� u1

@Z
@x

� �

¼ r2
@f2

@z
� @Z

@t
� u2

@Z
@x

� �
; ð2:11Þ

where vj ¼ ujex þ Hfj.
(2) The tangential component of the magnetic ¢eld must

be continuous across the interface, i.e. nLð ~HH1 � ~HH2Þ ¼ 0, or

@C1

@x
�H1ðtÞ sin y1 @Z

@x
¼ @C2

@x
�H2ðtÞ sin y2 @Z

@x
; ð2:12Þ

where n is the unit normal vector to the interface and is given by

n ¼ HS
jHSj ffi � @Z

@x
ex þ ez: ð2:13Þ

(3) Since there are no free currents at the interface, the
normal component of the magnetic induction vector is con-
tinuous at the interface, i.e. n:ðm1 ~HH1 � m2 ~HH2Þ ¼ 0, or

m1
@C1

@z
þH1ðtÞcosy1 @Z

@x

� �
¼m2

@C2

@z
þH2ðtÞcosy2 @Z

@x

� �
: ð2:14Þ

(4) The interfacial condition for the conservation of
energy, yields

Lr1
@S
@t

þ v1 � HS
� �

¼ F ðzÞ; ð2:15Þ

where L is the latent heat of transformation from the £uid of
density r1 to the £uid of density r2 and FðzÞ is a function
of the instantaneous pro¢le of the interface and is determined
from the heat transfer relation at equilibrium [20].

In the equilibrium state, the heat £uxes in the direction
of z increasing in the two regions 1 and 2 are K1ðT1�T0Þ

h1
and K2ðT0�T2Þ

h2
respectively, where K1 and K2 are the thermal

conductivities of the two £uids. As in Hsieh [20], we denote

F ðzÞ ¼ K2ðT0 � T2Þ
h2 � z

� K1ðT1 � T0Þ
h1 þ z

: ð2:16Þ

If we expand FðzÞ about z ¼ 0 byMaclaurin series expansion,
one gets

F ðzÞ ¼ F ð0Þ þ ZF 0ð0Þ þ � � � : ð2:17Þ

It is clear that Fð0Þ represents the net heat £ux from the
interface into the £uid regions. Since it is an equilibrium
state, we have

F ð0Þ ¼ 0; ð2:18Þ

so that
K2ðT0 � T2Þ

h2
¼ K1ðT1 � T0Þ

h1
¼ GðsayÞ; ð2:19Þ

indicating that, in the equilibrium state, the heat £uxes are
equal across the interface in the two £uids.

Substituting (2.16)^(2.19) into (2.15), we obtain

r1
@f1

@z
� @Z

@t
� u1

@Z
@x

� �
¼ aZ; ð2:20Þ

where a ¼ G
L ð 1h1 þ 1

h2
Þ.
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Now, the vapor phase is usually hotter than the liquid
one so a is always positive. If £uid (2) is a liquid and £uid
(1) a vapor, then L and G are both positive since T1 >
T0 > T2. If £uid (1) is a liquid and £uid (2) a vapor, then
L and G are both negative. Thus in both cases a is always
positive. It is noteworthy that the e¡ect of mass and heat
transfer are revealed through a single positive parameter, a,
in this simpli¢ed version. It would be interesting to see that
the correlation of experimental data would be facilitated
by this simpli¢cation.

(5) Finally, the dynamical condition that the normal
stresses should be continuous across the interface, gives

P1 � P2 þ s
1
R1

þ 1
R2

� �� �
ni ¼ ½tij1 � tij2�nj; ð2:21Þ

where P is the pressure, s is the surface tension coe⁄cient,
R1 and R2 are the two principal radii of curvature of the
interface,

tij ¼ m ~HHi ~HHj � 1
2
m ~HH2dij; ð2:22Þ

is the Maxwell stress tensor, and ni and nj are components of
the normal vector to the interface.

By eliminating the pressure by Bernoulli’s equation, con-
dition (2.21) can be rewritten as

gZðr1� r2Þ þ r1
@f1

@t
� r2

@f2

@t
þ r1u1

@f1

@x
� r2u2

@f2

@x

¼ s
@2Z
@x2

þ m2H2ðtÞ cos y2
@C2

@x
� sin y2

@C2

@z

� �

� m1H1ðtÞ cos y1
@C1

@x
� sin y1

@C1

@z

� �
ð2:23Þ

The solutions of Eqs (2.8) and (2.9) with the conditions
(2.10), (2.11), (2.12), (2.14) and (2.20) for travelling waves
with respect to the variable x that decays far from the
interface are

Z ¼ gðtÞeikx þ c:c:; ð2:24Þ

f1 ¼
cosh kðzþ h1Þ
k sinh kh1

dg
dt

þ iku1 þ a
r1

� �
g

� �
eikx þ c:c:; ð2:25Þ

f2 ¼
cosh kðz� h2Þ
k sinh kh2

dg
dt

þ iku2 þ a
r2

� �
g

� �
eikx þ c:c:; ð2:26Þ

C1 ¼ sinh kðzþ h1Þ
ðm2 sinh kh1 cosh kh2 þ m1 cosh kh1 sinh kh2Þ
� �

� i sinh kh2ðm2H2ðtÞ cos y2 � m1H1ðtÞ cos y1Þ
�
�m2 cosh kh2ðH2ðtÞ sin y2 �H1ðtÞ sin y1Þ

�
geikx þ c:c:;

ð2:27Þ

C2 ¼ sinhkðz�h2Þ
ðm2 sinh kh1 cosh kh2þm1 cosh kh1 sinh kh2Þ
� �

� i sinh kh1ðm2H2ðtÞcosy2�m1H1ðtÞcosy1Þ
�
þm1 coshkh1ðH2ðtÞsiny2�H1ðtÞsin y1Þ

�
geikxþ c:c:;

ð2:28Þ

where k is the wave number, c.c. denotes the complex con-
jugate, and gðtÞ is an arbitrary function of time t and satis¢es
the following di¡erential equation:

a0
d2gðtÞ
dt2

þ ða1 þ ib1Þ dgðtÞdt
þ ða2 þ ib2ÞgðtÞ ¼ 0: ð2:29Þ

The coe⁄cients in Eq. (2.29) are

a0 ¼ r1 coth kh1 þ r2 coth kh2; ð2:30Þ

a1 ¼ aðcoth kh1 þ coth kh2Þ; ð2:31Þ

b1 ¼ 2kðr1u1 coth kh1 þ r2u2 coth kh2Þ; ð2:32Þ

a2¼k gðr1�r2Þ�kðr1u21 coth kh1þr2u
2
2 coth kh2Þþsk2

� �
þ k2

m1 cothkh1þm2 coth kh2

� �
½½m2H2ðtÞcosy2

�m1H1ðtÞcosy1�2�m1m2½H2ðtÞsiny2�H1ðtÞsiny1�2

�cothkh1 coth kh2�; ð2:33Þ
b2¼akðu1 coth kh1þu2 coth kh2Þ: ð2:34Þ

3. Stability behaviour due to a uniform oblique
magnetic ¢eld

The solution of Eq. (2.29) will decide the criterion of stability
of the system. Accordingly, the system will be stable if the
solution for gðtÞ remains bounded as t ! 1, otherwise it is
unstable.
A special case occurs when the applied magnetic ¢elds

are uniform, i.e. H1ðtÞ ! H1 and H2ðtÞ ! H2. In this case,
we ¢nd that the coe⁄cient a2, Eq. (2.33), is independent
of t. Therefore the solution of Eq. (2.29) becomes

gðtÞ ¼ const: expð�iotÞ; ð3:1Þ

where o is the (complex) frequency of the disturbance. It is
clear that the system is stable if the imaginary part of o
is either less than or equals zero.
Substituting (3.1) into (2.29) and using (2.3), we have

a0o2 þ ð�b1 þ ia1Þoþ ða20 � ib2Þ ¼ 0; ð3:2Þ

where

a20 ¼ k½gðr2�r1Þþkðr1u21 cothkh1þr2u
2
2 cothkh2Þ�sk2�

�k2H1H2ðm2�m1Þ2ðcosy1 cosy2
� siny1 siny2 cothkh1 cothkh2Þ
� ðm1 cothkh1þm2 cothkh2Þ�1:

The study of the properties of the roots of Eq. (3.2) can
judge the stability and the instability conditions of the
given problem.
Before dealing with the dispersion relation (3.2) in detail,

we ¢rst consider the case when the e¡ect of mass and heat
transfer across the interface is negligible (i.e. a ¼ 0). In this
case, Eq. (3.2) reduces to
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a0o2 � b1oþ a20 ¼ 0: ð3:3Þ

It follows that the system is stable, provided that

b21 � 4a0a20 � 0; ð3:4Þ

it follows that

gðr2 � r1Þ � sk2 � kH1H2ðm2 � m1Þ2

� ðcos y1 cos y2 � sin y1 sin y2 coth kh1 coth kh2Þ
� ðm1 coth kh1 þ m2 coth kh2Þ�1 þ kr1r2ðu1 � u2Þ2

� coth kh1 coth kh2ðr1 coth kh1 þ r2 coth kh2Þ�1 � 0: ð3:5Þ

As a special case, for two semi-in¢nite layers and in the
absence of magnetic ¢eld, the stability condition (3.5)
reduces to that obtained earlier by Chandrasekhar [4] (page
485), and therefore his results are recovered. Otherwise,
the above condition shows that the surface tension has a
stabilizing in£uence; while the streaming has a destabilizing
one. The magnetic ¢eld has a stabilizing e¡ect if

cos y1cos y2 � sin y1sin y2 coth kh1 coth kh2 > 0; ð3:6Þ

and vice versa.
In the limit case when kh1 � 1 and kh2 � 1, i.e. coth

kh1 ’ 1 and coth kh2 ’ 1 (this is the case of two semi-in¢nite
£uid layers), the condition (3.6) is reduced to [10]

cos ðy1 þ y2Þ > 0: ð3:7Þ

Therefore, for two semi-in¢nite £uids, the oblique
magnetic ¢eld has a stabilizing e¡ect if cosðy1 þ y2Þ > 0
and a destabilizing e¡ect if cosðy1 þ y2Þ < 0. It is dear that
when cosðy1 þ y2Þ ¼ 0, the magnetic ¢eld has no impli-
cation on the stability criterion.

Once more, we return to the dispersion relation (3.2)
where the parameter a (the coe⁄cient of mass and heat
transfer) does not equal zero. We know from the Routh-
Hurwitz criterion [23] that necessary and su⁄cient con-
ditions for stability (in other words, to have the imaginary
part of o less than zero) are

a1 > 0; ð3:8Þ

and a0b22 � a1b1b2 þ a20a21 � 0: ð3:9Þ

Since a is always positive, condition (3.8) is automati-
cally satis¢ed. While condition (3.9), after some re-arrange-
ment, gives

gðr2 � r1Þ � sk2 � kH1H2ðm2 � m1Þ2

� ðcos y1 cos y2 � sin y1 sin y2 coth kh1 coth kh2Þ

� ðm1coth kh1 þ m2cothkh2Þ�1 þ kr1r2ðu1
� u2Þ2coth kh1coth kh2ðr1coth kh1 þ r2coth kh2Þ�1

� 1þ ðr1 � r2Þ2coth kh1coth kh2
r1r2ðcoth kh1 þ coth kh2Þ2

" #
� 0: ð3:10Þ

In the case of absence of magnetic ¢elds, m1 ! m2, con-
dition (3.10) reduces to that, in a pure hydrodynamical
£uid, early obtained by Hsieh [20] and therefore his results

are recovered. In this case, the stability condition di¡ers
from that of the classical Kelvin-Helmholtz problem by
the additional last term. It is somewhat surprising that the
parameter a does not appear in this expression. Thus this
expression is valid even for in¢nitesimal a, and yet when
a¼ 0, the last term is absent. When a is in¢nitesimally
small, the additional e¡ect on the growth rate of the insta-
bility is also in¢nitesimally small. Note also that the critical
wavenumber above which the system will be stable can be
determined from this case, only for some physical problems
of interest when kh1 and kh2 are very small or very large
individually or together. The in£uence of the oblique
magnetic ¢eld depends strongly on the angles y1 and y2.
The case when y1 ¼ y2 ¼ 0, which corresponds to tangen-
tial magnetic ¢eld, shows a stabilizing e¡ect of the
magnetic ¢eld. This result coincides with the well known
result given by Zelazo and Melcher [7]. Also, the case when
y1 ¼ y2 ¼ p=2 corresponds to normal magnetic ¢eld, shown
thereby a destabilizing in£uence. This is in agreement with
earlier results obtained by Cowley and Rosensweig [8].

In what follows, numerical illustrations of the stability
criterion are made. The calculations will be performed with
inequality (3.10). Therefore, we shall introduce some par-
ticulars of the system under consideration. The goal is to
investigate the in£uence of some physical quantities on the
stability of the system. Because of our aim based on the
e¡ect of an oblique magnetic ¢eld together with the mass
and heat transfer parameters on the stability conditions,
the numerical estimations considered, especially, the e¡ect
of these parameters. In the following ¢gures, the solid
curve refers to the case of absence of mass and heat
transfer parameter while the dotted one stands for its pres-
ence. Also, the letter U stands for unstable regions while
the letter S denotes stable ones.

The case of pure hydrodynamic ðm1 ! m2Þ is plotted in
Fig. 1, where juj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu1 �u2Þ2

r
is graphed versus k. The

plane is partitioned into stable and unstable parts, which
makes the destabilizing in£uence of streaming obvious.
This ¢gure is drawn corresponding to the case of immis-
cible £uids ða ¼ 0Þ. It is found that the critical instability
occurs at the point (2.89, 27.37). The e¡ect of the mass
and heat transfer parameter, in the absence of magnetic
¢eld, as well as the inclination angels y1 and y2 are dis-
played in Figs 2, 3 and 4 to indicate the ðjuj � kÞ plane.

Fig. 1. Stability diagram on the ðjuj�kÞ plane, according to the condition
(3.10), for a system having the particulars: r1 ¼ 0:7 g/cm3, r2 ¼ 0:38g/cm3,
h1 ¼ 0:5 cm, h2 ¼ 1:0cm, g ¼ 981cm/s2, s ¼ 29dyne/cm and H1 ¼ 0 in
the absence of mass and heat transfer.
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Figure 2 is plotted to indicate the in£uence of the par-
ameter a. It is apparent from inspection of this graph that
the presence of mass and heat transfer gives a new unstable
region bounded between these transition curves. This
destabilizing in£uence is an early important phenomenon
discovered by Hsieh [20], in plane geometry, Nayak and
Chakraborty [22], in cylindrical geometry, and by several
other researchers for inviscid £ow through the linear stab-
ility theory [23]. The presence of a uniform oblique
magnetic ¢eld is pictured in Figs 3 and 4 in the ðjuj � kÞ

plane. In Fig. 3, where 0 < y1 þ y2 < p
2, a newly formed

unstable region is obtained due to the presence of this
oblique ¢eld. The oblique magnetic ¢eld, here, behaves like
the normal one. The same sense is observed in Fig. 4 where
p
2 < y1 þ y2 < 3p

2 [10]. A comparison between these curves
shows that the instability enhances as p

2 < y1 þ y2 < 3p
2

especially at small values of the wave number k. The
results of calculations are displayed in Figs 5, 6, 7 and 8
to indicate the ðlogH2

1 � k) plane. The special case of a
tangential magnetic fIeld is plotted in Fig. 5. It is apparent

Fig. 2. Stability diagram for the system considered in Fig. 1, but the dotted line
corresponds to the presence of mass and heat transfer. The region between
the two curves is a newly formed unstable region created as an implication
of the e¡ect of mass and heat transfer across the interface.

Fig. 3. Stability diagram for the system considered in Fig. 2 but with y1 ¼ 25�,
y2 ¼ 54:44�, m1 ¼ 5:1H/m,m2 ¼ 1:7H/m, H1 ¼ 10A/m and h1 ¼ 0:1 cm.

Fig. 4. Stability diagram for the system considered in Fig. 3 but with y1 ¼ 35�,
y2 ¼ 64:54�.

Fig. 5. Stability diagram on the ðlogH2
1 � kÞ plane according to (3.10), for the

system considered in Fig. 3 but with u1 ¼ 27 cm/s, u2 ¼ �13cm/s and
y1 ¼ y2 ¼ 0.

Fig. 7. As in Fig. 6 except that y1 ¼ 8� and y2 ¼ 22:9�.

Fig. 6. As in Fig. 5 except that u1 ¼ 10 cm/s, u2 ¼ �5cm/s and y1 ¼ y2 ¼ p
2.
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the well known results of the destabilizing in£uence of the
parameter a, specially at large values of the wave number.
Figure 6 considers the case of a normal magnetic ¢eld. It
is clear that the normal ¢eld is strictly destabilizing. The
presence of an oblique magnetic ¢eld is pictured in Figs 7
and 8. In Fig. 7, when 0 < y1 þ y2 < p

2, the oblique ¢eld
behaves like the tangential one. The case when
p
2 < y1 þ y2 < 3p

2 is graphed in Fig. 8. In contrast to the pre-
vious Fig. 7, the oblique ¢eld plays the role of the normal
¢eld. Thus the stability condition of the oblique magnetic
¢eld depends stongly on the values of y1 and y2 [10].

4. Hill’s equation

In the absence of mass and heat transfer (i.e. a ¼ 0), and using
the transformation

gðtÞ ¼ f ðtÞ exp �
Z t

0

ib1
2a0

� �
dt

� �
; ð4:1Þ

Eq. (2.29) reduces to

d2f
dt2

þ ½dþQðtÞ� f ¼ 0; ð4:2Þ

where

d ¼
kðr1coth kh1 þ r2coth kh2Þ½gðr1 � r2Þ þ sk2�

� k2r1r2ðu1 � u2Þ2coth kh1coth kh2
ðr1coth kh1 þ r2coth kh2Þ2

2
4

3
5;

ð4:3Þ

and QðtÞ ¼ bH1ðtÞH2ðtÞ; ð4:4Þ

b ¼ k2ðm2 � m1Þ2ðcos y1cos y2 � coth kh1coth kh2sin y1sin y2Þ
ðm1coth kh1 þ m2coth kh2Þðr1coth kh1 þ r2coth kh2Þ

:

Equation (4.2) is the well-known Hill’s di¡erential
equation. The nature of the solution of this di¡erential
equation governs the £uctuations of the amplitude of the
disturbed interface, and it will therefore determine the par-
ametric excitation of magnetic surface waves.

We determine the values of d for which the solutions of
Hill’s Eq. (4.2) are stable. Following the method of Magnus
and Winkler [25], one can show that for Hill’s Eq. (4.2)
there exist two monotonically increasing in¢nite sequences
of real numbers

d0; d1; d2; . . . ð4:5Þ

and

d01; d
0
2; d

0
3; d

0
4; . . . ð4:6Þ

such that Eq. (4.2) has a solution of period p if and only if

d ¼ dn; n ¼ 0; 1; 2; . . . ð4:7Þ

and a solution of period 2p if and only if

d ¼ d0n; n ¼ 0; 1; 2; 3; . . . ð4:8Þ

dn and d0n satisfy the inequalities

d0 < d01 � d02 < d1 � d2 < d03 � d04 < d3 � d4 < � � � ; ð4:9Þ

and the relations

lim
n!1 d�1

n ¼ 0; lim
n!1ðd0nÞ�1 ¼ 0: ð4:10Þ

The solutions of Eqs (4.2) are stable in the intervals

ðd0; d01Þ; ðd02; d1Þ; ðd2; d03Þ; ðd04; d3Þ; . . . ð4:11Þ

At the end points of these intervals the solutions (4.2)
are, in general, unstable. This is always true for d ¼ d0.
The solutions of Eq. (4.2) are stable for d ¼ d2nþ1 or d2nþ2
if d2nþ1 ¼ d2nþ2, and they are stable for d ¼ d02nþ1 or d02nþ2
if d02nþ1 ¼ d02nþ2.

For complex values of d, Eq. (4.2) always has unstable
solutions and it cannot happen here (see 4.3).

dn are the roots of the equation DðdÞ ¼ 2 and d0n are
those of DðdÞ ¼ �2, where

DðdÞ ¼ f1ðp; dÞ þ f 02ðp; dÞ: ð4:12Þ

The intervals of instability (�1; d0) will always be pre-
sent (the zeroth interval of instability) and de¢ne the ¢rst
interval of instability (d01; d

0
2Þ.

We observe that neither an interval of stability nor an
interval of instability can ever shrink to a point. The inter-
vals of stability can never disappear, but two of them can
combine to form a single one, d2nþ1 ¼ d02nþ2 or d02nþ1 ¼
d02nþ2. However, the intervals of instability (with the excep-
tion of the zeroth interval) may disappear altogether. This
takes place if QðtÞ is constant (i.e. for the case of constant
oblique magnetic ¢eld).

A region in the real (d;Q) plane will be called a region
of absolute stability for functions of class P, if, for any
point in this region, (4.2) has stable solutions for all
functions QðtÞ (Eq. (4.4)) where H1ðtÞH2ðtÞ of class one is
bounded by the curves

Fig. 8. As in Fig. 6 except that y1 ¼ 60� and y2 ¼ 79:1�.
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bnþ1 ¼ � 4ðnþ 1Þd1
2

p

" #
cot

pd
1
2

2ðnþ 1Þ

" #
;

n2 < d < ðnþ 1Þ2; bn ¼ �2d 1� n

d
1
2

� �
;

d > 1; n � 1; d ¼ 0 for n ¼ 0;

3
777777775

ð4:13Þ

and is such that none of these curves is contained in its
interior.

The open region bounded by these curves is maximal;
for any point outside or on the boundary of this region,
there exists a bounded function (4.2). Also, let m be a real
variable, 0 � m � 1, and let

M¼
Z p

2

0

ds

ð1�m2sin2sÞ12
; N ¼

Z p
2

0
ð1�m2sin2sÞ12ds: ð4:14Þ

Then the curves de¢ned for n ¼ 0; 1; 2; . . . by

bnþ1 ¼ �8:3�
1
2p�2ðnþ 1Þ2M ½M2ðm2 � 1Þ

þ 2MNð2�m2Þ � 3N2�12;

dnþ1 ¼ 4p�2ðnþ 1Þ2½M2ðm2 � 1Þ þ 2MN�;
d > 0;

3
77777775

ð4:15Þ

bound the region of absolute stability of functions of class
two.

The boundary points do not belong to the region since
for

dþQðtÞ ¼ 4p�2ðnþ 1Þ2M2ð1þm2Þ

� 8p�2ðnþ 1Þ2m2M2sn2
2ðnþ 1ÞMt

p

� �
; ð4:16Þ

the di¡erential Eq. (4.2) has only one periodic solution (and,
therefore, at least one unbounded solution).

The periodic solution (with period p or 2p) is

fp ¼ sn t; t ¼ 2ðnþ 1ÞMt
p

; ð4:17Þ

where sn t is the Jacobian elliptic function with module m
and period 4M.

Also, for the function of class 1, the region of absolute
stability is bounded by the curves

ðdnþ1 þ bnþ1Þ
1
2 tan

pðdnþ1 þ bnþ1Þ
1
2

4ðnþ 1Þ

" #

¼ ðdnþ1 � bnþ1Þ
1
2 cot

pðdnþ1 � bnþ1Þ
1
2

4ðnþ 1Þ

" #
; ð4:18Þ

where n ¼ 0; 1; 2; . . . , and where the region does not contain
any of these curves in its interior. If one of the square roots
should be imaginary, the functions tan and cot have to be
replaced by the corresponding hyperbolic functions.

Also, if a and b are real numbers and

a2 � dþQðtÞ � b2; ð4:19Þ
then the solution of Eq. (4.2) will be stable for all possible
dþQðtÞ satisfying this condition if and only if the interval
(a2; b2) does not contain the square of an integer.
In the following subsection, we shall consider Mathieu’s

equation as special.

4.1. Stability analysis of Mathieu equation

If we take QðtÞ ¼ �2q cos 2t, where Qðtþ pÞ ¼ QðtÞ.
Equation (4.2) is then reduced to

d2f
dt2

þ ðd� 2q cos 2tÞf ¼ 0; ð4:20Þ

where q ¼ �b=2.
Equation (4.20) is well known as the canonical form of

Mathieu’s equation which is a linear di¡erential equation
with periodic coe⁄cients. Equations similar to this equation
appear in many problems in applied mathematics such as
stability of a transverse column subjected to a periodic
longitudinal load, stability of periodic solutions of a non-
linear conservative system, electromagnetic wave propaga-
tion in a medium with periodic structure, and the
excitation of certain electrical systems. The solutions of
the Mathieu equation can be, under certain conditions,
periodic where the system becomes stable. The condition
for the periodic Mathieu functions depends on the relation
between the parameters d and q. The (d�q)-plane is
divided into stable and unstable regions bounded by the
characteristic curves of Mathieu functions. The general sol-
ution of Eq. (4.20) is stable if the point (d; q) in the
(d�q)-plane lies in a stable region, otherwise it is unstable.
According to Floquet’s theorem [26], the general periodic

solution of the Mathieu di¡erential equation given by
(4.20) can be written as

fP ¼ F1eRt<ðtÞ þ F2e�Rt<ðtÞ; ð4:21Þ

where <ðtÞ is a periodic function in t of period p or 2p; F1, F2
are arbitrary constants and R is a parameter given by the
following relation:

sin2ðipRÞ ¼ Dð0Þsin2 1
2
pd

1
2

� �
; ð4:22Þ

where Dð0Þ is an in¢nite Hill’s determinat, depending on R and
q and taking the form

Dð0Þ ’ 1�
pd2cot pd2

2

� �
4d1=2ðd� 1Þ ð4:23Þ

It is seen from Eq. (4.21) that if R is purely imaginary,
the solution for fp will be bound as t ! 1 and the system
is stable. The characteristic curves of the Mathieu functions
and the regions of stability and instability are discussed by
MacLachlan [27]. In the (d�q)-plane, the regions in which
the values of d and q yield imaginary values of R are stable
regions. On the other hand, if R is real, the solution for
fp will tend to 1 as t ! 1. The unstable regions in the
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(d�q)-plane are the regions in which the values of d and q
correspond to real values of R. The boundary curves of
these regions are symmetric about the d-axis. On the other
hand, we assume that q is small (which is a good approxi-
mation to high frequency ¢elds or large wavenumbers).
Following Morse and Feshbach [28], one can show that
the solution of Eq. (4.21) will be bounded as t ! 1 pro-
vided that q and d satisfy the following inequality:

q2 � 4dqþ 2dð1� dÞ � 0: ð4:24Þ

Also, if dþQðtÞ � 0, and

Z p

0
ðdþQðtÞÞdt < 64

3p2

Z p=2

0

ds

ð1þ sin2sÞ1=2
� �4

¼ 1
12

Gð 14 Þ
Gð 34 Þ

" #4

;

ð4:25Þ
then the solutions of Mathieu’s Eq. (4.20) are stable.

5. Damped Mathieu equation

5.1. Stability behaviour due to an oscillatory magnetic ¢eld

To examine the parametric excitation of surface waves, we
shall consider the following special case

H1ðtÞ ¼ H0 cosOt; ð5:1Þ

where H0 is the ¢eld amplitude and O its frequency.
In this case, Eq. (2.29) becomes

a0
d2gðtÞ
dt2

þ ða1 þ ib1Þ dgðtÞdt
þ ða	2 þ a3cos2Otþ ib2ÞgðtÞ ¼ 0;

ð5:2Þ
where a0, a1, b1 and b2 are given by Eqs (2.30^2.34), while

a	2 ¼ k½gðr1 � r2Þ þ k2s� kðr1u21 coth kh1 þ r2u
2
2 coth kh2Þ�;

a3 ¼ m	H2
0 ; and

m	 ¼
k2ðm1 � m2Þ2ðcos y1 cos y2

�sin y1 sin y2 coth kh1 coth kh2Þm1 sin y1
m2 sin y2ðm1 coth kh1 þ m2 coth kh2Þ

Equation (5.2) represents the Mathieu equation with
damped terms. Such an equation has growth rate solutions
and the stability analysis is rather complex. To economize
this complexity, we shall construct the stability con¢gur-
ation through a marginal state analysis. Thus, we shall be
dealing with the periodic solutions for this equation. To
accomplish this marginal state, two conditions must be
satis¢ed: The necessary and su⁄cient conditions of stability
are, respectively,

a0
d2gðtÞ
dt2

þ ib1
dgðtÞ
dt

þ ða	2 þ a3 cos2OtÞgðtÞ ¼ 0; ð5:3Þ

and a1
dgðtÞ
dt

þ ib2gðtÞ ¼ 0; a1 6¼ 0: ð5:4Þ

It is worthwhile to observe that for non zero a1, the
equation that governs the marginal state can be formulated
by combining the necessary condition (5.3) with the suf-
¢cient condition (5.4) into a single condition. This can be

accomplished by eliminating the damping term dgðtÞ
dt between

them. Thus, one gets

d2gðtÞ
dt2

þ ðk� 2l cos 2tÞgðtÞ ¼ 0; ð5:5Þ

where t ¼ Ot,

and k ¼ 1
O2a0

a	2 þ
b1b2
a1

� �
þ m	

2a0O2 H
2
0

and l ¼ � m	

4a0O2 H
2
0 :

As given in the previous section, inequality (4.24), the
stability criterion reduces the problem of the bounded
region of the Mathieu functions. In terms of the magnetic
¢eld H2

0 , the above condition can be arranged in the form

ðH2
0 �H	

1 ÞðH2
0 �H	

2 Þ � 0 ð5:6Þ

where H�
1 and H�

2 are the transition curves which separate
stable from unstable regions. They are given by

H	
1;2 ¼

8
m	

P � O2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP � O2Þ 3

2
P � O2

� �s !
: ð5:7Þ

The inequality (5.6) can be satis¢ed as

H2
0 > H	

1 or H2
0 < H	

2 ; H	
1 > H	

2 : ð5:8Þ

The goal in what follows is to determine the numerical
pro¢les of the stability pictures in the case of an oscillating
oblique magnetic ¢eld. In fact, the following calculations
include only the stability analysis near the marginal state.
These calculations are displayed in Figs 9^13. Our atten-
tion is focused on the in£uence of the ¢eld frequency O.
The stability criterion (5.6) is displayed in the ðlogH2

0�kÞ
plane. In these ¢gures, the plane is partitioned by the
transition curves H�

1 and H�
2 into stable and unstable parts.

Figure 9 is displayed for the case when O ¼ 5Hz. Accord-
ing to Floquet theory [27], the region bounded by the two
branches of the transition curves H�

1 and H�
2 is unstable,

while the area outside these curves is stable. Figures 10
and 11 are displayed to indicate the e¡ect of the frequency
O in the case of two ¢nite layers. Therefore, Fig. 10 is
plotted when 0 < y1 þ y2 < p

2 while Fig. 11 is graphed for

Fig. 9. As in Fig. 6 except that y1 ¼ 20�; y2 ¼ 47:5�; h2 ¼ 0:1 cm; u1 ¼
10 cm=s; u2 ¼ 5 cm=s and O ¼ 5Hz.
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p
2 < y1 þ y2 < 3p

2 . The ¢gures are pictured for various values
of the frequency. In these ¢gures, it is readily seen that as
the frequency increases, the width of the unstable region
bounded by ðH�

1 �H�
2 Þ increases. This shows the destabili-

zing in£uence of the ¢eld frequency for all wave numbers
k. Thus the frequency of the periodic oblique magnetic ¢eld
has a destabilizing role regardless of whether the value of
y1 þ y2 is greater or less than p

2. Figures 12 and 13 are
drawn in the special case of two semi-ini¢nte layers. Figure
12 is computed for the case when p

2 < y1þ y2 < 3p
2 . The ¢g-

ure includes the transition curves H�
1 and H�

2 . The same

in£uence of the parameter O, as gained by Figs 10 and
11, is obtained. The case when 0 < y1 þ y2 < p

2 is displayed
in Fig. 13. The numerical calculations in this ¢gure show
that H�

2 < 0. Thus the transition curve H2
0 ¼ H�

2 has no
implication on the stability criteria. It follows that the stab-
ility condition reduces to H2

0 > H�
1 . It is apparent that as

the parameter O increases the stable region increases,
which shows stabilizing in£uence of the ¢eld frequency
specially at small values of the wave number k. Therefore,
for two semi-in¢nite layers, the frequency of the oblique
magnetic ¢eld plays a dual role in the stability criteria.
This role depends on if the value of y1 þ y2 is greater or
less than p

2.

5.2. The Rayleigh-Taylor instability

We shall examine the parametric excitation of surface waves,
for simplicity, in the case of Rayleigh-Taylor instability.
According to Floquet theory [26], the parameter space is
partitioned into stable and unstable regions. In order to
determine the transition curves that separate stable from
unstable solutions of the characteristic Eq. (5.2), we shall
make use of a small dimensionless parameter e, which is
de¢ned by

H0 ¼
ffiffi
e

p
ĤH; ð5:12Þ

where ĤH is associated with the magnitude of the magnetic
¢eld intensity.
In the case of Rayleigh-Taylor instability, Eq. (5.2) reduces

to

d2gðtÞ
dt2

þ 2A
dgðtÞ
dt

þ ðB þ Re cos 2tÞgðtÞ ¼ 0; ð5:13Þ

where the coe⁄cients A, B and R are given by

A ¼ aðcoth kh1 þ coth kh2Þ
2Oðr1coth kh1 þ r2coth kh2Þ

;

B ¼ k2

O2ðr1coth kh1 þ r2coth kh2Þ
gðr1 � r2Þ

k
þ ks

� �
þ eR;

R ¼ m	ĤH2

2O2ðr1coth kh1 þ r2coth kh2Þ
:

Fig. 12. As in Fig. 10 but for two semi-in¢nite layers.

Fig. 10. As in Fig. 9 but for various values of O.

Fig. 11. As in Fig. 10 except that y1 ¼ 50� and y2 ¼ 74:34�.

Fig. 13. As in Fig. 12 but for y1 ¼ 20� and y2 ¼ 47:5�
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To study the stability of Eq. (5.13), using Floquet
theory, it can be shown that this equation possesses a sol-
ution of the form

gðtÞ ¼ wðtÞ exp ðntÞ; ð5:14Þ

where n is, in general, a complex constant depending on all
parameters of the system and is called the characteristic
exponent. wðtÞ is a periodic function having the same period
as the time dependent coe⁄cients in the equations. When
the real part of n is negative the response decays; when
the real part of n is zero, the response is ¢nite and bounded;
and when the real part of n is positive, the response grows.
Thus the values of the parameters for which the real part
of n is zero divide the parameter space into regions of stability
and instability.

The transition curves separating stability from instability
may be obtained by making use of Whittaker’s technique
[29]. The details are given in a previous work [30]. Away
from details, one gets

B ¼ A2 � R2e2

8
þOðe3Þ; ð5:15Þ

B ¼ 1þ A2 � Re
2

� R2e2

32
þOðe3Þ; ð5:16Þ

B ¼ 4þ A2 þOðe3Þ: ð5:17Þ

In what follows, we shall give numerical calculations of
the system under consideration by drawing transition
curves. The transition curves are represented by Eqs (5.15),
(5.16) and (5.17) in the ðB�eÞ-plane. The values of B, as
described by these equations are the critical values of the
disturbances. These critical values, which are known as
transition curves, separate the stable from unstable regions.
From Floquet theory [26], the region bounded by the two
branches of the transition curves is unstable while the area
outside these curves is a stable region. In fact, the stability
discussions of the parametric curves in the ¢gures are
restricted by the condition

B ¼ 1
O2ðr1coth kh1 þ r2coth kh2Þ

� kðgðr1 � r2ÞÞ þ k2sþ e
2
m	ĤH2

h i
; ð5:18Þ

which may be represented in the (B�e) plane, by a straight
line with a slope depending on the sign of m�. This sign
depends, in fact, on the thicknesses of the two layers as well
as the inclination of the oblique magnetic ¢eld. In the
following ¢gures, B is plotted versus k, thus condition (5.18)
is represented by a curve in the ¢gures. The intersection of
the condition (5.18) with the characteristic curves partitions
these curves into stable and unstable parts. In these ¢gures,
the transition curves are represented by solid curves while
the condition (5.18) is represented by a dotted one. The
intersection of this dotted curve with the unstable regions
occurs at the resonance modes. These resonance modes
appear due to the periodicity of the oblique periodic mag-
netic ¢eld.

The results of the following calculations are displayed in
Figs 14^16 to indicate the e¡ect of the mass and heat
transfer parameter (a) in the ðB�kÞ plane. Figure 14
includes all the transition curves and the condition (5.18),
which is a curve intersecting the unstable regions at which
resonance modes occur. In this ¢g., we consider the case
of immiscible £uid a ¼ 0. Figures 15 and 16 are computed
from the same system but when a ¼ 3 and 7 gm/cm3s
respectively. A comparison between these ¢gures shows
the destabilizing in£uence of the mass and heat transfer
parameter.

Fig. 14. Stability diagram on the ðB � kÞ plane, for the system considered in
Fig. 9 but with y1 ¼ 30�, y2 ¼ 60�; r1 ¼ 0:38 g=cm3; r2 ¼ 0:7 g=cm3, u1 ¼
u2 ¼ 0;H1 ¼ 10A=m and a ¼ 0:01 g=cm3s.

Fig. 16. As in Fig. 14 except that a ¼ 5 g=cm3s.

Fig. 15. As in Fig. 14 except that a ¼ 3 g=cm3s.
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6. Conclusion

The ferrohydrodynamic £ow on a horizontal interface
between two inviscid £uids has been studied. The two £uids
are enclosed between two horizontal rigid plates in parallel
with the interface. The interface admits the presence of mass
and heat transfer. The system is acted upon by a
time-dependent oblique magnetic ¢eld. No free currents at
the surface of separation is assumed. In the stationary state,
the £uids are uniformly streaming parallel to each other.
The stability analysis is based on a linear perturbation theory.
Through this analysis, a second-order di¡erential equation
with variable coe⁄cients is obtained. The stability of the sys-
tem is analytically discussed and the results are numerically
con¢rmed. The conclusions may be drawn in two categories
as follows:

6.1. The case of a uniform oblique ¢eld

(1) The tangential ¢eld has a stabilizing in£uence, while the
normal one has a destabilizing role.

(2) The e¡ect of the oblique ¢eld, in the case of two
semi-in¢nite layer, depends on the values of y1 and y2.

(3) The mass and heat transfer has no e¡ect on the Rayleigh-
Taylor problem.

(4) For the Kelvin-Helmholtz problem, the stability criterion
is independent of mass and heat transfer parameter, but is
di¡erent from that in the same problem without mass and
heat transfer.

(5) The mass and heat transfer has a destabilizing in£uence
on the Kelvin-Helmholtz model.

6.2. The case of a time-dependent ¢eld

(1) Hill’s equation is obtained for two immiscible £uids and
the stability intervals are obtained by means of Magnus
and Winkler [25].

(2) The parametric excitation of the oscillatory oblique ¢eld
results in a damped Mathieu’s equation.

(3) The ¢eld frequency has a destabilizing in£uence
regardless on the angle of inclination of the ¢eld.

(4) In the case of two semi-in¢nite layers, the frequency plays
a dual role on the stability criteria depending on if the
value of y1 þ y2 is greater or less than p

2.

Finally, it is found that the mass and heat transfer par-
ameter has a destabilizing in£uence regardless on the mech-
anism of the ¢eld.
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