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Abstract. The demagnetizing energy or magnetostatic self energy of a spherical 
particle is calculated for two groups of magnetic ‘free pole’ configuration. The 
groups are chosen so that the calculated energies are directly applicable to problems 
concerning (a) non-magnetic inclusions in uniaxially magnetized domains and support- 
ing ‘spikes’ of reverse magnetization and (6) spherical magnetic particles of uniaxial 
materials containing few domains. The results are presented in graphical form but 
the various equations should be easily applied to different problems. 

1. Introduction 
In any calculation of the energy of a domain structure where magnetic ‘free pole’ effects 

are present, the estimation of the demagnetizing or magnetostatic self energy of the system 
is always a primary problem. 

Problems concerning the domain structures associated with spherical or near-spherical 
particles arise in connection with magnetic materials in two separate fields of study. Firstly, 
they occur in the study of the effects of non-magnetic inclusions on the general properties of 
magnetic materials. In such cases the shape and size of the closure domain structures that 
form at the inclusions and the interaction between inclusions and moving domain 
boundaries are both matters that strongly influence the nature of the magnetization reversal 
process. Such effects relate directly to the nucleation and coercive fields of the material. 
The second field of interest is in the study of fine magnetic particles, when the sizes of the 
particles to be considered are just greater than the upper limit of the single domain region, 
so that the particles now contain a few domains. In both of these areas a knowledge of 
the magnetostatic energy of the particular domain configuration associated with the 
particles is essential for a full study and analysis of the possible magnetic states. Similar 
calculations of magnetostatic energies have been performed for uniformly magnetized 
rectangular blocks (Rhodes and Rowlands 1954). 

The calculations presented here refer only to spherical particles with associated domain 
boundaries that are assumed to be of negligible thickness, so that the energies obtained are 
only adequate approximations for particles which may be considered large relative to the 
boundary width in the material being considered. 

2. Method 

surface and volume charges or ‘free poles’ and may be written 
In general, the magnetic potential of a magnetized body is related to the ‘effective’ 

In  the systems about to be considered the magnetization of the body is assumed to be 
uniform throughout the volume of the material, so that div M=O and the only contribution 
to the final potential is that due to the ‘equivalent surface magnetic charge’. Thus the 
calculation of the magnetostatic self energy becomes equivalent to the calculation of the 
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electrostatic energy for a given surface-charge distribution. The required potential is that 
which satisfies Laplace’s equation V 2Vs =O. 

In each case a particular surface-charge density is first expanded as a series of Legendre 
polynomials. The potentials Vi and V, at internal and external points respectively of the 
particle are obtained by superposition and used in the relation 

to obtain the potential at the surface. Finally, the magnetostatic energy is calculated as 

Em=+ J O S V S  ds (3) 
the integral being taken over the particle surface. 

In all cases the resulting equation for the magnetostatic energy is in the form of a con- 
vergent series. The summation of each series has been performed with the aid of a 
computer and has been continued until successive terms differed by less than 10-5, a 
condition which usually required the summation of at least thirty terms. 

Case I 
In  the first system the charge distribution refers directly to two real domain phenomena 

in magnetic materials. The particular arrangement is shown in figure 1, where it can 
be seen that the distribution of surface charge is identical for (a) a spherical non-magnetic 

(C) W) 
Figure 1. Surface ‘free poles’ due to (a) two spikes of reverse magnetization at a non-magnetic 
inclusion and (b) a cylindrical domain boundary within a spherical magnetic particle. The sub- 

division of the surface charge is shown in (c) with the coordinates in (d). 

inclusion supporting nucleated ‘spikes’ of reverse magnetization and (b) a spherical magnetic 
particle divided into domains by a cylindrical domain boundary. In (a) the calculation 
refers only to the ‘free pole’ distribution at  the surface of the inclusion: the energy associated 
with the ‘free poles’ at the surfaces of the reverse spike domains is not included. 

The detailed steps in the calculation are given in appendix 1. The magnetostatic energy 
of the system shown in figure l(c) is 

where a=cos 81, p=cos 8 2 ,  61 and 8 2  denote the coordinates of the transition in the 
magnetization direction at the particle surface and 

an =p(Pn+i(p)-Pn-i(p)) - a(Pn+i(a) -f‘n-i(a))- 
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For the particular case of two identical reverse spikes or a single cylindrical domain 
boundary, that is when ,8 = - a, this equation reduces to 

Energies computed from (4) are plotted against 01 in figure 2, with ,B as a parameter for 
the range - 1 < p < 0 < a < 1. These curves strictly only apply to a non-magnetic inclusion 
supporting two reverse spikes of different base diameters. Although this state is not 
entirely ruled out, a structure of two identical spikes is more commonly observed, in which 
case the energy is given by (5 ) ,  and this is plotted as a function of a (= - ,8) in figure 3. 
(The energy of the single spike configuration is plotted for comparison.) 
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Figure 2. Reduced magnetostatic energies 
for the system shown in figure 1 plotted 
against o(=cos 81 with ,8=cos 0 2  as a 

parameter. 

ci 

Figure 3. Reduced magnetostatic energies 
plotted against a:=cos 01 for the special cases 
where /3= - 1 (curve A), equivalent to the 
case of a single reverse spike, and p= - a: 
(curve B), equivalent to two identical spikes 

or a single cylindrical boundary. 

Case 2 
In this system the charge distribution refers to the spherical particle subdivided by one 

or more plane boundaries. The boundaries may be either plane domain walls in the 
magnetic material surrounding a non-magnetic inclusion or plane domain walls within a 
spherical magnetic particle. The case of the particle divided by a single boundary has 
been dealt with previously by NCel (1944), when he considered the effects of inclusions on 
the coercivity. His calculation is repeated and extended to include further subdivisions 

(a) (b) 
Figure 4. (a) Surface 'free poles' when a particle is subdivided by plane boundaries; (b) shows the 

coordinate system. 
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by plane boundaries. Figure 4 shows the charge distribution and the coordinates of the 
system. The details of the calculation are given in appendix 2. 

For the two-boundary state the magnetostatic energy is given by 

where ~i =cos el, ,8 =cos 0 2  and 

Pn(P) -Pn-z(P) - _  P"+Z(P> -Pn(P) _-  P"(.) -Pn-z(a> +Pn+2(4 -Pa(.> 
2n+3 2n-1 2n+3 

C .  = 2n-1 

For the special situation where the boundaries are symmetrically disposed about the 
particle centre (6) reduces to 

Energies calculated from (6) are plotted against a in figure 5 with ,l3 as a parameter for the 
range - 1 < ,8 < 0 < a < 1. Equation (7) is shown plotted against a ( = - p) in figure 6 with 
the single-boundary energies ( p  = - 1, equivalent to the results given by Nee1 (1944)) for 
comparison. 
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Figure 5. Reduced magnetostatic energies 
plotted against 01 =cos 81 with p = cos 8 2  as a 
parameter for the particle with two plane 

boundaries. 
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Figure 6. Reduced magnetostatic energies 
plotted against a = cos 81 for the special cases 
of p= - 1 (curve A), the single boundary, and 
p= - 01 (curve B), two boundaries symmetric- 

ally disposed about the particle centre. 

3. Discussion 
The magnetostatic energy of an isolated spherical particle, whether non-magnetic within 

a uniformly magnetized region or a uniformly magnetized single domain, is given by 
+NMs2 per unit volume. With N = 4 ~ / 3  for a sphere, this is equal to -$7r2MB2R3, which 
is in turn given by the value 0.222 in the reduced units used to plot the equations given here 
(reduced energy = E/4r2MS2R3). Figure 3 shows how this value is reduced by the nucleation 
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of a single reverse spike (in the case of the non-magnetic inclusion), reaching 0.162 when 
01 =0-86, at which point the base diameter of the spike would be approximately equal to R. 
Further reduction of the magnetostatic energy is only achieved by the introduction of a 
further spike, that is by further subdivision of the surface charges. The minimum energy 
for two identical spikes is 0.057 when 01=0-76 and the base diameters of the spikes are 
approximately 1.3R. This latter value of the magnetostatic energy is considerably less 
than that of the isolated inclusion and is certainly much lower than a value assumed for 
this domain configuration in a previous study of reverse spike nucleation at non-magnetic 
inclusions in uniaxial materials (Carey and Isaac 1964). The values for the two identical 
spike configuration refer also, of course, to the particle containing a single cylindrical 
domain boundary. 

The energies calculated for the magnetic particle divided by a single plane domain 
boundary are very slightly different to those already given by NCel (1944). The difference 
is only apparent at the energy minimum, where the value calculated here is 0.108 compared 
with a value of 0.102 given by NCel. This is due to the fact that this value is obtained after 
the summation of about 40 terms whereas NCel's figure was obtained from the first five 
terms of the series. 

With two plane boundaries the magnetostatic energy of most arrangements of the 
positions of the boundaries is less than that of a particle with a single boundary at its 
centre, that is less than 0,108. For symmetrical dispositions of the two boundaries the 
magnetostatic energy reaches a minimum value of 0.071 (see figure 6), when both the 
boundaries are approximately 0.3R from the centre of the particle. 

Appendix 1 
For the configuration shown in figure l(c) the charge distribution is 

1 for O <  O <  O1 

o s = ~ M S c o s  6, E =  -1 for 01<6<Oa I 1 for 02cB<n 

=a&(p) + aiPi(p) + . . . +anPn(p) 
which is expanded as 

where p =cos O and P,(p) is a Legendre polynomial. 
Hence 

so that 
-1 

where 

01=cos 01 and /?=cos 0 2 .  
The potentials are, therefore, 

an =P(Pn+i(P) -Pn-i(P)) - a:(Pn+i(a) -Pn-i(a>) 

which with equations (3) and (4) lead to ( 5 ) .  
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Appendix 2 
The charge distribution is now shown in figure 4(a) and is given by 

1 for o< e <  el 
uS=EMSsinecos+,  - 1  for e l < e < e z  r 1 for O z <  e < r  

which is expanded in the form 

Hence 
U&) = (ciPl’(p) + czPz’(p) + . . . +cnPn’(p)) sin e cos +. 

0 for n # m  
(1 - p2> Pn’(p) Pm’(p.) d p  = 

2n(n+1) for n=m 
2n+ 1 

-1 r: 
so that 

Pn(B)-f’n-z(P> -Pn+~(p)-Pn(p> - Pn(.) -Pn-z(.) +Pn+z(.)-Pn(.) 
2n+3 2n- 1 2n+3 * 

Cn= 2n- 1 

The potentials are now 
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and 
Vi =(blPl’r+ . . . +bnPn‘rn) sin 0 cos 4 

and using equation (3) we have 

ml=bnRn; an 4nM,cn=(n+ 

Substitution to give the potential at the surface. 
energy. 
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