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Abstract
The hysteresis curves of systems composed of small interacting magnetic
particles, regularly placed on stacked layers, are obtained with Monte Carlo
simulations. The remanence as a function of temperature, in interacting
systems, presents a peak that separates two different magnetic states.
At low temperatures, small values of remanence are a consequence of
antiferromagnetic order due to the dipolar interaction. At higher values of
temperature the increase of the component normal to the lattice plane is
responsible for the small values of remanence. The effect of the number of
layers, coordination number and distance between particles are investigated.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In the past decade the magnetism of fine particles embedded in a non-magnetic matrix has
been a topic of interest because of their uses in chemical catalysis and magnetic recording [1].
The appearance of new experimental techniques capable of generating samples with controlled
nanostructures [2, 3] has led to important advances in the preparation and understanding of
the behaviour of granular materials. However, at the nanometre scale, magnetic systems are
not easily reproduced and characterized, introducing difficulties for the investigation of these
systems. Experimental and theoretical results obtained over the past few years show that there
are clearly many factors that influence the magnetic and magnetotransport behaviour of these
systems, such as the distribution of grain sizes, the average size and shape of the grains and the
magnetic anisotropy of the individual grains. Also, the role of magnetic interactions among
crystallites is a topic full of controversies, despite the intensive research on the subject. One
of the most often used methods for investigating the role of interactions has been Monte Carlo
simulations. Kechrakos and Trohidou [4] have investigated the remanence and coercivity of
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an assembly of single-domain ferromagnetic interacting particles at very low temperatures
using a relative scale formulation for dipolar, anisotropy and thermal energies. El-Hilo et al
[5] had used it for determining the magnetoresistance dependence on the mean intergranular
distance, or rather, the particle concentration, using a simple expression previously obtained
by Gittleman et al [6]. Also Garcia-Otero et al [7] analysed the interplay between anisotropy
and magnetic interactions and Chantrell et al [8] calculated the susceptibility and ZFC–FC
(zero-field cooled–field cooled) magnetization curves for superparamagnetic particles. Some
simple analytical models taking the dipolar interaction into account have been proposed. For
example, Mørup and Tronc [9] have formulated a description for weakly interacting particles,
and Dormann et al [10] have proposed the Dormann–Bessais–Fiorani (DBF) model, valid for
weak and medium strength of the interactions. These two models lead to contradictory results,
as analysed in [10]. The discrepancy arises when one tries to determine whether by increasing
concentration, the interactions lead to an increase or a decrease of the energy barrier of the
system. More recently, Allia et al [11] have proposed analytical models that take explicitly
into account the correlation arising from the dipolar interactions in nearly superparamagnetic
systems and Pike et al [12] investigated the role of magnetic interactions in low temperature
saturation remanence of fine magnetic particles. From the experimental point of view, while
dilute systems are well understood, results for denser ones, where the interactions between
particles play an important role,are still not clear. The main reasons are the unavoidable particle
size distribution and difficulties in controlling and replicating the geometrical arrangement and
orientation of the easy axis for higher concentrations. In particular we can mention that for Fe
particles embedded in an alumina matrix [13] and for γ -Fe2O3 [14] particles, an increase of
the blocking temperature TB with interaction strength is obtained. However, also for γ -Fe2O3

particles investigated by Mössbauer spectroscopy, TB decreases with increasing concentration,
as presented in [15]. Apart from the influence of concentration, or interparticle distance, in
systems for which the dipolar interaction may not be neglected, it is important to consider
the effect of dimensionality, especially when one deals with systems formed from sequential
deposition of layers [2, 13, 16]. Luis et al [2] investigated the role of dipolar interactions
in the magnetization of Co clusters grown in a quasi-ordered layered structure, and showed
that the effective activation energy increases linearly with the number of nearest neighbour
clusters. These results have been interpreted in terms of a transition from 2D to 3D collective
dynamics in [16]. The characteristics of hysteresis curves have been related to various aspects
of interacting systems. The remanence, or the value of the magnetization at zero field, for
example, is a measure of the stability of the saturated state. A low value of remanence, in
systems with an important dipolar interaction, may appear for different reasons, such that there
is not a straightforward connection between its magnitude and amount of ordering in the system.
Bahiana et al [17] investigated the effect of interactions on a 2D lattice of grains and found a
peak in the remanence as a function of temperature, which can be interpreted as evidence of
the existence of two low magnetization states: one due to an in-plane alignment perpendicular
to the field direction at low temperatures, and a high temperature disordered state. In this paper
we have extended these results to 3D systems, considering the effect of increasing the number
of stacked layers, and varying lattice geometry. The hysteresis curves are obtained by Monte
Carlo simulation, using a Metropolis algorithm with restricted dynamics.

2. Simulation conditions

A ferromagnetic particle becomes a monodomain when its linear size is below a critical value
Dc determined by the minimization of the total energy, including magnetostatic, exchange and
anisotropy contributions [18]. Such monodomain ferromagnetic particles can be viewed as
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Figure 1. Different geometries considered in the simulations. (a) xy planes with rectangular
arrangement. In this case the grains are separated by ax and ay along the x and y axis respectively,
separated by az in the z direction. (b) xy planes with a triangular symmetry and nearest neighbour
distance at are separated by a distance az .

large magnetic units, each one having a magnetic moment of thousands of Bohr magnetons.
For neighbouring particles with surfaces separated by more than 1 nm, direct and indirect
exchange (like RKKY) can be neglected [19]; thus, the magnetic properties of such an
assembly of nanoparticles are determined by the dipolar interaction energy among the particles
along with thermal and magnetic anisotropy energies. The magnetic irreversibility of an
isolated nanomagnet is conventionally associated with the energy required for the particle
moment reorientation, overcoming a barrier due to shape, magnetoelasticity and/or crystalline
anisotropy [18]. In the presence of relevant dipolar interactions, this simplified picture no
longer holds, as each particle is subject to a complicated energy landscape.

To investigate the magnetic behaviour of interacting grains we have examined two simple
systems consisting of M layers of N × N magnetic 3D monodomain particles. Each layer is
parallel to the xy plane and has free boundary conditions. Two nearest neighbour arrangements
were considered, with square and triangular symmetries, as shown in figure 1. The distance
between particles on each layer is defined by the lattice parameters ax and ay, for square lattices,
and at, for triangular lattices; the layer separation is given by az. From now on the terms in-plane
and out-of-plane refer to the xy plane. The particles have uniform magnetization, m = 869 µB,
and anisotropy constant, K = 1.32×106 erg cm−3, corresponding to slightly elongated cobalt
grains with about 511 atoms and linear dimensions of the order of 20 Å [20]. Each particle
is described by the position of its centre of mass and the direction of the randomly chosen
3D easy magnetization axis, êi , and they are coupled by means of dipolar interactions. Since
we seek to understand the role of lattice geometry, we prefer to control the distance between
grains through the parameters ax , ay, az and at , instead of concentration. The values of the
lattice parameters are such that the particle surfaces are more than one cobalt lattice parameter
apart [17]. The external field is always in the x direction.

In the presence of an external magnetic field �H , the total energy of the system is written
as

E =
∑

i

[
− �mi · �H − κ

( �mi · êi

mi

)2

+
1

2

∑
j �=i

Ei j

]
, (1)

where κ = K V , V being the volume of each grain. Ei j is the classical dipolar energy between
grains i and j given by

Ei j = �mi · �m j − 3( �mi · n̂i j )( �m j · n̂i j)

r3
i j

.

Here ri j is the distance between the centres of particles i and j , and n̂i j is the unit vector along the
direction that connects them. Using this expression for the energy we have simulated hysteresis
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curves for different values of temperature and lattice symmetries. Hysteresis curves correspond
to sequences of non-equilibrium states of the system,and therefore depend on the field variation
rate. In terms of a Monte Carlo simulation this means that we have to avoid equilibrium by
means of a sufficiently fast variation of the field, and the usual mechanism of time averaging
instead of ensemble averaging is not valid. Monte Carlo simulations were carried out using
the Metropolis algorithm with local dynamics in which the new orientation of the magnetic
moment was chosen within a solid angle around the previous moment direction, with aperture
dθ = dφ = 0.1. This method was studied by Pereira Nunes et al [21], applied to the simulation
of ZFC–FC magnetization curves, which are also a collection of non-equilibrium states, and
it is a reasonable approach for a qualitative analysis. Although the Monte Carlo method has
been devised for the study of systems in thermodynamic equilibrium, it has long been used
to simulate the dynamics of unstable and metastable phases [22–24], providing a valuable
tool whenever the traditional partial differential equation description leads to numerically
unstable discretization schemes. The method has also been used to study ageing in spin-glass
models [25], an essentially off-equilibrium problem. In the specific case of hysteresis curves,
Monte Carlo simulations have been used in a variety of magnetic systems with good qualitative
agreement with experimental data [7, 8, 26], so we believe that the method is adequate for
studying the dynamics of complex systems.

For simulating hysteresis, we started at a fixed temperature from a configuration in
which the magnetic moment directions were randomly chosen. An external magnetic
field H = 0.25 kOe in the x direction was turned on; one of the grains was randomly
chosen, and had its magnetic moment rotated by an angle restricted to a cone, as explained
above. The change in energy (�E) was calculated and the rotation accepted with probability
p = min[1, exp(−�E/kBT )]. This procedure was repeated N2 × M times, comprising one
Monte Carlo step. The number of Monte Carlo steps in non-equilibrium simulations is a rather
arbitrary choice, as explained by Pereira Nunes et al [21]. Actually, the variation rate of the
external field is the important quantity. In this case, we first fixed the value of the variation step
for the external field, dH , with the objective of having enough points in the region of interest,
near H = 0, but still being able to bring the system to saturation. We found that 200 Monte
Carlo steps was a good choice for dH = 0.25 kOe, since the system shows hysteresis for some
values of temperature, and the area of the hysteresis cycle shows sensitivity to temperature
variation. The virgin curve was then obtained by increasing the field until the magnetization
reached at least 99.995% of its saturation value, ms. Starting from this last value, the field was
decreased to negative values at the same rate (200 Monte Carlo steps per dH = 0.25 kOe). The
whole procedure was repeated 5–20 times, depending on the system size, for different random
choices of easy magnetization axis directions, the averaged hysteresis curve was calculated and
the remanence, mr , was determined as the x component of the magnetization for H = 0. The
graphs below show the behaviour of the reduced remanence, defined as mr/ms, with typical
error bar values in the range 0.01–0.005, the larger ones being for points in the peak region.

3. Results

3.1. Square lattices

We start our calculations considering lattices with M layers of 82 particles and ax = ay =
az = 3.098 nm, as defined in figure 1. These values of the lattice parameter would correspond
to a 20% concentration in a simple cubic system. Figure 2 shows the thermal variation of
the reduced remanence as a function of M . One can see from this figure that the remanence
of interacting systems exhibits a maximum at low temperatures, which is not present in the
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Figure 2. Remanence as a function of temperature for interacting systems with M layers (full
symbols), and for a non-interacting system (open symbols). Each layer is composed by 82 particles,
placed on a square lattice. The interlayer and intralayer nearest neighbour distance is 3.098 nm.
The curves are guides to the eye. Error bars are of the order of the single size of the symbols.

non-interacting particle curve. As shown in [17] for the M = 1 system, the remanence
peak separates distinct states of low magnetization. At low temperatures the absolute value
of the dipolar energy is much larger than the thermal energy and an ordered state, due to
the dipolar interaction, appears. In this case, magnetization patterns at H = 0 show a
very small contribution of z magnetization and antiparallel alignment between lines normal
to the previous field direction, the y axis in this case. The energy required to satisfy the
dipolar coupling between lines parallel to the x axis would be too large and an antiparallel
alignment along the y direction is favoured. At the maximum, the two energies are closer, and
thermal fluctuations provide enough energy to destroy the low temperature y dipolar order. At
higher temperatures, the thermal energy dominates, leading to a significant increase of the z
component of the magnetization, also resulting in a low remanence value. This behaviour is
numerically well described by the average values of |mx |, |m y | and |mz |, defined as µx , µy

and µz , respectively. At 3 K, averaging over 10 samples, we have the values µx = 503 µB,
µy = 540 µB and µz = 255 µB, compatible with a mainly in-plane magnetization, with an
important y contribution due to the antiparallel alignment. In the high temperature region,
for example at 70 K, the average values are µx = 472 µB, µy = 479 µB and µz = 351 µB,
showing an increase of the out-of-plane component favoured by thermal energy.

The remanence curves for M > 1 are similar to the M = 1 curve, with two low
magnetization regions, one at low temperatures dominated by the dipolar coupling, in which
antiparallel alignment in the directions normal to the applied field is present, and a high
temperature disordered state with magnetic moments randomly aligned. It is clear from figure 2
that, as M increases, for a given temperature, the remanence decreases, and the peak slightly
shifts to higher temperatures, the interaction with out-of-plane neighbours being the main
cause of this behaviour. Regarding the ordered low temperature state, the presence of layers
below and above a given plane offers an alternative direction for antiparallel alignment leading
to a decrease of the remanence. Due to the range of the interaction, the dipolar energy per
particle increases with system size up to a saturation value; therefore, it is natural to expect that
on increasing the number of layers, the low temperature ordered state becomes more stable,
reflecting in a shift of the peak position to higher temperatures.
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Figure 3. Snapshots of the magnetic moments at surface layers of a 8 × 8 × 2 system.

Figure 4. Remanence as a function of temperature for different values of ay in 8 × 8 × 1 lattices.
Error bars are of the order of the single size of the symbols.

In order to investigate the low temperature dependence on M , we have examined the
magnetization patterns for systems with M = 2 and 8. Figure 3 illustrates the behaviour of
the individual magnetic moments at T = 3 K, for surface layers of a M = 2 system. In this
case, there are two alternative directions for the antiparallel coupling, y and z, but, as explained
above, there is a predominance of the y component since the number of neighbours in this
direction is larger. This can be confirmed by looking at the average values of the magnetization
components in the x, y and z directions. At T = 3 K, considering 10 samples, the average
values for the whole lattice are 〈mx 〉 = 403 µB and µx = 458 µB, 〈m y〉 = −9.47 µB and
µy = 504 µB, 〈mz〉 = 1.85 µB and µz = 339 µB. Clearly an antiparallel alignment on the yz
plane occurs, which is stronger along the y direction.

For the M = 8 system the y and z are equivalent directions for the antiparallel coupling.
The amount of z alignment increases at the expense of the x contribution as can be seen from
the average values for the lattice, 〈mx 〉 = 246 µB and µx = 388 µB, 〈m y〉 = 14.3 µB and
µy = 517 µB, 〈mz〉 = −5.78 µB and µz = 398 µB.

It is interesting to investigate the behaviour of the remanence as the values of ay and az are
varied. Figure 4 shows the remanence curves for M = 1 systems with ay = ax, 2ax , 4ax and
10ax . Since the antiparallel order in the y direction is the main reason for the low value of the
remanence at low temperatures, as the y distance is increased, the dipolar coupling decreases
and the magnetic moments can follow the field more easily, giving rise to an increase of the
remanence.
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Figure 5. Remanence as a function of temperature for different values of az in 8 × 8 × 2 lattices.
The curve for 8 × 8 × 1 is also shown as a reference. Error bars are of the order of the single size
of the symbols.

The effect of varying az is evident when we compare systems with M = 2 and az = ax ,
2ax , 4ax and 10ax with an M = 1 system. Figure 5 illustrates the remanence curves for such
systems, showing that, as the layers become more separated, the interlayer coupling decreases
and the system approaches the M = 1 behaviour.

3.2. Triangular lattice

For layers with triangular symmetry, the number of in-plane neighbours is higher, so that any
effects related to confinement of the magnetic moments in the xy plane are enhanced. Figure 6
shows the remanence curves for triangular lattices with at = 3.098 nm, obtained under the same
conditions as the curves in figure 2. The remanence values are considerably larger than the ones
in figure 2, which is compatible with the picture of a smaller z component. We also analysed the
magnetization pattern for typical configurations of these triangular systems. Figure 7 shows
snapshots of the x and y components of the individual magnetic moments at T = 3 K for
M = 1. From this figure we can see that, at low temperature, the small value of the remanence
is mainly caused by in-plane alignment along the directions connecting the nearest neighbour
clusters of the system. This effect, due to the predominance of the dipolar interaction, is
stronger than in the square lattice since the number of in-plane nearest neighbours, six in this
lattice, is higher, as compared to four in the square lattice. This behaviour is numerically well
described by the average values of magnetization components at T = 3 K: 〈mx 〉 = 571 µB,
〈m y〉 = −88.4 µB, 〈mz〉 = −25.9 µB, µx = 586 µB, µy = 433 µB and µz = 285 µB,
compatible with a mainly in-plane magnetization. In the high temperature region, the system
is disordered and the z component of the magnetization increases, leading to a low remanence
region.

4. Discussion and conclusions

The above results confirm the existence of two low remanence yet distinct behaviours, one
at low temperature, where the dipolar energy dominates, and another, at higher temperatures,
where the thermal energy is responsible for the magnetic disorder. The position and height
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Figure 6. Remanence as a function of temperature for interacting systems with M layers (full
symbols), and for a non-interacting system (open symbols). Each layer is composed by 82 particles
placed on a triangular lattice. Error bars are of the order of the single size of the symbols.

Figure 7. Snapshot of the in-plane magnetization at H = 0 and T = 3 K, for a system of 8×8×1
particles and triangular symmetry. The previous direction of the field is indicated by the arrow.

of the peak separating those regimes is related to the strength of the dipolar interactions,
and depends on the lattice geometry. As is known, dipolar interactions favour closed circuit
alignment, which may result in antiparallel alignments between lines of magnetic moments
parallel to a given direction, provided, for example, by a weak external field. At low
temperatures a small external magnetic field provides a preferred direction for the parallel
coupling, leading to two possibilities of antiparallel alignment in 3D systems. On the other
hand, for a 2D system, there is only one possible direction for the antiparallel alignment.
Figure 2 shows that for systems formed by sequential deposition of layers it is possible to
observe a transition from the 2D to the 3D behaviour as the number of layers increases. As
an alternative direction for antiparallel alignment appears, the height of the remanence peak
decreases reflecting the decrease of the magnetization along the field direction. Also, for a given
number of layers, the variation of the distance between magnetic particles and coordination
number can drastically change the effective dimensionality, as the dipolar interaction is
enhanced along certain directions. Figures 4 and 5 show this dimensionality transition caused
by variation of the lattice parameter, and figure 6 that caused by the change in coordination
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number. These aspects are responsible for difficulties in the analysis of the hysteresis cycle,
especially if one associates the area of the cycle with the stability of the magnetization moment.
Larger values of remanence are basically a consequence of a decrease in the number of degrees
of freedom, due to the confinement of the magnetic moment to a plane or to a line.
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