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Abstract. The relaxation behaviour of single-domain magnetic particles is investigated. The 
first non-vanishing eigenvalue of an appropriate Fokker-Planck equation. characterising 
the dynamical response as well as the decay of the metastable states of the system. is 
calculated using avariational approach. The lower bound to the eigenvalue is also computed. 
The present treatment yields estimates for the eigenvalues that are better than those obtained 
by the Kramers method. 

1. Introduction 

The relaxation behaviour of single-domain magnetic particles has been receiving 
renewed attention in recent years in view of its close similarity with the non-equilibrium 
properties of spin glass alloys (see, for instance, Kumar and Dattagupta (1983) and the 
references cited therein). When the time for relaxation of the magnetisation of the 
particle from one easy orientation to another is comparable with the time of observation, 
one observes magnetic after-effects or magnetic viscosity, which are also characteristics 
of spin glasses. Essentially because of the simplicity of the theory, the data on spin glass 
freezing in a number of alloys have been analysed on the basis of thermal blocking of 
non-interacting magnetic particles. It is, therefore, of considerable interest to obtain a 
reliable estimate of the time z, for (or rate A, of) relaxation of a magnetic particle from 
one equilibrium orientation to another. 

A related question is concerned with the general and important topic of the decay of 
metastable states. The orientation of a magnetic particle can be prepared in an initial 
state, say by the prior application of a magnetic field. The state becomes metastable if 
the field is removed, and its decay into a more stable state (magnetic after-effects) is 
obviously determined by AT introduced above. The computation of the rate of decay of 
metastable states is a fundamental problem in many other areas, and has been a subject 
of intense activity over the last four decades or so (see Kramers (1940), Landauer and 
Swanson (1961), Langer(1969), Haake(1979), Schuss(l980),ArecchiandPoliti(1980); 
for a recent review, see Dattagupta and Shenoy (1983)). In this paper we present a 
variational estimate of A, in the context of the relaxation or approach to equilibrium of 
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a single-domain magnetic particle. The method used, however, is of general utility in 
the theory of the decay of metastable states. 

Our analysis here is based on a Fokker-Planck equation for the orientational distri- 
bution function of a magnetic particle in a potential that represents the combined effect 
of an anisotropy energy and an applied magnetic field. The treatment most often 
employed to calculate, for instance, the rate of decay of a metastable state, using an 
underlying Fokker-Planck equation, is due to Kramers (1940) and others (Landauer 
and Swanson 1961, Langer 1969). The Kramers method is based on a physical ansatz 
which, in the context of magnetic particles, should be valid when the ‘barrier height’ 
(proportional to the anisotropy energy) is much larger than the thermal energy (pro- 
portional to p-’ = kBT; see, for example, Dattagupta and Shenoy (1983)). When this 
condition becomes invalid, the Kramers estimate yields poor results and one needs 
alternative approaches. One such treatment is due to Brown (1963) who, in his pioneer- 
ing work on the relaxation behaviour of single-domain particles, introduced a variational 
analysis of the Fokker-Planck equation. However, the special choice that Brown made 
of the variational trial function yields results that are essentially equivalent to those 
obtained from the Kramers method. More recently, Schenzle and Brand (1979) had 
given several examples of trial functions for Fokker-Planck equations used in the context 
of optical bistability (Bonifacio and Lugiato 1978, Farina et a1 1981). Brand et a1 (1982) 
also gave variational estimates for the lower bounds to the eigenvalues of the Fokker- 
Planck equation. Thus variational methods have the added advantage that they yield 
both upper and lower bounds to the eigenvalues which determine the time-dependent 
properties of the system concerned. 

In the present paper we extend Brown’s original work and show how a judiciously 
chosen trial function leads to a better estimate than Kramers’ of the rate of relaxation 
A,. Using this new trial function we also obtain the lower bound to the first non-vanishing 
eigenvalue of the appropriate Fokker-Planck equation. This is an improvement over 
Brown’s earlier work as his trial function is not twice differentiable and hence is not 
suitable for the computation of lower bounds (see 5 2). The results presented here are 
of relevance in analysing the dynamic response, i.e. the AC susceptibility (Kumar and 
Dattagupta 1983) as well as the hysteresis behaviour of single-domain magnetic particles 
(for a general discussion, see Gilmore (1979) and Agarwal and Shenoy (1981)). 

2. The general variational treatment 

Consider a system with effectively a single degree of freedom. We assume that the 
time-dependent behaviour of the system is characterised by a Fokker-Planck equation 
for the probability distribution P( W ,  t ) :  

dP /& = a(A( q)P) /dW + d2(D( W)P)/dy2.  (2.1) 
Here W is the dynamical variable and A(  q )  the drift coefficient which represents the 
effect of internal and external forces on the system. The diffusion coefficient D( q )  
arising from, say, thermal fluctuations, can depend on w, in general. The steady state 
( P  =0) solution P, of equation (2.1) corresponding to natural boundary conditions is 

where 7 is a normalisation constant. Note that the ‘potential’ function O( q )  may have 
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several minima, and in particular, for a certain range of system parameters, may be 
bistable. 

The time-dependent solution of equation (2.1) can be cast in the form 

P ( w ,  0 = a ,  exP(-Ant)Ps(w)ffl(W) (2.3) 

where the a,  are the coefficients to be determined from the initial conditions, and the 
f,( y )  and A, are to be evaluated from the eigenvalue equation 

In order that the system may asymptotically ( t  + =) reach a stationary state character- 
ised by the probability distribution P,( I$), the lowest eigenvalue A0 must vanish. In 
addition, of course,fo = uo = 1. 

The eigenvalue problem (2.4) is self-adjoint and hence the eigenfunctions form an 
orthonormal set with weight factor P, : 

( 2 . 5 )  

For dynamical calculations, we need to know the first few non-vanishing eigenvalues. In 
particular, if the eigenvalue spectrum is well separated the most important eigenvalue 
for dynamical considerations is the lowest non-vanishing eigenvalue AI (cf Brand et a1 
1982). Hence, in what follows, we focus our attention on computing A l .  Let x( w )  be the 
trial function; then the variational problem posed by equation (2.4) is formulated as 

where the conditions in equations (2.7) and (2.8) imply orthonormality of the trial 
function ( N  is a constant), 

The equation (2.6) yields an upper bound to the first non-vanishing eigenvalue. On 
the other hand, Brand et a1 (1982) have discussed how a lower bound to the eigenvalue 
of the Fokker-Planck operator can also be obtained by an extension of the results of 
Weinstein (1934) and Kamke (1939). For the self-adjoint problem Lf = Af and for 
functions f that are differentiable at least twice continuously, the lower bound to the 
eigenvalue AI is given by 

A 1  2 E -  ( p ?  - Ly2)112 (vl (2.9) 

where 

For the eigenvalue problem (2.4), one finds 

(2.12) 
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In the next section the above formulae will be applied to the study of the reorientational 
motion (or the rotational diffusion) of single-domain magnetic particles. 

3. The lowest non-vanishing eigenvalue for rotational diffusion 

Here we shall obtain a variational estimate for A l  using a suitable trial function for the 
Fokker-Planck equation that describes the rotational diffusion of magnetic particles. 
Restricting the discussion to the experimentally interesting case of uniaxial anisotropy, 
the magnetic energy of a single-domain particle can be written as 

v (@)  =Ks in ’O-HM,cosO (3.1) 

where K is the anisotropy parameter, H the applied field and M ,  is the saturation 
magnetisation of the particle. Both K and M ,  are linearly proportional to the volume U 
of the particle. The orientational distribution function W ( 0 ,  t )  then obeys the 
Fokker-Planck equation in terms of the dimensionless time t(Brown 1963): 

where /3 = ( k ~ T ) - l  and 

[ W ( @ , t ) s i n O d O = l  

0 0 2  0 4  0 6  08 1 0  - 2  

Figure 1. The potential function @(a) = 
ysin2 0 - y cos 0 as a function of @/n for three 
values of y and for y = 0.5. 

1 

Figure2. The same as figure 1 except thaty = 2.0. 
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In terms of the variable ‘IC, = cos 0,  equation (3.2) becomes (sin 0 W ( 0 )  d 0  = 

P(V>  d v ) :  
aP a 
a t  ay, a y ,  ay ,  
- = - [ (1 - 1112)  (p” P + ”)I, (3.3) 

The equation (3.3) is of the general structure given in equation (2.1) with the ‘diffusion 
coefficient’ D( I/.J) = (1 - I/?). The steady-state solution is expressed in equation (2.2) 
where the potential has the form 

WvJ) = S V ( Y )  = y(1- v 2 >  - Y y ,  
y = p K  y = PHM,. (3.4) 

The potential @ is bistable and is asymmetric (for y # 0), as illustrated in figures 1 and 
2 for a set of values of y and y. As the external field strength y increases, the potential 
becomes more and more asymmetric. 

We now make a suitable choice of the trial function x in order to estimate Al. As 
argued by Brown, the function x should be such that (i) it changes sign in the interval 
-1 d y, d 1 in order to satisfy equation (2.8) and (ii) its derivative must be small in the 
neighbourhood of the maxima of P, and peaked around the minimum of P,, in order to 
keep the upper bound small (cf equation (2.6)). In addition, the trial function must be 
twice differentiable in the interval in question. As dictated by these considerations, we 
propose the following form: 

x ( V >  = x1{1 + exp[-a(vJ3 - V)1}-’ + xz{l + exp[-a(W - W 3 1 1 - l  (3.5) 

where the variational parameter a is ‘suitably’ large (see below), and y,3 is the value of 
v, at which P, is a minimum (or @ is a maximum). Evidently, 

vJ3 = -Y/2Y. (3.6) 

The constants x1 and x 2  may be determined from equations (2.7) and (2.8). It may be 
noted that x-+ x1 ( 2 2 )  as - v3 Q 0 (eo). The trial function in (3.5) is similar in form 
to the one used by Schenzle and Brand (1979) in the context of optical bistability. 

The first derivative of x, required for evaluating the various bounds given in 9 2, is 
given by 

( d d d  Y) = ( a /Nxz  - X l N  + cosh 4 v J 3  - y,))  -I. (3.7) 

It is evident that as the quantity a increases, dx/d y, becomes more and more peaked 
around 743; at the same time, x retains its constant value x1 ( X Z )  for a wider range of 

< I / J ~  ( > ~ 3 )  (see (3.5)). Thus as a becomes very large, our choice of the trial 
function in (3.5) becomes equivalent to that of Brown (1963). Since the Brown ansatz 
is deemed to be accurate when the barrier height is much greater than the thermal energy 
(i.e. when y is very large), it is expected that a should be somehow related to y. This, 
plus dimensional reasoning (cf the exponents in (3.5)) leads us to express a in the form 

a2 = 51 -@”(a3)  I (3.8) 
where a”(@) is the curvature of the potential at its maximum ( 0 3  = cos-’ y13), and cis  
now the new variational parameter. From equations (3.4) and (3.6), we have 

a2 = 2&(l - y2/4y*). (3.9) 
The variational problem formulated in equations (2.6)-(2.8) is now solved numerically, 
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Figure 3. The upper bound to the eigenvalue AI as a function of the field strength y and for 
the anisotropy parameter y = 10.0. Kramers' estimate (3.10) (-); modified Kramers' 
estimate (3.11) (--); and variational estimate deduced from the minimisation of (2.6) 
(- - - -). 

and the results are shown in figures 3-5. For each set of barrier parameters (i.e. y and 
y) ,  a distinct value of gis computed which minimises the right-hand side of (2.6). The 
corresponding optimised trial function xis then employed in calculating p2 from (2.13) 
and hence the lower bound to the eigenvalue LYI from (2.9). Note that the lower bound 
makes sense only if a1 > 0 since the eigenvalue A I  has to be positive. 

We also compare the present results with those obtained from the Kramers treat- 
ment. The latter yields (Brown 1963) 

A = (y /x ) ' l2 (1  - y:/4y2) exp[-(y+ y2/4y)] 

x [(2Y + Y) exP(-Y) + (2Y - Y )  exP(-Y)l. (3.10) 

It is clear from figures 3-5 that the trial function in equation (3.5) leads to a significant 
improvement over the Kramers estimate. Also, as expected, our results match asymp- 
totichlly with those of Kramers, as y becomes large. Now, in deriving (3.10), certain 
integrals are evaluated approximately by using steepest-descent arguments, which are 
valid when y is large (see Brown 1963). On the other hand, we find that a somewhat 
better result follows if the integrals are left as such and evaluated numerically. Thus the 
original Kramers method would yield for the lowest non-vanishing eigenvalue (cf Dat- 
tagupta and Shenoy 1983) 

(3.11) v = ( W 3 ) ( 1 / A  + 1 / 1 2 )  
where 

ZI = LO'sin 0 d O  exp(-@(O)) 

Z2 = sin 0 d O  exp(-@(O)) 

Z3 2y(4y2 - y2)l i2 [ d O  exp(@(O)). (3.12) 
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Figure 4. The variational lower bound (--), 
upper bound (----) and the Kramers (-) 
estimates for AI as a function of the anisotropy 
parameter y and for y = 0. 

Figure 5. The same as figure 4 except that y = 1 .O. 

Needless to say, the limiting form of vfor ylarge, obtained by calculating approximately 
the integrals in (3.12), would lead to the expression for A given in (3.10). Interestingly, 
the estimate for vshown in figure 3 is found to be rather close to our variational result. 

4. Conclusions 

In summary we have shown how a suitably chosen variational trial function can be 
employed to evaluate the upper and lower bounds to the first non-vanishing eigenvalue 
of the Fokker-Planck equation which describes the relaxation behaviour of magnetic 
particles. These estimates for the eigenvalue are found to be much more reliable than 
those obtained from the widely used Kramers method. Among other applications of the 
present treatment we might mention the AC susceptibility response of a single-domain 
magnetic particle to an oscillatory magnetic field. The susceptibility as a function of the 
frequency of the applied field is usually characterised by a Debye peak whose width is 
proportional to the first non-vanishing eigenvalue of the Fokker-Planck equation com- 
puted here. Since the present estimate of the eigenvalue is lower than that based on the 
Kramers method, the width is expected to be narrower than that calculated earlier 
(Kumar and Dattagupta 1983). The trial function of this paper is also expected to yield 
reasonable results in the context of diffusion in other bistable potentials (Aganval et a1 
1984). 
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