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Abstract
We investigate the structure and dynamics of ionic magnetic fluids (MFs),
based on ferrite nanoparticles, dispersed at pH ≈ 7 either in H2O or in
D2O. Polarized and non-polarized static small angle neutron scattering (SANS)
experiments in zero magnetic field allow us to study both the magnetic and
the nuclear contributions to the neutron scattering. The magnetic interparticle
attraction is probed separately from the global thermodynamic repulsion and
compares well to direct magnetic susceptibility measurements. The magnetic
interparticle correlation is in these fluid samples independent of the probed
spatial scale. In contrast, a spatial dependence of the interparticle correlation is
evidenced at large � by the nuclear structure factor. A model of magnetic
interaction quantitatively explains the under-field anisotropy of the SANS
nuclear contribution.

In a quasi-elastic neutron spin-echo experiment, we probe the Brownian
dynamics of translation of the nanoparticles in the range 1.3 � q RN

g � 10 (q ,
scattering vector; RN

g , nuclear radius of gyration of the nanoparticles). For the
first time in an MF, we determine the hydrodynamic function at large q vectors.

1. Introduction

The development of biocompatible ionic ferrofluids has recently opened attractive and
promising prospects in biophysics and medicine. For example, eucaryotic living cells are
able to internalize the magnetic nanoparticles used in the present work by endocytosis [1, 2].
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The process strongly concentrates the nanoparticles in intracytoplasmic organelles. Those
magnetic endosomes are micron-sized magnetic vesicles that can be visualized by optical
microscopy. Such a cell magnetic labelling is used in vivo to track targeted cells by magnetic
resonance imaging [3, 4]. Another application in vitro is to use those magnetic endosomes
as local probes of the intracellular rheology following their individual deformation under
an applied field [5]. A concentrated magnetic fluid (MF) is trapped inside the endosomes.
The details of the magnetic and hydrodynamic interparticle interactions in the MF are of
paramount importance to understand its magneto-rheological behaviour at the colloidal scale.
The knowledge of the structural and dynamic properties is also a current goal to explain
more macroscopic spectacular and sometimes unexpected MF behaviours [6–13]. In those
materials [14–16], the specific coupling between magnetic and hydrodynamic degrees of
rotation allows for original magneto-rheological applications such as assisted clutches or
dampers [14, 17].

With the long range prospect of these biological applications, a well defined system has
been developed [18–20]. It is based on ferrite nanoparticles stabilized in aqueous media at
pH ≈ 7 by a citrate coating of the particles. The colloidal phase diagram of the system has
already been studied in detail [21–24]. It presents a gas–liquid-like phase transition [21] with
an associated critical point [22, 23]. For an osmotic pressure larger than that of the critical
conditions, fluid and glassy solid phases can be obtained. Here, we address ourselves to a
detailed probing of the MF interparticle interactions in the fluid phase. There, the global
thermodynamic interaction is repulsive and the magnetic interaction is experimentally known
to be unable to lead to an interparticle contact chaining or to a colloidal phase separation, even
under a saturating field [25].

Small angle neutron scattering (SANS) is the most powerful technique available to
elucidate the colloidal structure and the interparticle interactions in an MF at scales spreading
from 5 up to 100 nm. On their side, x-rays and light scattering are highly penalized by the
strong absorption of MF in their wavelength domains. In a previous work [25], using a static
non-polarized SANS device, we obtained part of the effects. However, among the global
thermodynamic interactions, we were not able to weight specifically the magnetic interparticle
interaction. For that purpose a polarized device is necessary. The hydrodynamic interparticle
interaction being also relevant to our problem,we also need to develop a dynamical experiment.
A neutron spin-echo (NSE) spectrometer allows for those two kinds of measurement.

We present here two different experiments performed on the MESS spectrometer at
Orphée-LLB-Saclay-France:

• a static polarization analysis and
• a quasi-elastic NSE experiment.

Complementary non-polarized measurements are performed on PAXY and PAXE in zero-
field and under a 68 kA m−1 applied field.

In this paper we first present in section 2 the current state of the art on static and quasi-
elastic SANS. We introduce in section 3 the characteristics of the MF samples tested here,
discussing their colloidal stability and their magnetic properties. After this we divide the
paper into two distinct parts, section 4 for the statics and section 5 for the dynamics. In
section 4, after a theoretical background presenting the nuclear and the magnetic contributions
to SANS, we introduce our experimental static techniques and discuss our results. In particular,
the magnetic scattering is compared to initial magnetic susceptibility measurements. This
allows us to sort out the contribution of the dipolar magnetic interaction among the global
thermodynamic interparticle interactions. The anisotropic pattern, associated with the under-
field nuclear contribution, is then analysed in terms of anisotropic under-field magnetic
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interaction. Section 5 presents the quasi-elastic experiment. It probes the Brownian dynamics
of translation of the nanoparticles. This process has been previously studied in a similar MF
at a much larger spatial scale in a forced Rayleigh scattering experiment [26, 27]. We focus
here on the behaviour of the hydrodynamic function at large scattering vector.

2. Current state of the art

There can be two contributions to the neutron scattering, due to the two interactions between a
neutron and a nucleus, corresponding to the two contributions to scattering cross-section [28–
34].

• A neutron/nucleus interaction involving nuclear forces leading to the so-called nuclear
contribution. For magnetic nanoparticles dispersed in light water, the scattering length
density contrast (see definition below) between the nanoparticles and the water is large.
Thus the nuclear contribution dominates and is easy to measure [20–25]. It leads to
structural and dynamical determinations which are similar to those extracted from static
and quasi-elastic small angle x-ray scattering [35–40] or, at different spatial scales, from
static and quasi-elastic light scattering [41, 42].

• A neutron-spin/nucleus-spin interaction, leading to the so-called magnetic scattering.
The nucleus spins, if they are important, interact with the local magnetization inside the
nanoparticles and therefore with the nanoparticle magnetic moment (nanoparticle spin).
This leads to structural and dynamical magnetic information. It is an important specificity
of SANS. In the static limit of zero scattering vectors a magnetic scattering measurement
reduces to a magnetic susceptibility determination. A few static measurements of
this magnetic scattering contribution in MF have been performed [29, 32–34, 43–45].
However they scarcely cover the concentrated regime that interests us here. As well,
a very few dynamic measurements of the magnetic scattering contribution have been
performed [46, 47].

Both nuclear and magnetic contributions can be present in static and quasi-elastic SANS
experiments [29, 44, 45, 47].

• In a static experiment, the nuclear contribution is sensitive to all the thermodynamical
interactions present inside the colloidal solution [20, 21, 25]. In a quasi-elastic experiment,
the nuclear contribution is sensitive to all the thermodynamical interactions and also the
hydrodynamical interaction.

• In both static and dynamic experiments, the magnetic contribution specifically sorts
out the magnetic dipolar interaction. Note however that in a dynamic experiment
the magnetic dynamics is highly complicated by the internal magnetodynamics of the
magnetic grains [46, 47].

The neutron intensity scattered by an MF in a small angle experiment can be rather
variegated and miscellaneous. The following are examples.

• It is possible to obtain anisotropic patterns under field whereas the nuclear and the magnetic
structure factors remain isotropic [45] if the magnetic contribution is important.

• It is possible to obtain anisotropic patterns under field even though the magnetic
contribution of the neutron scattering is negligible (see figure 10 further on and [25]),
if the magnetic interaction contributes substantially to the interparticle interaction. The
nuclear contribution is sensitive to all the thermodynamic interactions including the dipolar
magnetic one.
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• In our ionic MF, the nuclear neutron scattered pattern may well depend strongly on
temperature (in the range 10–35 ◦C) [21, 22] whereas it can also be totally insensitive
to it (in the same range of T ) [19]. It depends on the thermodynamical state of the sample
and on the distance of this state from the critical point [22] associated with the gas–liquid
transition.

The interparticle interaction is thus clearly of importance for the shape adopted by the
neutron scattering pattern. The difficulty is that in a standard SANS experiment on an MF,
nuclear and magnetic contributions are mixed. For a detailed analysis, it is necessary to separate
them.

Methods of nuclear index matching [48], which tune the density of nuclear diffusion
length of the solvent with respect to that of the nanoparticles in order to suppress the nuclear
contrast, and hence their nuclear signal,are rather difficult to undertake and not always efficient.
Firstly the scattering length density of the nanoparticles is usually above the range covered
by mixtures of solvents, deuterated and non-deuterated. Secondly the nanoparticle surface is
frequently coated with chemical species in order to ensure their colloidal stability. The nuclear
contribution coming from this surface coating becomes important in those contrast variation
experiments. It complicates the analysis, introducing an extra contribution of the same order
of magnitude as the two previous ones.

Another method proposed by [29] is an under-field experiment. If the magnetic
nanoparticles are fully aligned by the field, the magnetic signal is null along the field and
maximal in the perpendicular direction. Such a method is only efficient if the magnetic
contribution is large enough with respect to the nuclear one and does not permit a study of the
magnetic interactions in zero fields. Moreover, in intermediate fields, the moment alignment
is not complete and in that case also the analysis is difficult.

We have chosen here another route [32–34]. The nuclear and the magnetic scattered
contributions depend on the direction of the neutron polarization. It is possible to take
advantage of those properties to separate the two contributions by a polarization analysis [32–
34, 49]. This will be detailed in section 4.1.2.

3. Samples

3.1. Chemical synthesis

The MFs used here are chemically synthesized after Massart’s method [20, 50, 51]. They are
colloidal suspensions of ferrite particles (here either cobalt ferrite CoFe2O4 or maghaemite
γ -Fe2O3) in an aqueous medium. The nanoparticles are obtained by coprecipitation in an
alkaline medium of an aqueous mixture of divalent metal M2+ (either Co2+ or Fe2+) and Fe3+

salts. The synthesized particles, of mean size ranging from 3 to 20 nm [17], are macro-anions
coated with hydroxo ligands (−OH). Thanks to the acido-basic properties of their surfaces,
the particles can be dispersed either in strongly alkaline (pH � 12) or strongly acidic aqueous
media (pH � 2). The point of zero charge (PZC) is 7.5 and does not allow dispersion of the
particles at pH = 7. To obtain aqueous dispersions at pH = 7, as required for biological
applications, the PZC is shifted down to pH = 2 by coating the particle surface with citrate
ligands. The surface charge is negative and depends on the concentration of citrate molecules
inside the solution because there is equilibrium between adsorbed and free molecules. The
charge reaches a saturation value for high enough citrate concentrations: 2 charges nm−2 for
the γ -Fe2O3 nanoparticles and 1.6 charges nm−2 for the CoFe2O4 ones [20, 25]. The samples
studied here always lie in this saturated regime. The volume fraction � of the obtained solutions
is determined by chemical titration of iron. It ranges here from 5 to 20%. As we fix roughly
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Figure 1. Localization of the various samples of table 1 on the phase diagram of the colloidal
system. �, osmotic pressure; VW , weight averaged volume of the nanoparticles; �, nanoparticle
volume fraction. Dotted curve: experimental liquid–gas coexistence curve limiting the diphasic
(hatched) area of the phase diagram. Symbols: ( ) samples A; (•) samples B; (�) samples C;
(�) samples D and (◦) samples E.

[cit] f ree ≈ 0.5� mol l−1, here [cit] f ree varies from 2.5 × 10−3 mol l−1 at � = 0.5% up to
≈0.1 mol l−1 at � of the order of 20%. The samples are all dispersed in light water except one
sample in D2O (sample A0 of table 1). In that case, the citrate-coated particles are synthesized
in light water. They are then precipitated in acetone and re-dispersed in heavy water. All the
experiments are here performed at room temperature.

3.2. Colloidal stability

Because of the large value of the superficial density of charges � associated with a low
enough ionic strength, the interparticule electrostatic repulsion is strong. In particular it is
strong enough to prevent any flocculation or any gas–liquid phase separation under the van
der Waals attractions and the magnetic dipolar interaction. Recently a phase diagram (�Vw

versus �—� being the osmotic pressure of the solution and Vw the weight average volume of
the nanoparticles) has been built up in zero magnetic field for citrated γ -Fe2O3 nanoparticles
dispersed in water with a saturated density of charge � [21–25, 52]. This diagram is like the
phase diagrams of atomic systems: it presents gaslike and liquid-like areas together with a
critical point. The present samples are chemically prepared to be either in the gaslike or in the
fluid-like states. Former non-polarized SANS measurements have confirmed the structure of
the present solutions [20, 21, 25], allowing a precise localization of their respective states in the
diagram (figure 1 and table 1). Those SANS measurements also show that the characteristic
spatial range of the repulsive interparticle potential is here of the order of 20–90 Å [25].

3.3. Magnetic properties

At room temperature, maghaemite and cobalt ferrite are ferrimagnetic materials. The
nanoparticles are magnetic monodomains (neglecting here their surface magnetism). They
bear a permanent magnetic moment �µ, the nanoparticle spin, of modulus µ = mS

πd3

6 .
d is the magnetic diameter of the nanoparticle and mS the magnetization of the material
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Table 1. Characteristics of the colloidal solutions. �: volume fraction of nanoparticles
as determined by chemical titration; ��2

N : nanoparticle/solvent nuclear contrast; ��2
M :

nanoparticle/solvent magnetic contrast; γ : parameter of dipolar interaction inside the colloidal
solution; χanapol (�): initial magnetic susceptibility as measured by neutron polarization analysis.

Nanoparticle
Sample � (%) Solvent material ��2

N (cm−4) ��2
M (cm−4) b γ χanapol (�)

A0 3.4 D2O CoFe2O4 4 × 1018a
1.01 × 1020 0.41 0.13

A A1 1.0 H2O 0.12 —
A2 4.3 H2O CoFe2O4 4.53 × 1021 1.01 × 1020 0.52 —
A3 9.9 H2O 1.20 0.35

B1 0.7 0.29 —
B B2 3.3 H2O CoFe2O4 4.53 × 1021 1.01 × 1020 1.39 0.51

B3 9.4 3.95 1.9
B4 19 8.00 5.92

C C1 0.5 H2O γ -Fe2O3 5.67 × 1021 7.95 × 1019 0.04 —
C2 11 0.99 —

D1 0.4 0.05 —
D D2 2.4 H2O γ -Fe2O3 5.67 × 1021 7.95 × 1019 0.34 —

D3 9 1.26 0.46

E E1 0.5 H2O γ -Fe2O3 5.67 × 1021 7.95 × 1019 0.12 —
E2 5.6 1.34 0.47

a In that case the contribution to the nuclear scattering of the citrate coating of the nanoparticles
cannot be forgotten—see text.
b ��2

M is here calculated using the bulk mS value (4.22 × 105 A m−1 for CoFe2O4 and
3.75 × 105 A m−1 for γ -Fe2O3).

which constitutes the nanoparticles. It is taken here equal to its bulk value at 300 K mS =
3.75 × 105 A m−1 for γ -Fe2O3 and 4.22 × 105 A m−1 for CoFe2O4. The magnetic moment
of the nanoparticles is of the order of 104 Bohr magnetons. Thanks to the rotational degrees
of freedom of the nanoparticles in the liquid carrier, the resulting medium behaves, under an
applied field H , like a giant paramagnetic material.

3.3.1. Under-field behaviour of the magnetization M. In the dilute regime where the
interparticle interaction is negligible (volume fraction � 1%), the magnetization curve M(H )

can be described by a Langevin formalism:

M = mS�L(ξ) with L(ξ) = coth(ξ) − ξ−1 and ξ = µ0
µH

kT
(1)

L(ξ) being the Langevin function and ξ the Langevin argument with µ0 the vacuum
permeability. The maximum value of M is Msat = mS�. In a first approximation we assimilate
the magnetic volume fraction to the one determined by chemical titration. The Langevin
argument ξ is particle size dependent, and assuming a log-normal distribution of diameters
P(d) = 1

(2π)2σd exp(− 1
2σ 2 ln2( d

d0
)), M(H ) measurements can be adjusted to determine a mean-

magnetic size d0 = exp(〈ln d〉) and a standard deviation σ . Figure 2 gives an example of
M(H )/Msat variations for sample D2 in the dilute regime and its adjustment to equation (1).
Table 2 gives d0 and σ for all our samples.

In the concentrated regime, in order to take into account the magnetic inter-particle
interaction under the applied field we use, in a mean field approximation, an effective field
model, and the magnetization is then written [15]

M = mS�L(ξe) (2)
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Table 2. Characteristics of the nanoparticles; d0: mean magnetic diameter (ln d0 = 〈ln d〉) as
deduced from the adjustment of the magnetization curve by a Langevin formalism weighted by a
log-normal distribution of particle diameters; σ : standard deviation of the log-normal distribution of
magnetic diameters; γ

�
: reduced parameter of dipolar interaction, characteristic of the nanoparticles

and independent of the volume fraction; RM
g : magnetic radius of gyration of the nanoparticles

as deduced from the magnetic scattering of neutrons; RN
g : nuclear radius of gyration of the

nanoparticles as deduced from the non-polarized experiment; VW : weight averaged volume of
the nanoparticles as deduced from the non-polarized experiment.

Sample do (nm) σ
γ
�

RM
g (nm) RN

g (nm) Vw (nm3)

A 7.8 0.2 12 3.7 4.9 6.2 × 102

B 9.5 0.3 42 5.5 8.1 1.4 × 103

C 7.1 0.15 9 — 3.4 3.0 × 102

D 8.5 0.15 14 4.1 5.1 7.3 × 102

E 9.5 0.2 24 4.7 7.0 1.1 × 103

Figure 2. Reduced magnetization curve M(H )/Msat of sample D2 in a log–log representation.
The full curve is the fit of M(H )/Msat by a Langevin function weighted by a log-normal distribution
(fit parameters: d0 = 8.5 nm and σ = 0.15). Inset: M(H ) in low fields. The initial susceptibility
χ is the slope of the full line; here � = 2.4% and χ = χ0 = γ

3 = 0.114, thus γ = 0.34 and
γ
�

= 14.

with ξe given by the self-consistent equation

ξe = ξ + λγ L(ξe) (3)

where λ is the effective field constant and γ the dipolar interaction parameter (see below). If the
effective field constant is null, we recover equation (1) without interparticle interaction. The
classical Lorentz value of λ is 0.33. In [25–27], keeping the effective field constant as a free
parameter (as proposed in [53] for example), an effective value of λ of 0.22 has been found
for MF solutions. Several alternative descriptions of the magnetization in the concentrated
regime exist. Let us quote the second order perturbation model of [54] or the mean spherical
model of [55]. Note that all these three descriptions merge together in low field for γ � 5.5
(see figure 3).



S1312 F Gazeau et al

Figure 3. Initial susceptibility χ as a function of the parameter γ of magnetic dipolar interaction
for various colloidal solutions (at various � and for various nanoparticle characteristics either based
on γ -Fe2O3 or on CoFe2O4). Open symbols: χ is determined by magnetization measurements as
in the inset of figure 2; (�) sample A; (◦) sample B; (�), (♦), (�) and (�) respective samples
of [26, 56, 57] and [58]. Full symbols: χ = χanapol is determined by the neutron polarization
analysis; ( ) sample A; (•) sample B; (�) sample D and (�) sample E. The full curve corresponds
to equation (6) with λ = 0.22, the dotted line to equation (5), χ0 = γ/3, and the dashed curve to
the second order perturbation model of [54] (see the text).

3.3.2. Magnetic susceptibility χ . The initial susceptibility χ is related to the dipolar
interactions, characterized by the parameter γ which is written γ = µ0µ

2/r3kT where r
is the mean interparticle distance. This parameter γ is the ratio of the energy of dipolar
interaction to the thermal energy, for two aligned dipoles. It can be written as

γ = µ0m2
S

πd3

6

�

kT
. (4)

Thus in the whole range of concentrations γ is proportional to �. The quantity γ

�
is a constant

characteristic of the nanoparticles and independent of the volume fraction. γ

�
can be determined

from initial susceptibility measurements at low volume fraction (see the inset of figure 2).
Indeed at low volume fractions (� � 1) ξe ≈ ξ and γ is simply related to χ0 through the

Langevin expression (1). It is written

χ0 = lim
ξ≈ξe�1

(M/H ) ≈ �ms
µ0µ

3kT
= γ

3
for � � 1. (5)

As for ξ = ξe � 1, χ0 is proportional to �, it is easy to determine the constant γ

�
= 3χ0

�
.

Table 2 gives γ

�
for each sample from a χ0 measurement at low �. Taking into account the

characteristics of the magnetic nanoparticles and the �-range of the solutions investigated
here, γ ranges from 0.04 up to ∼=8 (see table 1).

At any volume fractions � (and by definition of χ in the limit ξ � 1) equation (3) leads
to

χ(�) =
γ

3

1 − λγ

3

. (6)

Figure 3 plots direct initial susceptibility χ(�) measurements as a function of parameter γ for
different samples either from table 2 at various � or from [26, 56–58]. Note that in [58], the
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γ /� value is very large (=100 as deduced from the χ0 plot of figure 1 of [58]). It is shown in
the simulation work of [59] that at large γ /�, χ presents a subsidiary dependence on γ /� for
γ > 6. We thus only plot in figure 3 the experimental values of [58] associated with γ � 6.
The experiments are compared to expression (6) using λ = 0.22 and also to the second order
perturbation model of [54]: χ = γ

3 (1 + λ
γ

3 + 1
144 (

γ

3 )2) with λ = 1/3 valid for � < 18% (and
which differ in our range of γ by less than 4% from the mean spherical model of [55]). These
direct χ measurements will be also compared in next section with the determinations deduced
from polarization analysis of magnetic SANS intensity.

4. Static nuclear and magnetic SANS

4.1. Theoretical background

A non-magnetized MF can be considered as a paramagnet, since the orientations of the magnetic
monodomain nanoparticles are isotropically distributed. The interaction between a nucleus
and a neutron has a magnetic as well as a nuclear contribution. They lead to non-interfering
contributions (incoherent) as well as interferences between the waves scattered by each nucleus
(coherent scattering).

4.1.1. Non-polarized SANS (zero field). For a non-polarized sample, we can separate the
measured scattering cross section into three contributions:(

dσ(q)

d�

)
non Pol

=
(

dσ

d�

)
Inc

+

(
dσ

d�

)
N

+

(
dσ

d�

)
M

. (7)

�q is the scattering wavevector defined as �q = �ki − �k f where �ki and �k f are respectively the
incoming and the scattered wavevectors. The subscripts Inc, N and M stand respectively
for incoherent, coherent nuclear and coherent magnetic cross sections; The subscript non Pol
stands for non-polarized.

Coherent nuclear scattering. Under zero magnetic field, a magnetic fluid will always
rearrange such that the scattering is isotropic. The coherent nuclear cross section is written(

dσ

d�

)
N

= IN = ��2
N nV 2

W FN (q)SN (q,�). (8)

��2
N is the squared difference of nuclear scattering length densities (therefore the unit is

cm−4) between the nanoparticles and the solvent carrier (see table 1)—we neglect in this
simple presentation the contribution of the citrate coating of the nanoparticles. Note that
its contribution can become important, at low ��2

N values in D2O solvent for example (see
further on in part 4.3.1). n is the number of scattering objects per unit volume and Vw is their
weight average nuclear volume. We take � = nVw · FN (q) as the nuclear form factor of the
nanoparticles and SN (q,�) as the nuclear structure factor of the solution.

In the limit of low volume fractions, SN (q,�) ≈ 1 and the IN measurements allow a
determination of the nuclear form factor FN (q). For isolated spherical particles, it can be
written in the low q limit as

FN (q) ≈ exp
(− 1

3 (q RN
g )2

)
if q RN

g � 1 (9)

where RN
g corresponds to the spatial distribution of mass of the nanoparticles, which we will

call here the ‘nuclear radius of gyration’.



S1314 F Gazeau et al

At larger volume fractions, the nuclear structure factor SN (q,�) departs from unity and
it is possible to determine it from the experiment [20, 25]. SN (q,�) expresses the structure of
the colloid, that is the spatial distribution of the centres of mass of the nanoparticles under their
mutual interactions. In the q = 0 limit, it is proportional to the osmotic compressibility of the
solution. The interaction parameter K o

T , proportional to A2, the second virial coefficient of
the osmotic pressure (K o

T = 2ρ2 A2Vw Naρ being the mass density of the particles and Na the
Avogadro number) [21, 25], can be easily determined from a plot of �

IN (q=0,�→0)
as a function

of � as

SN (q = 0,�)−1 = ��2
N Vw

�

IN (q = 0,� → 0)
≈ 1 + K o

T �. (10)

An experimental plot of �
IN (q=0,�→0)

as a function of � allows determination of both VW

and the parameter K o
T which characterizes the thermodynamic interactions of the solution.

Experimentally K o
T is positive if repulsion is dominant [21, 25]. Close to the liquid–

gas transition, in a narrow range of states, it may be found experimentally to be weakly
negative [21]. Depending on the strength of the repulsion, K o

T may either be temperature
independent [19] or on the contrary strongly temperature dependent [21, 22]. This contribution
can be sensitive to a magnetic field only via the magnetic contribution to the global
thermodynamic interaction between the nanoparticles. Under an applied field, the nuclear
structure factor SN (q,�) and the interaction parameter KT may become anisotropic [25].

Incoherent scattering. This contribution IInc comes from non-correlated fluctuations of the
nuclei of each species (at different positions) in their length of diffusion,nuclear IIncN (different
isotopes) as well as magnetic IIncM (degenerated states). The strongest incoherent scattering
cross sections are due to H nuclei (80 barns) and D nuclei (2 barns). In our case this (mainly)
corresponds to light and heavy water, i.e. the solvents. Incoherent scattering is almost flat in q .

Magnetic scattering. In the range of magnetic fields and temperature studied here, correlated
orientations of nuclear spins are not met in the solvent. They are only linked with the magnetic
orientation of the spin of the nanoparticles. In zero magnetic field, the magnetic cross section
of that paramagnetic material can always be written(

dσ

d�

)
M

= IM = ��2
MnV 2

M FM(q)SM (q,�) (11)

where ��2
M = 2

3

( re
g µneut

mS
µB

)2
[21–24] is the magnetic contrast (see table 1) with re

(=2.818 × 10−15 m) the classical radius of the electron, µneut (= − 1.913 nuclear magneton
units) the magnetic moment of the neutron, mS has been defined as the material magnetization
of the nanoparticles (see section 3), g (=2) the Landé factor and µB (=9.27 × 10−24 J T−1)

the Bohr magneton. By analogy with nuclear scattering, VM is called the magnetic volume
of the nanoparticles, FM (q) their magnetic form factor and SM (q,�) the magnetic structure
factor of the solution.

As for nuclear scattering, the magnetic scattering in the low interaction regime allows us
to determine the magnetic form factor FM(q). For isolated spherical particles, it can be written
in the low q limit as

FM (q) ≈ exp
(− 1

3 (q RM
g )2) if q RM

g � 1 (12)

where RM
g will be the magnetic radius of gyration of the nanoparticles.

The measurement of the magnetic cross section IM at q = 0 is an (initial) magnetic
susceptibility determination. In other words, we can rewrite equation (11) in the limit q = 0
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using equations (4) and (5):

IM (q = 0,�) =
(

reµneut

gµB

)2 2kT

µ0
χ0SM (q = 0,�) =

(
reµneut

gµB

)2 2kT

µ0
χ(�) = 5.4χ(�)

in cm−1 (at room temperature) (13)

assimilating χ0 SM (q = 0,�) to χ(�). Using equations (5), (6) and (13) we find

S−1
M (q = 0,�) =

(
reµneut

gµB

)2 2kT

3µ0

γ

�

�

IM (q = 0,�)
= χ0

χ(�)
= 1 − λγ

3
. (14)

In order to compare such SANS measurements to direct magnetization determinations,
here also it is convenient to plot �

IM (q=0,�→0 ) as a function of �. Using equation (14), this
leads to

�

IM (q = 0,� → 0)
= 0.55

�

γ
(1 + KM�) (in cm−1) (15)

with KM = − λγ

3�
. This magnetic interaction parameter is negative, as on average the magnetic

dipolar interaction is attractive. The determination of �
IM (q=0,�→0)

at � = 0 gives the
value of the parameter γ

�
for the particles and the determination of the slope of the plot

gives the parameter KM which appears here as the magnetic analogue of the thermodynamic
parameter K o

T .
Under an applied field, the magnetic contribution IM can become anisotropic for two

reasons. First, the magnetic form factor FM (q) becomes anisotropic under the individual
orientation of the nanoparticle spin (see [45] for example). Second, the magnetic structure
factor SM (q,�) may also become anisotropic under field if it induces anisotropic interparticle
magnetic correlations.

SANS determinations of IN and of IM are powerful and complementary tools to
precisely characterize the colloidal solutions. In particular IN allows us to reach their global
thermodynamic state, while IM focuses only on the magnetic aspects. This sorts out the
magnetic interaction, which can be studied independently in deep detail.

In a standard SANS experiment, the two contributions IN and IM are important, together
with IInc , that can be determined independently and easily subtracted. The intensity IM is fully
determined by the magnetic characteristic of the colloid. The intensity IN can be modulated
by the choice of the solvent. For example, the nuclear contrast ��2

N of CoFe2O4 nanoparticles
is modified by a factor of 103 whether they are dispersed in H2O or in D2O (see table 1).
However, with those nanoparticles coated with citrate molecules, there is no pertinent choice
of solvent that could completely ‘kill’ the nuclear signal, in order to determine the magnetic
signal alone in a standard experiment (see section 4.3.1).

4.1.2. Polarization analysis. A way to determine separately the two contributions IN and IM

is to take advantage of their different polarization properties. Let us consider now polarized
neutrons with an incident polarization vector �P and look at each contribution of the scattered
intensity. The scatterers in the sample have electronic spins �µ. On an NSE spectrometer,
the beam is directed along the Z axis and the scattering vector �q along the X axis. The
incident polarization can be directed along any of the X , Y or Z axes. For each of those three
configurations it is possible to measure the intensity associated with the spin-flipped neutrons
(those that have reversed their direction by 180◦) and that associated with the non-flipped
ones. In practice, polarizer and analyser are kept parallel (efficiency of the pair: p). The
crossed orientation analysis is performed by introducing a spin flipper (efficiency: fπ ) before
the analyser, as explained in part 4.2.2 [60].
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Table 3. Neutron scattered intensity in the polarized SANS experiment; IN : coherent nuclear
scattered intensity; the incoherent nuclear scattered intensity II ncN is here neglected. II ncM :
incoherent magnetic scattered intensity; IM : magnetic scattered intensity; Bg: electronic
background intensity; p: efficiency of the ‘polarizer/analyser’ pair; fπ : efficiency of the π flipper.

Polarization �P Neutron spins π flipper Scattered intensity

‖ X Flipped Off (1 − p)IN + pIM + (p + 1)II ncM /3 + Bg

‖ X Non flipped On p fπ IN + (1 − p)(1 − fπ )IN + [p(1 − fπ)

+ fπ(1 − p)]IM + (1 + p + fπ − 2p fπ )II ncM/3 + Bg

‖ Y Flipped Off (1 − p)IN + IM /2 + (p + 1)II ncM /3 + Bg

‖ Y Non flipped On p fπ IN + (1 − p)(1 − fπ )IN + IM /2
+ (1 + p + fπ − 2p fπ )II ncM /3 + Bg

‖ Z Flipped Off (1 − p)IN + IM /2 + (p + 1)II ncM /3 + Bg

‖ Z Non flipped On p fπ IN + (1 − p)(1 − fπ )IN + IM /2
+ (1 + p + fπ − 2p fπ )II ncM /3 + Bg

The coherent nuclear scattering (which leads to a coherent contribution IN and an
incoherent one IIncN , here negligible) does not modify the polarization of neutrons.

The incoherent magnetic scattering (which leads to IIncM , the second contribution to IInc)
changes the polarization of neutrons. Those scattered neutrons have a polarization �Pinc = − �P

3
(2/3 ‘spin flip’ and 1/3 ‘non-spin-flip’).

The magnetic neutron scattering (which leads to IM ) obeys two rules. First, only the
components of the scatterer spin �µwhich are perpendicular to the scattering vector �q, contribute
to the cross-section. Second, during the interaction between the spin �s of the neutron and the
spin �µ of the scatterers,

• �s keeps its polarization if �s is parallel to �µ (‘non-spin-flip’ scattering) and
• �s is flipped if �s is perpendicular to �µ (‘spin flip’ scattering).

As �q is parallel to X , in the NSE geometry whatever the neutron polarization it is only
the projection of �µ in the plane Y Z which contributes to the scattered intensity IM . As an
example, let us suppose that the neutron spins are polarized along X . Both the Y component
of the magnetic moment µY , leading to IM/2, and the Z component µZ , leading to IM/2, are
perpendicular to the neutron spin and thus flip its direction. Hence the magnetic part of the
scattering intensity is pIM if the spin flipper is off and [p(1 − fπ ) + fπ (1 − p)]IM if the spin
flipper is on.

The scattered intensity in the various possible configurations is given in table 3 [60], Bg

being the electronic background intensity. IIncM and Bg are experimentally determined. The
experimental characteristics p and fπ are known. It is then possible to obtain separately the
two contributions IN and IM , which is not possible from a non-polarized experiment.

4.2. Static experiments

4.2.1. Static non-polarized SANS experiments. The scattering experiments are performed in
the Laboratoire Léon Brillouin (LLB) Saclay, on the PAXE and PAXY spectrometer of the
LLB (CEA-CNRS) at the reactor Orphée (CE-Saclay, France). The neutron wavelength is
λn = 10 Å and the detector distance is 3.2 m, leading to a scattering vector q ranging from
0.008 to 0.07 Å−1. A second configuration is also used (λn = 5 Å with a detector distance of
1.05 m, leading to a scattering vector q ranging from 0.06 to 0.13 Å−1). The fluid dispersion is
introduced between two quartz discs separated by an annular spacer, the thickness of which lies
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between 0.1 and 1 mm, depending on the volume fraction of particles. The intensity Inon Pol

(see equation (7)) of the scattered neutrons is recorded on a planar bi-dimensional detector
and regrouped as a function of the scattering vector �q. The experiment is performed either
under zero field or under a 680 kA m−1 magnetic field, applied in the plane of the sample cell
(i.e. perpendicular to the neutron flux). A data treatment is applied in order to subtract the
scattering from the solvent and the quartz cell. In all the figures in zero field the error bar on
the scattered intensity is smaller than the symbols.

The respective scattering length densities of H2O, CoFe2O4, D2O and γ -Fe2O3 are
−0.53 × 1010 cm−2, +6.2 × 1010 cm−2, +6.4 × 1010 cm−2 and +7 × 1010 cm2. Table 1
gives the resulting contrast between the nanoparticles and their solvent.

4.2.2. Static polarized SANS experiments. The polarized SANS experiments are performed
with the NSE spectrometer MESS of the LLB in CE-Saclay-France, in its configuration for
polarization analysis. The beam is directed along the Z axis. The neutron wavelength is
λn = 6 Å ± 16%. The monodetector is monitored on an arm turning around a vertical axis.
Thus the scattering vector �q is along the X horizontal axis. Angles lying between 1◦ and 3◦
are studied here leading to a q modulus ranging from 0.018 to 0.055 Å−1. A super-mirror ( �P
along Z ) polarizes the neutrons longitudinally. A small current is applied in the precession
coils (one being put before the sample and the second one after it) to generate a guide field
parallel to Z in order to maintain the Z polarization all along the guides. Around the sample,
an arrangement of three pairs of Helmholtz coils is used for the polarization analysis to create
a field �Hpol directed along X , Y or Z depending on the measurement. �Hpol polarizes the
neutrons in its direction during the scattering process. The amplitude of this polarizing field
�Hpol is 640 A m−1. Even if it is enough to polarize the neutrons, it is not sufficient to magnetize

the MF in an appreciable way. The MF still can be regarded as an isotropic scatterer.
After the second precession coil and before the detector, the analyser (a second super-

mirror), which is crossed with the initial polarizer, intercepts the scattered neutrons. Thus
in that configuration, only the neutron spins which have been flipped before the detector are
detected.

The neutron polarization can also be flipped artificially by using a spin flipper consisting
of a Mezei π-coil placed as near as possible to the scattering sample. Thus if the flipper π is
on, only the neutrons which are not flipped by the sample are detected.

Performing measurements in all possible configurations of the polarizing field �Hpol and
of the spin flipper, and using table 3, it is possible to determine IN and IM at each q , for each
sample. The electronic background Bg and the incoherent magnetic contribution of water IIncM

are determined experimentally (IIncM (D2O) = 0). The efficiency of the polarizer/analyser pair
and that of the spin flipper are respectively p = 0.932 and fπ = 0.883.

The calibration of IN + IM is given by the intensity Inon Pol from the non-polarized
experiment. It has been checked experimentally that the samples do not depolarize the neutron
beam.

4.3. Experimental results and discussion

4.3.1. Comparison between IN and IM . Let us first compare the results obtained with
colloidal solutions containing the same nanoparticles and differing by the nature of their
solvent. In samples A3 and A4 (4.3 and 9.95%) the nanoparticles are dispersed in light water
while in sample A0 (3.4%) they are dispersed in heavy water. We thus modify the nuclear
contrast ��2

N by a large factor (see table 1), and thus also the coherent nuclear intensity,
while the magnetic contributions remains comparable. For these three samples, figure 4(a)
presents Inon Pol = IN + IM (the incoherent nuclear intensity and the background being already
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Figure 4. Comparison of IN , IM and Inonpol for samples A. (a) q dependence of Inonpol and
IN + IM . Symbols: (♦,�) Inonpol and IN + IM for sample A0, (�, ) Inonpol and IN + IM for
sample A2; (◦,•) Inonpol and IN + IM for sample A3. Inset: enlargement for sample A0 in D2O.

(b) Ratio of IN
IM

as a function of q. In light water it ranges from 30 to 90 while in D2O it is of
the order of 0.6. Symbols: (�) sample A0, ( ) sample A2 and (•) sample A3. Dashed lines are
guides for the eye.

subtracted) as obtained with the non-polarized device and as deduced from the polarization
analysis. Let us point out that the q dependence of Inon Pol is fairly compatible with those of
IN + IM . This can be seen in figure 4(a) and also in the following figures 5 and 6.

The ratios IN /IM obtained for those samples are plotted in figure 4(b). The first important
conclusion is that if with the D2O carrier the intensities IM and IN are comparable; in contrast
with the H2O carrier IN � IM . For all the samples with H2O as solvent, IM is found
experimentally to be at most of the order of a few per cent of IN (see figure 5). In fact

this can be easily predicted by evaluating the ratio ��2
N

��2
M

in H2O. For cobalt ferrite in H2O, it

is found that ��2
N

��2
M

= 45 while experimentally the ratio IN
IM

, which is also sensitive to the form

and structure factors, ranges from 30 to 90 for A2 and A3 samples. Thus a non-polarized
experiment on samples with ferrite nanoparticles dispersed in light water essentially measures
the nuclear contribution of those particles: Inon Pol(H2O) ≈ IN and IM � IN .



Static and quasi-elastic small angle neutron scattering on biocompatible ionic ferrofluids S1319

Figure 5. q dependence of the scattered intensity of samples D and E as obtained in the polarized
and non-polarized SANS experiments. (a) Comparison of Inonpol and IN + IM for samples D.
Symbols: (�) Inonpol of sample D1, (◦) Inonpol of sample D3, (•) IN + IM of sample D3.
(b) Magnetic scattered intensity IM as a function of the scattering vector q for sample D3. The
dashed curve is a guide for the eye. (c) Comparison of Inonpol and IN + IM for samples E. Symbols:
(�) Inonpol of sample E1, (◦) Inonpol of sample E2, (•) IN + IM of sample E2. (d) Magnetic
scattered intensity IM as a function of the scattering vector q for sample E2. The dashed curve is
a guide for the eye.

In contrast, evaluating ��2
N

��2
M

in D2O one finds 0.04 for CoFe2O4 nanoparticles. The

experimental ratio is found to be IN
IM

≈ 0.6 for the A0 sample, which is still small, but 15
times more than the calculation. This discrepancy has to be ascribed to the citrate coating of
the nanoparticles. If D2O is the solvent and because of the respective values of the scattering
length densities of citrate, CoFe2O4, D2O and γ -Fe2O3, the contribution of the citrate shell
increases IN for CoFe2O4 nanoparticles while it makes IN decrease for γ -Fe2O3 nanoparticles.
This shell contribution is not easy to calculate as the density of citrate inside the shell as well
as its thickness are not precisely known. Note that for samples containing ferrite nanoparticles
dispersed in H2O, this shell contribution only becomes important while evaluating the nuclear
form factor of the particles at large q , in the so-called Porod regime [61].

In conclusion, playing with the nature of the solvent in which the particles are dispersed, it
is not possible to determine the magnetic contribution alone with a non-polarized experiment.
The polarization analysis is thus necessary to determine IM . In contrast, if the nanoparticles
are dispersed in H2O, the nuclear contribution largely dominates the magnetic one and we
obtain

IM � IN and Inon Pol = IN + IM ≈ IN .

Hereafter, we only present experiments with nanoparticles dispersed in H2O for which
Inon Pol ≈ IN .
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Figure 6. q dependence of the scattered intensity of sample B at various � as obtained in the
polarized and non-polarized SANS experiments. (a) Comparison of Inonpol and IN + IM . Symbols:
(�,♦) Inonpol and IN + IM for sample B2, ( ,�) Inonpol and IN + IM for sample B3, (•,◦) Inonpol

and IN + IM for sample B4. (b) Magnetic scattered intensity IM as a function of the scattering
vector q. Symbols: (•) sample B2, (�) sample B3 and (�) sample B4. Inset: semi-logarithmic
plots of IM as a function of q2 for samples B2, B3 and B4. The full lines are exponential
fits of IM (q2); the value at q = 0 leads to the determination of χanapol (�) of table 1 through
IM (q = 0,�) = 5.4χanapol (�).

4.3.2. Interparticle interaction coefficients. Figures 5 and 6 compare Inon Pol and IM ,
obtained for various samples, with nanoparticles dispersed in H2O. As in figure 4(a), it is
clear that IN + IM nicely reproduces the q dependence of Inon Pol whatever its shape or order of
magnitude. Figures 5 and 6 also clearly illustrate the fact that IN (≈Inon Pol) and IM probe very
different structures in the same colloidal solution. At a given concentration IN may present a
peak of correlation while IM does not.

Moreover we can study the � dependence of the scattered intensity (extrapolated at
q = 0—see expressions (10) and (15)). Separating nuclear and magnetic scattering allows
isolation of magnetic interactions from the other contributions. Indeed, nuclear scattering
is sensitive to all the thermodynamic interparticle interactions inside the solution, namely
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Figure 7. Comparative plots of the � dependence of �
Inon Pol

(≈ �
IN

) and of �
IM

at q ≈ 0 for sample

B (fluid carrier H2O). (a) Plot of �
Inon Pol

(≈ �
IN

) at q = qmin = 7 × 10−3 Å−1 as a function of �

(see equation (10)). The full line corresponds to VW = 1.4 × 103 nm3 and K o
T = 13.8. (b) Plot of

�
IM

extrapolated at q = 0 (see the inset of figure 6 (b)) as a function of �. The full line is a fit to

equation (15). It leads to γ
�

= 43 and KM = −2.9.

here van der Waals, magnetic dipolar, electrostatic and eventually steric [20]. In contrast the
magnetic scattering is only sensitive to the magnetic dipolar interaction and is able to sort it
out from the other ones.

In order to check quantitatively the interparticle interactions, measurements have been
performed with solutions of the same nanoparticles dispersed in H2O at different volume
fractions. Figure 6 presents the � dependence of Inon Pol and IM for samples B2, B3 and B4
(� = 3.3, 9.4 and 19%). From those data, we can extract �

I (q=0)
and plot it versus �, for

both the nuclear and the magnetic contributions. For the nuclear contribution we assimilate
Inon Pol(q = qmin = 7×10−3 Å−1) to Inon Pol (q ≈ 0), as in [25]. For the magnetic contribution,
an extrapolation to q = 0 is performed using equation (12) (see the inset of figure 6(b)). Figure 7
compares the � dependence of φ

Inon Pol (q=7×10−3 Å−1)
and �

IM (q=0)
. Figure 7(a), which has already

been presented in [25], presents results obtained at different concentrations for our present
sample B (called sample A in [25]).



S1322 F Gazeau et al

The first comment is that the interparticle interactions have opposite influences on
�

Inon Pol (q≈0)
and on �

IM (q=0)
. Figure 7(a) presents an increasing linear behaviour of �

Inon Pol (q≈0)

with �, associated with Vw = 1.44 × 103 nm3 and K o
T = 13.8 (see equation (10) and [25]). It

reflects a repulsive global interaction which is expected in this ‘fluid-like’ phase (see figure 1).
In contrast figure 7(b) reflects a magnetic interparticle interaction which is attractive. It is
also natural. Dipolar interaction is anisotropic; however, its mean field average in zero field
is attractive. Let us quantify it. In figure 7(b) �

IM (q=0)
appears as an increasing function of

� which can be adjusted to equation (14) with γ

�
= 43 and KM = −2.9. If it is natural to

observe a magnetic attraction between the nanoparticles, however, we have noted before that
this attraction is far from being dominant among the whole set of interparticle interactions.
The second virial coefficient of the osmotic pressure being positive (K o

T ≈ 13.8), repulsion is
the leading contribution (in particular K o

T ≈ 13.8 contains the negative dipolar contribution
KM = −2.9). It confers its stability to the fluid phase. This fact explains why in such colloidal
conditions we do not observe any chaining of the nanoparticles in zero field [25].

Let us now compare IM , the measured magnetic contribution to SANS, to direct
magnetization measurements performed at the macroscopic scale. The values of γ

�
and KM

can also be determined from direct magnetization measurements. For sample B, this leads to
γ

�
= 42 (table 2) and KM = −3.1 (using equations (13) and (15)), values which are in very

good agreement with those determined above from the scattering experiment γ

�
= 43 and

KM = −2.9 (figure 7(b)).
From our measurements on the other samples such an extrapolation of �

IM (q=0)
to � = 0

is unfortunately not possible. However for each sample, at a given volume fraction, an
extrapolation to q = 0 can be performed using equation (12) leading to IM (q = 0,�).
Equation (13) then gives a straightforward deduction of the magnetic susceptibility χanapol(�)

of each colloidal solution. The obtained χanapol(�) values are all reported in table 1 and
compared to direct χ(�) measurements in figure 3. The agreement between the two kinds of
measurement is rather good at any �. Moreover the experimental measurements also agree
rather well both with our model for describing the magnetic interaction in the MF (equation (6))
and with the second order perturbation model of [54] (which is only valid for � < 18%).

4.3.3. Determination of nuclear and magnetic sizes of the nanoparticles. In the limit
� = 0, the structure factor SM (respectively SN ) tends towards 1 and ( IM

�
)�=0 (respectively

( IN
�

)�=0 ≈ ( Inon Pol
�

)�=0 for samples in light water) reduces to ��2
M VM FM (q) (respectively

��2
N VW FN (q)). Guinier plots of ( IM

�
)�=0 and ( Inon Pol

�
)�=0 allow the determination of RM

g and
RN

g using equations (9) and (12). Figures 8(a) and (b) present such semi-log representations
as a function of q2 for sample B. Table 2 collects those size determinations for all the present
samples. Taking into account the low γ

�
value of samples D (respectively E), RM

g has been
deduced at � = 8% (respectively 5.6%). For the less polydisperse samples, the magnetic
radius of gyration compares well to the magnetic radius d0

2 deduced from the magnetization
curves. RM

g is always smaller than RN
g , on average by a factor ≈0.7. This difference has

to be addressed to a magnetic small grain effect. The nanoparticles have an external layer of
disordered spins, of typical thickness 1 nm,which does not contribute to the magnetic scattering
in the present experiment [30]. It reduces the magnetic radius of gyration with respect to the
nuclear one.

4.3.4. Nuclear and magnetic structure factors. The nuclear and the magnetic structure factors
are deduced from the measurements at various � by a standard procedure (see [20, 21, 25]):
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Figure 8. Nuclear and magnetic Guinier plots for sample B. (a) Semi-logarithmic representation of
Inon Pol

�
(≈ IN

�
) extrapolated at� = 0, as a function of q2 . The full line is a fit to equations (8) and (9).

It corresponds to VW = 1.4 × 103 nm3 and RN
g = 8.1 nm. (b) Semi-logarithmic representation of

IM
�

extrapolated at � = 0 as a function of q2. The full line is a fit to equations (11) and (12). It
corresponds to γ

�
= 43 and RM

g = 5.5 nm.

SN (q,�) =
( IN (q,�)

�

)
( IN (q,�)

�

)
�=0

and SM (q,�) =
( IM (q,�)

�

)
( IM (q,�)

�

)
�=0

.

The results for sample B are presented in figure 9. SN (q,�) and SM (q,�) have quite different
behaviours. At large concentrations SN (q,�) presents a (smooth) maximum associated with
the correlation peak of the first neighbours. In contrast, SM (q,�) is, within the experimental
accuracy, independent of q . It is always larger than unity and SM (q,�) ≈ SM (q = 0,�) (see
the inset of figure 9). The correlation of spin orientation is independent of the probed spatial
scale for these samples in the fluid phase. They behave as paramagnetic materials.

At this stage, we could raise an apparent contradiction between the nuclear and the
magnetic structure factors. The magnetic scattering at a vector q , as well as the nuclear
one, occurs when two neutrons hit two nanoparticles separated by a distance r ∼ 1/q . If
the nuclear scattering is low at this given q , this means that there are few pairs of particles
separated by such a distance. Therefore this should be seen as well for the magnetic scattering.
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Figure 9. Nuclear structure factor SN of sample B at various � as a function of q. Inset: reduced
representation of the magnetic structure factor χ0 SM(q,�)

χ�)
= SM (q.�)

SM(q=0,�)
at various � as a function

of q. Symbols: (�) sample B2, ( ) sample B3 and (•) sample B4.

However the magnetic scattering is linked with the spin orientation correlation between two
scatterers. Since our solutions are paramagnetic, there are no orientation correlations between
the macrospins of two different nanoparticles, hence no correlation between the spins of two
nuclei pertaining to two different particles. So the magnetic signal loses any information about
the spatial interparticle correlations.

4.3.5. Under-field behaviour of the nuclear contribution. One of the main properties of
the dipolar magnetic interaction is that it is anisotropic. An important consequence of this
anisotropy can be a chaining of the nanoparticles in zero field. Recent observations agree
with a chaining [62] with ionic MF if the superficial density of charge of the nanoparticles
is low [63]. However in the present samples, the electrostatic repulsion is rather strong and
this chaining does not occur. The anisotropy of the magnetic interaction is then difficult to
evidence in zero magnetic field as the magnetic moments are oriented at random. However an
applied field removes this orientational degeneracy, as it orientates the magnetic moments of
the nanoparticles along its own direction. An under-field SANS measurement is in principle
able to evidence this anisotropy of interaction. This is however difficult in an IM determination
(polarized SANS under field) because this effect is only of the second order. Indeed IM is
already anisotropic under field because of the orientation of the magnetic moments itself, even
if they are not interacting together. In contrast, in an IN determination (polarized SANS under
field or non-polarized SANS under field in light water) this effect is the only possible origin
of anisotropy (if the nanoparticles are spherical).

Such experiments, investigating the SANS under-field behaviour of ionic MF in the fluid
phase of figure 1, have been performed in [25] with a non-polarized device. In those under-field
studies it was therefore necessary to separate IM from IN . In practice we have just seen that for
samples in light water the IN contribution is much larger than IM . Knowing that, we can be sure
that our measurements under field indeed reveal the anisotropy of spatial correlation induced
by the field. The main conclusions of that under-field investigation were the observation of

• an anisotropic scattering at low q related to a strong anisotropy of osmotic compressibility
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Figure 10. Comparison for various samples between the scattered intensity InonPol (q, H = 0) ≈
I H=0

N (q) obtained with the non-polarized experiment at H = 0 averaged on rings at constant q
(symbol (•)) and the anisotropic intensities at H = 68 kA m−1 averaged on a sector of ±15◦
along the field direction (I ‖

N , symbol (�)) and perpendicular to the field direction (I⊥
N , symbol

(◦)). (a) Sample C2, γ
�

= 9; (b) sample D3, γ
�

= 14; (c) sample E2, γ
�

= 24; (d) sample B4,
γ
�

= 42. The dashed curve corresponds to 0.19��2
N Vw FN (q); it is the intensity that would be

expected for non-interacting particles. At small q it is larger than I ‖
N , I⊥

N and I H=0
N : there is no

agglomeration of the particles under a field.

(this is due to the macroscopic demagnetizing effect associated with the magnetic
interparticle interaction) and

• at larger q an anisotropy of concentration fluctuations with a lowering of those fluctuations
along the applied field, associated with a gaslike structure in that direction. This
observation is incompatible with a contact chaining of the nanoparticles under field in
those colloidal conditions.

We present here results obtained for the various samples of table 1 at a given field
680 kA m−1 and at the largest volume fraction available. Figure 10 presents the under-
field anisotropy of non-polarized scattered intensity for samples C2, D3, E2 and B4 (here
Inon Pol ≈ IN ). I ‖

N (respectively I ⊥
N ) is the scattered intensity over a sector of ±15◦ around the

direction parallel (respectively normal) to the applied field. One method of characterizing this
anisotropy at q → 0 was introduced in [25]; namely,(

βλ

�

)
exp

= 1

�

(
1

S‖
N (q = 0,�)

− 1

S⊥
N (q = 0,�)

)

= ��2
N Vw

(
1

I ‖
N (q = 0,�)

− 1

I ⊥
N (q = 0,�)

)
(16)
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Figure 11. Correlation between (
βλ
�

)ex p obtained experimentally at H = 68 kA m−1 using

equation (16) and (
βλ
�

)calc obtained from equation (17) with the sample characteristics (tables 1
and 2) and the help of equations (1), (2) and (3). From top to bottom: sample B4, sample of [56],
sample E2, sample D3 and sample C2.

where S‖
N (respectively S⊥

N ) is the structure factor in the direction parallel (respectively normal)
to the applied field.

This anisotropy associated with a demagnetizing effect is related to fluctuations of
macroscopic field inside the solution. It has been modelized in [25] as(

βλ

�

)
calc

=
γ

�
L2(ξe)

[1 − λγ L ′(ξe)][1 + (1 − λ)γ L ′(ξe)]
(17)

by using the same basic model for the magnetic interaction as presented here in part 3.3.
Figure 11 compares (

βλ

�
)exp to (

βλ

�
)calc for various samples of very different γ

�
values. A good

correlation is found as γ

�
varies from 9 to 42.

This shows that the same simple magnetic model (part 3.3) is able to quantify both

• the magnetic interparticle interaction as measured by magnetic scattering in zero field and
• the anisotropic contribution to the global interparticle interaction coming from the

macroscopic demagnetizing effect as measured by under-field nuclear scattering.

5. Quasi-elastic small angle neutron scattering

5.1. Theoretical background

A quasi-elastic experiment allows us to reach the temporal dependence of the intensity scattered
by the solution. Two kinds of dynamic can be probed in an NSE experiment:

• magnetic dynamics, that of the magnetic moment, eventually inside the nanoparticle
crystal itself,

• nuclear dynamics, the Brownian dynamic of the whole nanocrystal.

Here we are only concerned with this second kind of dynamics, as we are always dealing
with nanoparticles dispersed in light water. In that case we have seen that the nuclear signal
is, on average, two orders of magnitude larger than the magnetic one. Our quasi-elastic
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measurements thus reflect a nuclear dynamic associated with the motion of the nanoparticles
inside the suspension in presence of the other particles. With respect to the static measurements,
the specificity of this dynamic experiment is that it is sensitive to hydrodynamic interaction.
Indeed, here, the hydrodynamic interaction also becomes relevant in addition to all the
interparticle interactions of importance in the static experiment.

In a spin-echo measurement, it is the intermediate scattering function, S(q,�, t), which
is determined. In an experiment where the nuclear scattering is dominant, we find

IN (q,�, t)

IN (q,�, t = 0)
= SN (q,�, t)

SN (q,�, t = 0)
(18)

SN (q,�, t = 0) being the static nuclear structure factor. The experimental decay of SN (q, t)
can be adjusted to a simple exponential relaxation:

SN (q,�, t) = SN (q,�, t = 0) exp

(
− t

τ (q,�)

)
. (19)

This characteristic time τ (q,�) is associated with the relaxation of concentration fluctuations
of wavelength 2π

q . One can relate it to an effective diffusion coefficient D(q,�) which can be
defined by

τ−1(q,�) = D(q,�)q2. (20)

For non-interacting particles in a solvent at room temperature, D(q,�) reduces to a
classical Brownian diffusion coefficient:

D0 = kT

f0
= kT

6πη0 RH
(21)

f0 being the friction coefficient at infinite dilution, η0 being the solvent viscosity and RH the
hydrodynamic radius of the nanoparticles.

For interacting particles, one can always write

D(q,�) = D0
H (q,�)

SN (q,�, t = 0)
(22)

which defines the hydrodynamic function H (q,�). H (q,�) accounts for the q and �

dependence of D(q,�) under the hydrodynamic interaction and SN (q,�) for the q and �

dependence of D(q,�) under the thermodynamic interactions. Note that H (q,�), which
describes the indirect coupling of the particles via the suspending fluid, also depends on all
the thermodynamic interactions (via the many-particle correlations).

In the limit q = 0, the diffusion process concerns large scale particle motions, over
distances large compared to their own radius. D(q,�) then can be identified with the
collective diffusion coefficient of the generalized Stokes–Einstein equation [64, 65]. Such
a limit is reached for example in a Rayleigh forced scattering experiment [26, 27] probing
collective mass diffusion at a spatial scale of 10–100 µm and at a timescale of the order of
1 s. H −1(q = 0,� → 0) can be seen as a reduced collective friction coefficient that can be
developed at low � as

H −1(q = 0,� → 0) = f (� → 0)

f0
≈ 1 + K f � (23)

f (�) being the friction coefficient at volume fraction � and K f an hydrodynamic interaction
coefficient. For hard spheres, it is found that K f = 6.55 [66].

Using the development at q = 0 and low � of the structure factor (equation (10)), the
effective diffusion coefficient (equation (22)) is written in that limit:

D(q = 0,� → 0) ≈ D0(1 + (KT − K f )�). (24)
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At intermediate q , SN (q,�) is responsible for the now well known slowing down of the
diffusion around the first peak (at q = qmax ) of strongly structured suspensions [38–42, 67]. It
is often referred to as the ‘cage effect’. For its part, the behaviour of H (q,�) in that q range is
still an open question. In [41, 42] it is found experimentally to go through a maximum slightly
larger than unity at q RN

g ≈ 2. In contrast in [38–40] this maximum is found to be always
smaller than unity.

For large q , SN (q,�) → 1 and the nanoparticles experience a self-diffusion process if
the probed spatial scale 2π/q is smaller than the mean interparticle distance at the volume
fraction �, that is if q > qmax (in the present repulsive fluid phases). In that limit, the effective
diffusion coefficient is written

D(q → ∞,�) = D0 H (q → ∞,�). (25)

For uncharged hard spheres and in the limit of small �, one theoretically expects from virial
expansion [59, 68, 69]

H (q → ∞,� → 0) = 1 − 1.73�. (26)

That is H (q → ∞,� = 10%) = 0.83 and H (q → ∞,� = 20%) = 0.67 for hard spheres.
A smaller concentration dependence is found by numerical simulations for charged spheres
by [70].

The whole theoretical description of the hydrodynamical function is not easy. It involves
many-body processes. A renormalization method has been proposed for hard spheres by [69–
71]. H (q) is found to have a pronounced q dependence with oscillations recalling those of the
structure factor (see [40, 64, 69, 71]). It is found to be always smaller than unity. Hydrodynamic
interaction then seems to behave as an additional friction exerted on the particles which depends
on the local structure.

Another method has been proposed for strongly interacting charged particles by [72, 73]
under the assumption that indirect hydrodynamic interactions can be considered as pairwise
additive (as assumed in expressions (23), (24) and (26)). This description is thus restricted
to low volume fractions and low to moderate salinity. The maximum of H (q) is found to
be larger than unity. It is concentration and ionic strength dependent. H (q) also presents
here oscillations as a function of q reminding those of the structure factor (see [40, 72, 73]).
By opposition to [69, 71] it thus predicts a speeding-up of the dynamics on length scales
comparable to the interparticle distance for those strongly interacting charged colloids.

NSE here probes spatial scales ranging from 50 to 300 Å at timescales of the order of 10 ns.
At the largest q , it may probe self-diffusion of effectively single particles. As the smallest q
is of the same order of magnitude as qmax , the experiment may then explore the ‘cage effect’.

5.2. Neutron spin echo (NSE)

Those dynamical experiments are also performed with the spin echo MESS of the LLB in
CE-Saclay-France, now in its echo configuration. The beam is directed along the Z axis. The
neutron wavelength is λn = 6 Å ± 16%. Angles lying between 1.5◦ and 7◦ are studied here,
leading to a modulus of the scattering vector �q (directed along the X axis) ranging from 0.03
to 0.13 Å−1. With respect to the configuration for polarization analysis, the arrangement of
three pairs of Helmholtz coils is suppressed. A flipper π/2 is added after the polarizer, at the
entrance of the first precession coil (C1, length L1, field H1). This flipper π/2 turns the neutron
polarization from parallel to Z to perpendicular to Z and thus initiates the Larmor precession
of the neutron spins about the field H1 inside C1. A second flipper π/2 is added at the end of
the second precession coil (C2, length L2, field H2) before the analyser, in order to turn the
polarization back along Z .
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Inside the precession coil C1 (respectively C2), the neutron spins precess by an angle
α1 = γn H1 L1

v1
(respectively α2 = γn H2 L2

v2
) where γn is the gyromagnetic ratio of the neutron, v1

(respectively v2) being the incoming (respectively outgoing) velocity of neutrons. Between
C1 and C2 the flipper π reverses the spin component of the Z X plane, which is equivalent to
changing α1 to −α1.

For quasi-elastic scattering, the condition L1 H1 = L2 H2 must be satisfied. The energy
transfer h̄ω = 1

2 Mn(v
2
2 − v2

1) may be deduced (at the first order in ω) from the final precession
angle α = α1 − α2 = ωt , where t = h̄γn H1 L1

Mnv3
1

is the precession duration and Mn the neutron

mass. The detected signal PN SE (t) (N SE standing for neutron spin echo), after the second
π/2 flipper and the analyser, is proportional to 〈cos α〉. It is related to the scattering function
S(q, ω) by

PN SE (t) = PS〈cos α(t)〉 = PS

∫
S(q, ω) cos(ωt) dω∫

S(q, ω) dω
. (27)

PS takes into account the eventual change of the neutron polarization by the scattering
process itself. For nuclear scattering, PS = 1 and

PN SE (t) = SN (q, t)

SN (q, t = 0)
. (28)

In practice, the spectrometer has been calibrated by measuring the NSE signal for a
standard graphite sample (which is an elastic scatterer with PS = 1), giving the instrumental
resolution function.

5.3. Dynamical experimental results and discussion

Figure 12 presents the experimental relaxation of PN SE for sample D3 at � = 9% and
q = 7.3 × 10−2 Å−1. The signal, already calibrated by the instrument resolution function,
is adjusted to an exponential relaxation of characteristic time τ (q = 7.3 × 10−2 Å−1,� =
9%) = 64.5 ns (cf expression (19)). By using expression (20) an effective diffusion coefficient
D(q = 7.3 × 10−2 Å−1,� = 9%) = 2.9 × 10−11 m2 s−1 can be deduced. The q and
� dependence of the effective diffusion coefficient is presented in the inset of figure 12 for
samples D2 and D3. The values of the non-interacting diffusion coefficient D0 are obtained
from equation (21) with the assumption that for those colloids RH ≈ RN

g as found by light
scattering for silica particles in [41] for example. Respectively for samples A, B and D it is
found that D0 = 4.33 × 10−11, 2.62 × 10−11 and 4.16 × 10−11 m2 s−1.

We probe here the hydrodynamic interaction in the high q range (1.7 � q RN
g � 10.4)

where only scarce measurements are available (they cover the range 0.5 � q RN
g � 3.5 for

charge-stabilized colloidal silica [30–32]). We deduce the hydrodynamic function H (q,�)

from equation (22), S(q,�) being extrapolated to unity for q > 7 × 10−2 Å−1 if no
measurement is available. H (q,�) is plotted in figure 13 as a function of q RN

g for various
samples (A, B and D) and various �.

For a comparison the value of the hydrodynamicfunction H (q ≈ 10−5 Å−1,� = 10%) =
0.56 deduced from the Rayleigh forced scattering experiment of [40] (obtained with a sample
based on γ -Fe2O3 nanoparticles of characteristics similar to those of sample B3) is also plotted
in figure 13(b). This value is rather close to the hard sphere limit at q = 0 (equation (23))
also plotted on the figures, together with the hard sphere limit at q → +∞ (equation (26)).
In figures 13(a) at � ≈ 3% and 13(c) at � = 19%, the experimental behaviour obtained at
q = 0 and q → +∞ is compatible with hard sphere values. However a smooth intermediate
maximum of the order of 1.2 is observed at q RN

g ≈ 2.2. Those observations are also true for
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Figure 12. Relaxation of the spin-echo signal PN SE as a function of time for sample D3 at
q = 7.3×10−2 Å−1. The full line is a fit to equation (19) using equation (28) with τ (q) = 64.5 ns. It
leads to an effective diffusion coefficient D(q = 7.3×10−2 Å−1,� = 9%) = 2.9×10−11 m2 s−1.
Inset: effective diffusion coefficient as a function of q for samples D2 (�) and D3 (◦). The
full horizontal line marks the value of the diffusion coefficient for non-interacting nanoparticles
D0 = 4.16 × 10−11 m2 s−1.

sample B3 in figure 13(b) at � ≈ 10%. In contrast, for samples A3 and D3, H (q,� ≈ 10%)

strongly decreases from ≈1.1 at q RN
g ≈ 3 down to ≈0.4 at q RN

g ≈ 4. The main difference
between sample B3 and, samples A3 and D3, besides their quite different polydispersity index
(see table 2), is illustrated in inset of figure 13(b). It presents the nuclear structure factor SN (q)

of sample D3. There is a pronounced structure peak at q ≈ 4.5×10−2 Å−1(q RN
g ≈ 2.2), much

more pronounced than that of sample B3 (see figure 9). The value of H (q RN
g ≈ 4,� ≈ 10%)

for samples A3 and D3 then appears as a not yet damped oscillation of the hydrodynamic
function (q being not large enough). In [41], a similar observation on charged colloidal silica
was modelized with the help of [69, 71] introducing in the calculation the experimentally
deduced interparticle potential (see figure 9 in [41]).

Let us note that from q RN
g = 2.2 up to 3.5, the present experimental behaviour is roughly

compatible with the observations of [41] and [42]. In particular, as observed in [41, 42]
(and in contrast to [38–40]), H (q,�) is found to be larger than unity in the neighbourhood
of the maximum of SN (q,�). Our result seems compatible with the pairwise approximation
of [72, 73] for strongly interacting charged spheres. We observe a speeding-up of the dynamics
around q RN

g = 2 and the intuitive interpretation of H (q,�) as being only an ‘extra friction’
(which would mean H (q,�) always smaller than unity) does not seem to apply in our charged
colloid. Indeed, H (q,�), which expresses the contribution of the hydrodynamic interactions
to the ‘local friction’, also contains a contribution from the thermodynamic interactions. Here
two experimental points support this:

• the existence of a maximum of H (q,�) at an intermediate q value for all the samples
whatever � and

• the value of H (q,�) for samples A3 and D3 at � ≈ 10% and q RN
g ≈ 4, compatible with

a not yet damped oscillation to be related to the colloidal structure.

However, further more systematic measurements of H (q,�) have to be performed to
elucidate in more detail its large q dependence.
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Figure 13. Hydrodynamic function H (q,�) as a function of q RN
g at various volume fractions.

The full lines are the uncharged hard sphere limit at q → ∞ (equation (26). The dashed curves are
guides for the eye. (a) � ≈ 3%; symbols, (◦) sample B2, (•) sample D2, (�) Stokes–Einstein
limit at q = 0 and � = 3% (equation (24)). (b) � ≈ 10%; symbols, ( ) sample A3, (◦)
sample B3, (•) sample D3, (�) result of the Rayleigh forced scattering experiment of [26, 27], (�)
Stokes–Einstein limit at q = 0 and � = 10% (equation (24)). Inset: nuclear structure factor SN of
sample D3 as a function of q RN

g . (c) � ≈ 19%; symbols, (◦) sample B4 and (�) Stokes–Einstein
limit at q = 0 and � = 19% (equation (24)).
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6. Summary and perspectives

We have shown here that the interparticle interaction deeply influences the shape of an MF
neutron scattering pattern. The separate analysis of the magnetic and the nuclear contributions
to the neutron scattering has demonstrated that they behave differently as functions of q and �.

In the fluid phase of our system, the magnetic attractions associated with the magnetic
neutron scattering, determined in a polarized SANS experiment, are fairly compatible with
direct susceptibility measurements. The magnetic structure factor is independent of the probed
spatial scale, while a clear structuring of the colloid can be evidenced by the nuclear structure
factor. Indeed, the magnetic attractions are weaker than the global thermodynamic repulsion,
deduced from the nuclear neutron scattering. This explains why no contact chaining of the
nanoparticles occurs in such ‘repulsive’ samples under the magnetic dipolar interaction.

If the nanoparticles are dispersed in H2O, the nuclear contribution dominates the non-
polarized SANS. Under a magnetic field, the magnetic interparticle interaction becomes
anisotropic. In these experimental conditions, if the repulsion is not too strong, an anisotropy
of nuclear scattering in low q is observed associated with an anisotropy of compressibility of
the MF. This effect is the more pronounced the larger is the parameter of magnetic dipolar
interaction. A model of magnetic interaction quantitatively explains together the dependences
of the SANS magnetic contribution in zero field, direct magnetic susceptibility measurements
and the under-field anisotropy of the SANS nuclear contribution.

Thanks to the crossed analysis of the static and the quasi-elastic nuclear signals, NSE
measurements allow determination of the very controversial hydrodynamic function H (q,�).
It is found here (in zero field) to be close to that obtained in a pairwise approximation by [72, 73]
for strongly interacting charged particles. In particular, as in [41, 42] and contrary to [38–40],
it reaches values larger than unity at a spatial scale close to that of the maximum of the nuclear
static structure factor. Those preliminary results on MF appeal for a forthcoming more detailed
study.

In the future, we plan to explore the structural and dynamical MF properties in other areas
of the liquid–gas colloidal phase diagram of the present system [16–18], namely

• the liquid phase, where the thermodynamic interactions are attractive on average, and
• the solid glassy phase, where the dynamics of rotation is seriously hindered as shown by

magneto-birefringence relaxation [74]. Such a solid exists both in the range of globally
attractive or globally repulsive interparticle interactions [52].

Lots of questions still have to be answered, for example: is it possible to observe an under-
field anisotropy of the hydrodynamic function in the vicinity of its maximum, as observed for
the diffusion coefficient at q ≈ 0 in a Rayleigh forced scattering experiment [26, 27]? In
strongly concentrated MF systems, is it possible for a magnetic correlation length to exist
spontaneously [75, 76]?

Another interesting frame of investigations, out of the scope of the present paper and to be
explored in the future, is the local magneto-dynamics of the MF. Several contributions coming
from volume [46] and surface [47] magnetic effects inside the nanoparticles enter the game,
together with the interparticle interactions. They depend on temperature and nanoparticle
characteristics. They make the local magneto-dynamics a whole world to be studied in itself.
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