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Abstract. A  formula is derived for the  complex,  frequency-dependent, low-field relative 
susceptibility of a magnetic fluid which  takes  account of magnetic  fluctuations of the  intra- 
particle  Neel-type  and  those  induced by the  rotational  Brownian  motion of the  particles. 

Magnetic  fluids  consist of colloidal  dispersions of ferromagnetic  particles. The particles 
being  small,  with  radii of the  order of 10 nm or less,  consist of single magnetic  domains 
(Shliomis and  Raikher 1980). If I ,  (Wb  m-*)  denotes  the  saturation  magnetisation,  the 
magnetic  moment, m (Wb  m), of a  spherical  particle, of volume U ,  is given by 

m = I ,us = I , (4na3/3)s  (1) 

where a is the  radius  and S is a  unit  vector  parallel  to m. 
The  magnitude of m is constant,  but its  direction will fluctuate  in  a  random  manner 

for  two  reasons.  Firstly, within the  particle m will change  from  one  easy  direction of 
magnetisation to  another by surmounting  an  energy  barrier Ku (Nee1 1949).  Secondly, 
the  particle  being  surrounded by a viscous fluid will perform  rotational  Brownian  motion 
(Debye 1929) which will impose  further  changes in the  direction of m. 

In  a  magnetic fluid in which the  particle  number  density, N / V ,  is small  enough  to 
permit  the  neglect of magnetic  dipole  interaction  between  particles,  the  low-field,  zero- 
frequency  susceptibility, ~ ' ( o ) ,  has  the value 

~ ' ( 0 )  = N m 2 / 3 k W p o  = xs (2) 

if all particles  have the  same size; k and  Tare, respectively, the  Boltzmann  constant  and 
the  absolute  temperature  and p .  is the  absolute  permeability of free  space. 

For a  uniaxial material, m will have  two,  anti-parallel  equilibrium, or easy  directions 
relative  to  axes fixed in the  particle. If we assume  that  the  time  taken  for  a  reversal of 
magnetisation is short  compared with the  time m spends  in  a  particular  direction,  relative 
to  the  particle: we may  treat  these  changes of sign of the  magnetisation  as  a Poisson 
process.  Therefore, we may  characterise  the  magnetisation of a  particle with respect  to 
axes fixed in the  particle by the  function rnr(t)b,  in  which b is a  unit  vector  along one of 
the  easy  directions  and r ( t )  is a  stochastic  function  that  changes  suddenly,  between + 1 
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and - 1. As Kenrick (1929) has  shown,  the  time  average 

r(t’)r(t’ + t )  = exp(-2y(t() 

= e x P ( - l W d  

in  which y is the  mean  residence  time of the magnetisation  along  an  easy  direction  and 
rN is the NCel relaxation  time. 

Provided  inertia effects  may be  neglected we may treat  the  internal  fluctuations in 
the  sense of m and  the  orientational  fluctuations  as statistically independent.  Under 
these  circumstances  the  component mz(t’) = m k of m along  the  space z axis at  time t‘ 
may be  written 

m, ( t ’ )  = mr(t’)b k 

= mr(t‘) COS O(t’ )  

in  which O(t’) is the angle  between  the unit  vector b,  fixed in the  particle,  and  the z 
direction. 

The  autocorrelation  function 

c ( t )  = rn,(t’)m,(t‘ + t )  

= m’r(t’)r(t’ + t) COS e([’) COS e(t’ + t )  

simplifies to 

c( t )  = m2[r(t’)r(t‘ + t ) ]  [COS e([’) COS e(tr + t ) ] .  

Debye (1929) has  shown  that 

[COS e([’) COS e(t’ + t ) ]  = (1/3) exp(- ( t ( / tD) .  

The  Debye  relaxation  time, tD, due  to Brownian  motion,  has  the value 

tD = (4nVa3)/(kT) (8) 

where is the  kinematic viscosity of the  surrounding fluid. From (3), (6) and (7) we find 
that 

c(t> = ( m 2 / 3 >  exp{-ltl[(tN + ZD)/rNrDI) (9) 

in agreement with the  conjecture of Shiliomis  (1974a, b). 

ceptibility K( W) = X’( W) - i f (  W) satisfies the  equation (Scaife 1971) 
Using the  fact  that  the  complex,  frequency (=~/2n)-dependent ,  relative  sus- 

~ ( o )  = - ( N / k T V p , )  1- F exp(-iot)  dt 
0 

we find from (9) that 

~ ( o )  = (Nm2/3kTVpo)(l + ioteff)-’  

where  the  effective  relaxation  time 

teff = tNtD/(tN + t D > .  
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Brown  (1963a, b) has  determined  the  dependence  on v of the Nee1 relaxation  time tN to 
be 

tl, t2 being  constants  independent of v. Shliomis  (1974a, b)  has  pointed  out  that  a  critical 
value for  the  particle  volume, v, = (4na2/3), occurs  when tD = tN. So we  have  two 
possibilities: 

Teff 3: tD a > U ,  t N  % tD (14a) 

and 

teff t N  U < a, t N  Q tD. (14b) 

In  the first, (14a),  case we speak of the  magnetic  moment being  blocked  since m will 
maintain  its  direction,  relative  to axes fixed in the  particle,  for  a  long  time  compared 
with the  Debye  rotational  relaxation  time, tD. In  the  second  case,  (14b), we may 
ignore the effect of rotational  Brownian  motion  on  the  magnetic susceptibility  since the 
directional  fluctuations of m are  fast  compared with the  random  changes in particle 
orientation  induced by the  thermal  agitation of the  surrounding fluid molecules. 

In  actual  magnetic fluids there will be  a range of values of a. If the  inter-particle 
magnetic  energy is small compared with kT, we may  replace  (11) by 

f( v) d v is the  number  density of particles with volumes  between U and v + d U. Equations 
(11) and (15) are restricted  to  cases  where xs d 1, the  external field h is such  that (mh/ 
k T )  < 1, and  to values of W well below the  Larmor  precession  frequency.  The case of a 
uniaxial material was  chosen  for  simplicity of exposition;  the  general  form of (1 1) and 
(15) will apply  to  other classes of ferromagnetic  particles. 

I thank  Mr P C Fannin  for  helpful discussions 
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