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Abstract. Nanometre scale magnetic particles (‘nanoelements’ or ‘nanomagnets’) form a
rich and rapidly growing new area in condensed matter physics, with many potential
applications in data storage technology and magnetic field sensing. This paper reviews an
extensive study into the influence of shape on the properties of nanomagnets in the size range
35–500 nm. Elliptical, triangular, square, pentagonal and circular geometries have all been
considered. It is shown that the size, thickness and geometric shape of nanomagnets all play a
vital role in determining the magnetic properties. The shape, size and thickness of a
nanomagnet are shown to be linked to its magnetic properties by two distinct phenomena.
The first is called configurational anisotropy and describes the role played by small deviations
from uniformity in the magnetization field within the nanostructures, which allow unexpected
higher-order anisotropy terms to appear. These anisotropies can often dominate the magnetic
properties. The second is the competition which exists between exchange energy and
magnetostatic energy. This competition determines whether the nanomagnets exhibit single
domain or incoherent magnetization and also controls the non-uniformities in magnetization
which lead to configurational anisotropy. Understanding the influence of shape opens the way
to designing new nanostructured magnetic materials where the magnetic properties can be
tailored to a particular application with a very high degree of precision.

1. Introduction

One of the most exciting recent developments in magnetism
has been the use of nanometre fabrication techniques to form
nanometre scale magnets. These so-called nanomagnets, or
nanoelements, possess by virtue of their extremely small
size very different magnetic properties from their parent
bulk material. Interest in the study of these fascinating
particles has been driven undoubtedly by the success of the
semiconductor microelectronics industry, in four different
ways. First, demand for magnetic hard disk data storage
has grown commensurately with the spread and increase
in the capabilities of microcomputers. Hard disks store
their data as sub-micrometre scale magnetic domains. A
detailed understanding of magnetism on the nanometre
scale is therefore essential for developing new hard disks.
Moreover, it is generally thought that the current growth in
performance of hard disks (60–100% per annum compound
increase in storage density) can only be sustained into the
future if the hard disk itself is replaced by a massive array of
magnetic nanoelements [1]. Second, the art and science of
fabricating structures on the nanometre scale have benefited
from the exponential shrinking in size of the integrated circuit
transistor [2], leading to enormous investment in optical
and electron beam lithography. Third, the mathematical
equations governing magnetic behaviour on the nanometre
scale are highly nonlinear and can generally only be studied

theoretically using computer-intensive numerical algorithms
[3] (although, see as an exception [4]). The recent increase
in availability of low-cost, high-power processors has now
enabled nanomagnetism to become a widely studied branch
of condensed matter theory. Fourth, the semiconductor
industry may itself in the future benefit from nanomagnetism.
Many of the problems currently facing future reduction in
size of integrated circuits, such as the diminishing number
of carriers present in a transistor gate and difficulties in
removing heat, may be solved by combining magnetic
elements into microchips [5]. In the first instance this will
probably be in the form of non-volatile computer memory
called MRAM (magnetic random access memory) and
process control microchips with built-in magnetic sensors
for the automotive industry. The recent discovery [6] of
how to inject spin polarized current from a ferromagnet
into a semiconductor now means that in the future we
may see fully hybrid magnetic–electronic devices which
use the spin of the electrons as much as their charge to
perform logic operations and processing. Nanomagnets
may ultimately even provide a suitable environment for
implementing quantum computation [7].

A further, more fundamental motivation for studying
nanomagnets comes from the history of magnetics research.
While physicists have long recognised that reducing
a lengthscale is the natural way to study magnetism,
experimental techniques only reached a sufficiently advanced

0022-3727/00/010001+16$30.00 © 2000 IOP Publishing Ltd R1



R P Cowburn

stage of development in the 1950s, enabling foundational
work to be performed by Prutton and others [8]. The
arrival of molecular beam epitaxy in the laboratory during
the 1980s allowed monolayer thickness magnetic films of
high structural quality to be routinely grown, leading to much
research during the 1980s and 1990s into two-dimensional
magnetic systems [9]. A number of exciting new phenomena
such as oscillatory exchange coupling [10], giant magneto-
resistance [11] and perpendicular surface anisotropy [12]
were discovered during this rich period, all associated in some
way with the fact that the film thickness had been reduced to
the nanometre regime. The next thing to do was, naturally,
to apply this principle to the other two dimensions. One-
dimensional magnetism has thus been studied in magnetic
wires [13] and zero-dimensional magnetism, in which all
three dimensions are structured in the nanometre lengthscale,
is currently one of the fastest growing fields in condensed
matter physics.

The most important property of a naturally occurring
magnetic element or alloy is its anisotropy. This refers to
the presence of preferred magnetization directions within
the material and is, ultimately, responsible for determining
the way in which a magnetic material behaves and the
technological applications for which it is suitable. In a
conventional magnetic material, anisotropy arises from the
shape and symmetry of the electronic Fermi surface and so is
intrinsic to the particular element or alloy and cannot easily be
tailored. In nanomagnets, however, the anisotropy depends
not only on the band structure of the parent material, but also
on theshapeof the nanomagnet. One of the most attractive
features of nanostructured magnetic materials, therefore, is
that their magnetic properties can be engineered by the choice
of the shape of the constituent nanomagnets.

The most widely studied shape of nanomagnet to date
has been rectangular, due largely to the applicability of such
structures to MRAM and spin-valve magnetic field sensors
[14]. A number of experimental [15] and theoretical [16]
studies have been conducted. Several other studies have
investigated circular magnetic elements with either in-plane
or out-of-plane magnetization [17], this time often with an
eye to patterned media for ultra-high density hard disk data
storage. A smaller number of workers have looked at square
nanoelements [18]. None of these studies, however, has
systematically compared the influence of different shapes.
In this paper we review an extensive comparative study
which we have performed into the influence of shape and
size on the magnetic properties of nanostructures. We have
made small arrays of magnetic nanostructures on a silicon
substrate using high-resolution electron beam lithography.
The nanomagnets were in the size range 35–500 nm and in the
thickness range 3–15 nm and had elliptical, triangular, square,
pentagonal and circular geometries, which respectively
correspond to rotational symmetries of order 2, 3, 4, 5 and
∞. The parent material was Supermalloy (Ni80Fe14Mo5X1

where X is other metals), which we chose because in
bulk, it is almost isotropic and so any anisotropy in the
nanomagnets must come from their shape. A high-sensitivity
magneto-optical method was then used to probe the magnetic
properties of these nanomagnets. We show that the geometric
shape of the nanomagnets plays a key role in determining their

Figure 1. SEM images of some of the nanomagnets fabricated
during this study. The sizes are 500 nm (left-hand column) and
<100 nm (right-hand column).

magnetic properties in two distinct ways. The first is through
a new phenomenon called configurational anisotropy, in
which very small deviations of the magnetization from
uniformity can couple to the shape of the particle. The second
way comes as a result of the shape of the particle stabilizing
or destabilizing the single domain state.

This paper is structured as follows. Section 2 describes
the experimental and theoretical methods which we used
during the course of our study. Section 3 then describes the
properties which we have observed in elliptical nanomagnets
(section 3.1), triangular, square and pentagonal nanomagnets
(section 3.2), isolated circular nanomagnets (section 3.3)
and finally interacting circular nanomagnets arranged on a
rectangular lattice (section 3.4). Important common themes
are discussed in section 4, followed by a conclusion in
section 5.

2. Experimental and theoretical methods

2.1. Nanomagnet fabrication and characterization

All of the samples were made using high-resolution electron
beam lithography with a standard lift-off pattern transfer
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process [19]. Two layers of polymethylmethacrylate
(PMMA), one of molecular weight 495 000 and one of weight
950 000, were spun onto a single crystal silicon substrate.
Arrays of different geometric shapes were then exposed onto
the sample in a Jeol 4000EX SEM/TEM operating at 100 kV,
followed by 30 s of development in a 1:3 solution of methyl
iso-butyl ketone/iso-propyl alcohol. The array size was
between (5µm)2 and (10µm)2; the spacing between each
nanomagnet was usually at least equal to the diameter of the
nanomagnet, and for the smallest structures was usually as
large as three times the diameter. This ensured that there was
negligible magnetostatic interaction between nanomagnets.
A 3–15 nm thick layer of Ni80Fe14Mo5 (‘Supermalloy’)
followed, in most cases by a 5 nm thick anti-oxidation
capping layer of gold were then deposited at a rate of
0.08 nm s−1 by electron beam evaporation in an ultra-high
vacuum chamber with base pressure 4× 10−9 mbar. An
unpatterned substrate was also present in the chamber to allow
structural and magnetic characterization of the unpatterned
magnetic film. Ultra-sonic assisted lift-off in acetone was
used to remove the magnetic film from the unexposed parts
of the patterned sample.

Transmission electron microscopy (TEM) and cross
sectional TEM showed the deposited Supermalloy to have
a random polycrystalline microstructure with grains of size
∼10 nm and a surface roughness of less than 0.5 nm.
Scanning electron microscopy (SEM) was used to check the
size and shape of the nanomagnets. Figure 1 shows some of
these SEM images.

In addition to this structural characterization, we also
performed magnetic characterization. Magneto-optical
magnetometry was used to measure the coercivity (∼1 Oe)
and the anisotropy field (4± 1 Oe, uniaxial in-plane)
of the unpatterned film. A B–H looper was used to
check its thickness and saturation magnetization (800±
60 emu cm−3). Temperature dependent measurements
showed the unpatterned films were still ferromagnetic at
300◦C, which is not inconsistent with the expected Curie
temperature of 400◦C and hence an exchange stiffness of
∼10−6 erg cm−1 [20].

2.2. Nanomagnetometry

We have probed the room-temperature magnetic properties
of the arrays of nanomagnets using a high-sensitivity
magneto-optical magnetometer [21], shown schematically in
figure 2. The sample surface can be viewed under an optical
microscope, while a laser spot (diameter 5µm) is moved over
the surface until it is focused on top of one of the arrays of
nanomagnets. The reflected laser beam is then polarization
analysed in order to access the longitudinal Kerr effect [22],
which serves as a probe of the component of magnetization
lying in the optical plane of incidence. An electromagnet
allows magnetic fields of up to 1000 Oe to be applied in the
plane of the sample. It is necessary to measurearrays of
nanomagnets in order to obtain a sufficiently large signal.
The high definition of the lithography means, however, that
all of the particles in the array are virtually identical to each
other and so the measured average properties for the array
can also be interpreted as the individual properties of a single
nanomagnet.

Two different magnetic measurements were made using
the magnetometer. The first involved sweeping a field applied
in the plane of the sample at 27 Hz and measuring the
magneto-optical response. This allowed a hysteresis loop
(normalized in amplitude to±1) of the nanomagnets to be
recorded. The second measurement uses a newly developed
technique called modulated field magneto-optical anisometry
(MFMA) [23, 24] to probe the energy surface experienced
by the magnetization as a function of the in-plane direction.
In this technique, a large and static magnetic field,H , is
applied in the sample planeperpendicularlyto the direction
of magneto-optical sensitivity. A small transverse oscillating
field, Ht , is then applied in the direction of the magneto-
optical sensitivity, in order to cause the magnetization to
oscillate aboutH . The measured response (referred to as
the transverse susceptibility, once normalized toHt ) can be
written as

∂φ

∂Ht
≡ χt =

(
E′′(φ)
Ms

+H

)−1

(1)

whereφ is the mean magnetization direction,E′′(φ) is the
second derivative with respect toφ of the energy density
surface andMs is the saturation magnetization.E′′(φ)/Ms

is shown in the appendix to have the same magnitude and
symmetry as the anisotropy field. Put simply, the reciprocal
of the measured magneto-optical response, 1/χt , is the
total internal field in the direction of the magnetization, i.e.
the externally applied fieldH plus the effective anisotropy
field coming from the internal energy surface. A powerful
probe of the energy surface of the nanomagnet can thus be
obtained simply by measuring 1/χt as a function of direction
andH .

2.3. Micromagnetic modelling

We have used the semi-classical formalism of micromagnet-
ics [3] in order to provide a theoretical framework in which
to interpret the experimental data. Micromagnetics is a con-
tinuum theory for which a numerical finite-element method
is used to find a magnetization vector field which minimizes
a Hamiltonian incorporating three energy terms: magneto-
static energy, exchange energy and Zeeman energy. Magne-
tostatic energy arises from the stray magnetic fields which
emanate from any divergence in the magnetization. Mag-
netization divergence can arise inside a nanomagnet where
the magnetization field changes direction (‘volume charges’)
or at the interfaces of the structure where the magnetization
is not parallel to the interface (‘surface charges’). The high
energetic cost of the magnetostatic surface charges means
that magnetostatic energy can often be reduced by introduc-
ing non-uniformity into the magnetization field. In the lesser
cases, this may be a little bending of the magnetization close
to the edges of a structure. In more dramatic cases, this may
result in the formation of a superstructure within the magne-
tization field, such as a vortex. These so-called incoherent
magnetization fields can reduce the net moment carried by
the nanomagnet to zero and so are technologically very im-
portant. The calculation of magnetostatic energy is entirely
classical. Exchange energy is, in contrast, a quantum me-
chanical phenomenon and is ultimately responsible for ferro-
magnetism. A positive exchange energy term arises wherever
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Figure 2. A schematic of the magneto-optical magnetometer used for probing the magnetic properties of nanostructures. Inset is an image
recorded by the charge-coupled device camera showing the focused laser spot, an isolated 5µm square magnet and two 5µm× 5µm arrays
of sub-micrometre nanomagnets. B.S denotes the beam splitter and N.D denotes the neutral density filter.

there is a gradient in the magnetization field within a nanos-
tructure. Consequently, exchange energy drives nanostruc-
tures away from incoherent magnetization towards uniform
magnetization and, is in this sense, in competition with the
magnetostatic energy term. The balance point in the compe-
tition is ultimately determined by the size, shape and thick-
ness of the nanostructure: large structures are dominated by
magnetostatics and small structures are dominated by ex-
change. The final energy term is Zeeman energy which is
simply the energy of the magnetization in an externally ap-
plied magnetic field. Zeeman energy is always minimized
when the magnetization is aligned with the applied field. A
magnetocrystalline anisotropy term would usually also be
included in such calculations. We have ignored it for the
calculations shown in this paper because it is one to two
orders of magnitude smaller in Supermalloy than the other
terms.

Figure 3 shows examples of equilibrium magnetization
vector fields calculated for square nanostructures. Figure 3(a)
shows the vector field (also called a configuration) which
occurs when one magnetizes the structure parallel to one of
its edges. This configuration is usually poetically named
the ‘flower’ because of the way it flares out at the top and
bottom, like the centre of a daffodil. Figure 3(b) shows the
configuration associated with a square magnetized along its
diagonal. We name this configuration the ‘leaf’ because
of the way that it bows out in the centre and then nips
together at the ends, like a plant leaf. We shall discuss the
physics of these and other configurations in more detail in
section 3.2.

The numerical calculation of an equilibrium magnetiza-
tion field can be repeated for each value of a varying applied
field in order to simulate a hysteresis loop, or as a function of
nanomagnet orientation in order to predict anisotropy values.
Full details of the numerical algorithm used to implement this
formalism can be found in [25].

(a)

(b)

 

Figure 3. A plan view of the calculated magnetization vector
fields in a square nanomagnet of edge length 100 nm and thickness
20 nm when magnetized (a) parallel to an edge and (b) parallel to a
diagonal.

3. Results

3.1. Elliptical nanomagnets

3.1.1. Experimental results. Figure 4 shows the hysteresis
loops for ellipses of major axis 250 nm, minor axis 125 nm
and thickness 10 nm obtained by sweeping an in-plane
applied field and recording the magneto-optical signal. One
sees clearly that the loop which was measured with the
applied field directed along themajor axis (±4◦) of the
nanostructures displays high remanence and high coercivity,
as is characteristic of easy-axis behaviour, whereas that taken
along theminor axis (±4◦) of the nanostructures displays
near-zero remanence and coercivity, as is characteristic of
uniaxial hard-axis behaviour. Supermalloy itself is nearly
magnetically isotropic, and so this large difference between
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Figure 4. Hysteresis loops measured in two in-plane directions of
elliptical nanomagnets of major axis 250 nm and thickness 10 nm.

the major and minor axes must come from magnetostatic
shape anisotropy. The hard-axis saturation field (310±15 Oe
for the loop in figure 4) is, in such cases, always a good
measure of the effective anisotropy field, enabling us to
determine the effective uniaxial shape anisotropy field as a
function of lateral size and thickness for the ellipses. The
results are shown in figure 5 for 1:2 aspect ratio ellipses. For
completeness we have also plotted in figure 5 the coercive
field as measured from the easy-axis loops. One immediately
sees that the uniaxial shape anisotropy and coercivity fall
off with increasing ellipse size and increase with increasing
thickness. This is usual magnetostatic behaviour, governed
by the fact that the demagnetizing field is, to first order,
independent of the absolute size of a magnetic element, but
depends only on the ratio of the thickness to the lateral
size.

3.1.2. Theoretical results. In order to model
mathematically the expected shape anisotropy we have used
the micromagnetic simulation code described in section 2.
This allows the magnetic energy of a nanomagnet to be
calculated firstly when magnetized along its major axis and
then along its minor axis. The uniaxial shape anisotropy
field is then given by 21U/m where1U is the difference in
these two energies andm is the magnetic moment carried by
a nanomagnet. Note that this method takes full account of
the deviations from uniform magnetization which occur in a
non-ellipsoidal body, such as a planar ellipse. We have used
up to 21 870 cubic finite-element cells, each of length 2.5 nm
and values of 800 emu cm−3 for the saturation magnetization
and 1.05× 10−6 erg cm−1 for the exchange stiffness.

We have plotted in figure 6, using a full curve, the results
from the micromagnetic calculations for nanostructures of
thickness 5 nm alongside the experimental data for this
thickness taken from figure 5. One sees that the agreement
between the theoretical line and the experimental data is
poor: the measured anisotropy fields are in general a factor
of two smaller than the theoretical values. This is surprising
given that shape anisotropy is a long established concept.
In performing the micromagnetic modelling, however, we
have assumed the nanomagnets to be perfect ellipses. It
is well established that PMMA lithographic processes have
a maximum spatial resolution of 5–10 nm [26], due partly
to the size and radius of gyration of the PMMA molecules
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Figure 5. The experimentally measured (a) saturation field in the
hard direction and (b) coercive field in the easy direction of
elliptical nanomagnets of different size. The nanomagnets were of
thickness 5 nm (◦), 10 nm (•) and 15 nm ( ). The curves are to
guide the eye.
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Figure 6. A comparison between experimentally (points) and
theoretically (curves) determined shape anisotropy fields for
elliptical nanomagnets of thickness 5 nm. The three theoretical
lines are calculated assuming an edge roughness of 0 nm (——),
5 nm (· · · · · ·) and 10 nm (- - - -). The insets are ‘silhouettes’ of
two of the modelled ellipses using the same meshing density as
used in the calculations, with an edge roughness of 0 nm (upper)
and 10 nm (lower).

[27]. Furthermore, the intrinsic grain size of the deposited
Supermalloy (∼10 nm) may also limit the lithographic edge
definition. The edge definition of the experimental ellipses
can thus be no better than approximately 10 nm. We have
therefore repeated the modelling, only this time assuming
a sinusoidal edge profile of peak-to-peak amplitudeξ (nm)
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Figure 7. Hysteresis loops measured from different
nanostructures. For comparison (a) shows the loop from the
unstructured Supermalloy. They-axis of each graph is
magnetization, normalized to the saturation value. The applied
field in the schematic pictures of the nanostructures is assumed to
point up the page. The nanostructures had thicknesses of (a) 6 nm,
(b) 5 nm, (c) 5 nm and (d) 3 nm.

and wavelength 2ξ (nm). Figure 6 shows the result of this
calculation (assuming again a thickness of 5 nm) for two
different values ofξ . The insets in figure 6 are ‘silhouettes’
of two of the modelled ellipses using the same meshing
density as used in the calculations. The agreement between
experiment is now much improved. The edge roughness
clearly plays a vital role; the effective shape anisotropy
of the ellipses, even as large as 500 nm, can be reduced
by a factor of just under two simply by introducing a few
nanometres of roughness to the lateral interfaces. Figure 6
shows the best agreement between the experiment and
theory for an edge roughness of between 5 and 10 nm,
which is entirely consistent with the PMMA grain size.
This is also consistent with recent numerical results from
Gadboiset al [28] who found a significant reduction in the
switching fields of elongated magnetic memory elements
once a small edge roughness was introduced into the
calculations.

Figure 8. Experimentally measured coercivities as a function of
nanomagnet size for different thicknesses (3 nm (◦); 5 nm (•)
and 7.5 nm (ut)) and nanomagnet geometries: (a) triangle,
(b) square and (c) pentagon.

3.2. Triangular, square and pentagonal nanomagnets

Figure 7 shows a selection of some of the hysteresis
loops measured from nanomagnets of triangular, square and
pentagonal shape [29]. One immediately sees that the loops
are very different from each other and from that obtained
from the conventional unstructured material. The properties
covered range from those usually associated with moderately
‘hard’ magnetic materials with switching fields of hundreds
of oersteds (Figure 7(b)) down to those associated with very
‘soft’ magnetic materials with a high relative permeability
suitable for field sensing (e.g. the pentagons of figure 7(d)
with an effective relative permeability of 3000 and zero
hysteresis). These changes in properties are a direct result of
varying the thickness and, most importantly, the symmetry
of the nanomagnets in the arrays.

In order to quantify the effects of shape, size and
thickness more precisely, we have measured the three key
magnetic parameters, coercivity, susceptibility (4πMs times
the zero-field gradient of the normalized hysteresis loop), and
hysteresis (4πMs times the area of the normalized hysteresis
loop), from the loops as a function of size, thickness and
symmetry order of the nanomagnets. The results are shown
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Figure 9. Experimentally measured susceptibilities as a function
of nanomagnet size for different thicknesses (3 nm (◦); 5 nm (•)
and 7.5 nm (ut)) and nanomagnet geometries, see figure 8.

in figures 8–10, where, in order to be able to compare different
geometries, we express the size of the nanomagnets by the
square root of their area.

Despite the large volume of experimental data presented
across these three figures, one can see certain common
features. The coercivity (figure 8) and hysteresis (figure 10)
data both show a rise or plateau as the nanomagnet size is
reduced, followed by a sharp fall to zero. As the thickness
is increased, both coercivity and hysteresis increase and the
fall to zero coercivity and hysteresis occurs at smaller sizes.
The squares show much stronger peaks in these two data sets
than the triangles and pentagons.

The susceptibility data (figure 9) tracks the coercivity
and hysteresis data, but in the opposite sense. One sees
that as the size decreases, susceptibility at first remains
constant or falls slightly, but then rises sharply. The thinner
nanomagnets then show an additional fall in susceptibility as
the size is further decreased. As the thickness is increased,
susceptibility is reduced and the susceptibility peak occurs at
smaller sizes.

Coercivity, hysteresis and susceptibility are all deter-
mined by anisotropy. The fact that one sees such strong

Figure 10. Experimentally measured hysteresis as a function of
nanomagnet size for different thicknesses (3 nm (◦); 5 nm (•)
and 7.5 nm (ut)) and nanomagnet geometries, see figure 8.

variations in these three parameters as the size and thickness
vary, and hence a strong change in the shape of the hys-
teresis loops of figure 7, suggests that the nanomagnets pos-
sess a size-dependent anisotropy. We have therefore used the
magneto-optical magnetometer in MFMA mode to measure
directly the magnitude and symmetry of any anisotropy in the
nanomagnets of thickness of 5 nm, and we present the results
in figure 11. In these polar plots, the angle gives the in-plane
directionφ within the nanomagnet, the radius gives the ra-
dius of the nanomagnet in that direction and the colour gives
the experimentally measured quantity∂Ht/∂φ (and hence
the anisotropy field—see equation (1)) for a nanomagnet of
that size. Figure 11 shows experimental data from 22 dif-
ferent arrays of nanomagnets (eight sizes of triangles, eight
sizes of squares and six sizes of pentagons), each measured in
either 19 or 37 different directionsφ (0–180◦ in 10◦ steps for
triangles and squares and 0–180◦ in 5◦ steps for pentagons)
making a total of 526 experimental measurements.

It is readily apparent from figure 11 that there are indeed
strong anisotropy fields present in all of the nanomagnets
studied. The triangular nanomagnets exhibit anisotropy with
6-fold symmetry, the square nanomagnets show a 4-fold
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Figure 11. The experimentally measured anisotropy field inside
5 nm thick nanomagnets of (a) triangular, (b) square and
(c) pentagonal symmetry. These are colour polar plots where the
direction gives the in-plane direction in the nanomagnet, the radius
gives the nanomagnet radius in that direction and the colour gives
the experimentally measured anisotropy field of a nanomagnet of
that size. High field values correspond to easy anisotropy axes and
low values to hard anisotropy axes. The lateral scale of the figure
is such that the square data runs from edge length 50 nm to
500 nm. Data were recorded across a 180◦ range and then plotted
twice to fill 360◦.

symmetric anisotropy and the pentagonal nanomagnets
possess a remarkable 10-fold anisotropy. Frequency
doubling occurs in the triangular and pentagonal structures
because energy is always quadratic in the magnetization and
so odd symmetry orders cannot be supported.

We applied a Fourier analysis to the plots of figure 11
in order to obtain the magnitude of the anisotropy fields as
a function of the nanomagnet size and symmetry, and show
the results in two different forms in figure 12. The appendix
shows that the anisotropy energyU and the anisotropy field
Ha of any system are related by

U = 2MsVHa

n2
(2)

where n is the symmetry order of the anisotropy andV
is the volume of the particle (a single nanomagnet in this
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Figure 12. The strength of the dominant anisotropy term shown
in figure 11 expressed (a) as an anisotropy field and (b) as an
anisotropy energy per nanomagnet for nanomagnets of different
size and symmetry (triangles (4), squares (ut) and pentagons (�)).

Table 1. Experimentally determined values for the parametersC
andl0 of equation (3).

C l0 Cn2

Shape n (nm−1) (nm) (nm−1)

Square 4 0.33± 0.03 59± 6 5.3± 0.5
Triangle 6 0.16± 0.02 55± 3 5.9± 0.7
Pentagon 10 0.05± 0.005 79± 20 5.0± 0.5

case). In figure 12(a) we plot the anisotropyfieldsdirectly, as
returned by the MFMA experiment, whereas in figure 12(b)
we have plotted the anisotropyenergyof a single nanomagnet
(in units ofkT wherek is the Boltzmann constant andT is
298 K) using equation (2). Importantly, one sees in this figure
that whereas the anisotropyfieldsshow an initial rise with
increasing lateral size, which then either falls again (squares
and triangles) or forms a plateau (pentagons), the anisotropy
energycan be described approximately by the straight line
relationship

U

kT
= C(
√
Area − l0) whenU > 0 (3)

where the experimentally determined parametersC and
l0 are given in table 1. The table also shows that the
quantityCn2 is found to be approximately constant across all
nanostructures (at one thickness). This thus gives us a useful
phenomenological tool for rapidly assessing how magnetic
properties are influenced by size and symmetry.

The anisotropy energy is particularly interesting because
of a phenomenon called superparamagnetism [30], which
is the process by which anisotropy energy barriers can be
overcome by thekT thermal energy fluctuations in nanometre
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scale magnets. One would thus expect the coercivity
and hysteresis to fall to zero once the anisotropy energy
becomes comparable to a fewkT (the precise prefactor
depends upon the symmetry order of the anisotropy and
the timescale over which the experimental measurements
are made). The phase transition from ferromagnetism to
superparamagnetism should also be accompanied by a peak
in the susceptibility at the critical point of the phase transition.
Conversely, once the anisotropy energy is larger than a
few kT , the coercivity and hysteresis should approximately
follow the anisotropy field and the susceptibility should
be low. This is all consistent with the observations of
figures 8–10 for 5 nm thick structures. The anisotropy field of
the squares shows a peak in figure 12(a) as the element size
is reduced and this peak is reflected directly in the square
coercivity data (figure 8) and the hysteresis data (figure 10).
The pentagon anisotropy field shows no peak, and this is
also reflected directly in the coercivity and hysteresis data.
Finally, the triangle anisotropy field does show a peak just
like the square, but because the anisotropyenergiesare
lower in the triangle (due to the high value ofn in equation
(2)), thermal activation sets in at a larger size and prevents
the peak from being seen in the coercivity and hysteresis
data. The anisotropy energies (figure 12(b)) fall below a
few kT at around 80 nm and this is approximately where
one sees a peak, or one side of a peak, in the 5 nm thick
susceptibility data (figure 9). It is interesting to note that the
susceptibility peak occurs at much larger lateral sizes and
has a much greater amplitude in the 3 nm thick structures.
This is because the configurational anisotropy field is reduced
because of the dependence of the demagnetizing field on
the ratio of the thickness to the lateral size. This reduced
configurational anisotropy field then becomes an even more
reduced anisotropy energy because of theV term in equation
(2). Superparamagnetism in very thin structures therefore
begins at much larger lateral sizes. The high magnetic
softness which results could have important applications in
magnetic sensors.

An important question remains: why should the
geometric shapes studied in this section exhibit any
anisotropy at all? The demagnetizing field of any structure is
described by a second rank Cartesian tensor and so can only
exhibit uniaxial (2-fold) symmetry. There is thereforeno
shape anisotropypresent, at least in the conventional sense,
in the plane of these non-elongated higher-order symmetry
structures. The answer comes from a phenomenon called
configurational anisotropy. First proposed by Schabes and
Bertram [31] during a theoretical study of magnetic cubes,
we recently predicted [32] and observed experimentally
[23] its key role in planar magnetic nanostructures, such as
those described in this paper. The demagnetizing field is
only uniform in an ellipsoidal body and so must be non-
uniform in any finite planar structure. This can be seen
in the micromagnetic simulations of planar squares shown
in figure 3. The important point to realise is that the two
configurations shown in figure 3have different energies. This
is entirely due to the deviations from uniform magnetization
which they exhibit. Consequently, although the energy of
a perfectly uniformly magnetized square is independent of
the in-plane magnetization direction, as soon as one takes

Figure 13. Hysteresis loops measured from circular nanomagnets
of diameter (d) and thickness (t): (a)d = 300 nm,t = 10 nm and
(b) d = 100 nm,t = 10 nm. The schematic annotation shows the
magnetization within a circular nanomagnet, assuming a field
oriented up the page.

into account the non-uniformity of the magnetization which
must accompany a given magnetization direction, energy
differences do arise. An anisotropy thus appears with a
symmetry which is related to that of the geometric shape of
the nanostructure. This is called configurational anisotropy
because it comes from the differences in energy of the
different configurations (flower and leaf in the case of a
square) which arise as the magnetization direction is varied.

3.3. Circular nanomagnets

Circular nanomagnets are potentially very attractive for
many technological applications. Their circular form means
that they lack both shape anisotropy and configurational
anisotropy. If they are made from an intrinsically isotropic
material, it should therefore be possible to change their
magnetization direction by even very weak applied magnetic
fields. They could thus form the heart of an extremely
sensitive magnetic field sensor. More fundamentally, one of
the most important theorems in nanomagnetism is Brown’s
fundamental theorem [33] which states that, because of
a competition between magnetostatic energy and quantum
mechanical exchange energy, magnetic domain formation
should be entirely suppressed in very small (∼10−8 m)
magnetic particles, causing nanomagnets to behave as single
giant spins. Experimental data on the bounds of validity of
Brown’s theorem in well controlled systems are currently in
great demand.
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Figure 14. An experimentally determined phase diagram: vortex
(◦) and single domain (•). The solid line shows a lower bound to
the theoretical phase boundary between the vortex state (above the
boundary) and the single domain state (below the boundary).

3.3.1. Experimental results. We have measured hysteresis
loops from circular nanomagnets as a function of diameter
(50–500 nm) and thickness (6–15 nm) [34]. We find that
the hysteresis loops thus obtained fall into one of two
classes. Figure 13 shows a representative hysteresis loop
from both of these classes with schematic annotation. The
first class, which we call the ‘vortex phase’ is typified by the
300 nm/10 nm loop (figure 13(a)) as follows. As the applied
field is reduced from minus saturation, the nanomagnets
retain full moment, until a critical field slightly below
zero at which point nearly all magnetization is lost. The
magnetization then progressively reappears as the field is
increased from zero, until positive saturation is achieved.
The sudden loss of magnetization close to zero field is very
characteristic of the formation of a flux closing configuration;
the simplest of these is a vortex in which the magnetization
vector remains parallel to the nearest edge at all points
in the circular nanomagnet. In large structures, this state
lowers the system energy by reducing stray fields and hence
lowering magnetostatic energy. Increasing the field then
deforms the vortex by pushing its core away from the centre
of the nanomagnet, until it becomes unstable and the vortex
is eventually annihilated [35], although not until a field of
several hundred oersted has been reached. This vortex phase
leads to magnetic properties which are dramatically different
from those which would occur if the magnetization simply
rotated under the action of a weak field.

The second class of loop, which we call the single
domain phase, is typified by the 100 nm/10 nm loop
(figure 13(b)). These loops retain a high remanence (∼ 80%)
and switch at a very low field (∼ 5 Oe). This is characteristic
of single domain behaviour: all of the nanomagnets within
the array retain all of their magnetization to form an array
of giant spins, and magnetization reversal occurs by each
giant spin rotating coherently [36]. The absence of shape
anisotropy (except that due to any ellipticity in the nominally
circular shape) and configurational anisotropy then means
that the only anisotropy opposing the coherent rotation is the
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Figure 15. A theoretically determined hysteresis half loop for a
circular nanomagnet of diameter 300 nm and thickness 10 nm (and
so should be compared with figure 13(a)). The broken curve parts
of the loop indicate a metastable state. The calculated
magnetization vector fields are shown for three points on the loop
P, Q and R, assuming a field oriented up the page.

weak in-plane anisotropy intrinsic to the Permalloy family.
Hysteresis loops of this class thus have a saturation field of
merely a few oersted. We found that the remanence vanished
if the field was applied parallel to the uniaxial hard axis
instead of the easy axis, as would be expected for such a
reversal mechanism.

We have classified all of our experimental data from
circular nanomagnets in terms of vortex or single domain
behaviour and have plotted the result in figure 14.

3.3.2. Theoretical results. In order to verify that the
class of behaviour typified by figure 13(a) is indeed due to
vortex formation we performed micromagnetic calculations
to simulate one half of the loop, in which 5656 cubic finite-
element cells, each of length 5 nm, were used.

Figure 15 shows the half-loop which we have calculated
for a circular nanomagnet of diameter 300 nm and thickness
10 nm (i.e. the same size as that measured in figure 13(a)).
The precise mechanism by which a vortex is first nucleated
is highly complex and is beyond the scope of this study. We
therefore assume that a vortex is present under zero field.
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Figure 16. SEM images of rectangular lattices of circular
nanomagnets. Each nanomagnet is 60 nm in diameter and has a
y-direction lattice parameter of 180 nm. Thex-direction lattice
parameter is (a) 180 nm, (b) 110 nm and (c) 90 nm.

One sees that as the applied field is increased from that point,
the calculated loop traces out an almost identical path to that
obtained experimentally in figure 13(a). Both show a small
degree of curvature followed by an abrupt annihilation event
at a field of several hundred oersted. Figure 15 also shows the
calculated magnetization vector fields within a single circular
nanomagnet at three different points on the hysteresis loop.
These agree well with the schematic representations shown
in figure 13(a).

We have marked parts of the theoretical half-loop of
figure 15 by a broken curve. These correspond to metastable
regions, i.e. those for which the magnetization configuration
leads to a local minimum in the free energy, but not a global
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Figure 17. Experimentally measured hysteresis loops for
different lattice spacings and applied field directions. All loops
were measured within the field range±150 Oe, the large panels
show high-magnification views around zero field; the insets show
the full measured loop. The vertical axis of all loops is
magnetization normalized by the saturation value.

minimum. Whether a thermally activated transition from
the metastable state to the thermodynamic ground state is
to occur depends upon the temperature and the timescale
over which the hysteresis loop is swept out. The theoretical
simulation of figure 15 does not allow for thermally activated
transitions, which accounts for the difference between the
experimental and theoretical vortex annihilation fields of
283 Oe and 423 Oe respectively.

As the lateral size and thickness of the nanomagnets is
decreased, our calculations show that the range of applied
fields for which the vortex state is metastable increases until
the vortex can never nucleate and so the reversal mechanism
must be replaced by the Stoner–Wohlfarth coherent rotation
shown in figure 13(b). We have marked onto the experimental
phase diagram of figure 14 the calculated phase boundary
below which vortex nucleation is impossible. One sees that
the experimental data agree very well with the theoretical
line: no vortex nucleation was observed below it. We stress
that the theoretical line isnot a prediction for the transition
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from vortex to single domain behaviour, but is rather a lower
limit to that boundary. Experiment and theory are thus in
agreement: in order to observe the useful single domain state,
circular nanomagnets must be either very thin or laterally
small.

3.4. Interacting nanomagnets

So far in this section we have discussed the influence of the
shape of nanomagnets on their magnetic properties. All of the
experiments performed in our study and many of the potential
technological applications of nanomagnets do not use a single
nanomagnet, but rather a large ensemble of magnets arranged
on some lattice. If the lattice spacing is sufficiently small
(expressly not the case in the work described so far), the
magnetic field emanating from one nanomagnet can influence
its neighbours. In this case, one must also consider the
geometry of thelatticeas well as the shape of the motif.

In order to demonstrate and investigate the phenomenon
of magnetostatic interactions, we have made a number of
arrays of 60 nm diameter circular nanomagnets arranged on
a rectangular lattice [37]. They-direction lattice period was
kept constant at 180 nm (i.e. three times the diameter of the
nanomagnets) whereas thex-direction lattice period varied in
different arrays from 180 nm down to as small as 80 nm (i.e.
leaving only 20 nm between neighbouring edges). Figure 16
shows SEM images of some of the lattices.

Figure 17 shows hysteresis loops obtained from the
different lattices for the cases of the field applied along
the latticex- and y-directions. One sees that when the
nanomagnets are widely separated (e.g. figure 17(a)) the
hysteresis loops have a characteristic ‘S’ shape, are fully
closed (i.e. zero area inside the loop) and are virtually
identical in the two measurement directions. As thex-axis
spacing is reduced, however, the loops show a significant
change in their central region, thex-axis loop opening
up while the y-axis loop becomes more sheared (e.g.
figures 17(c) and 17(d)).

Each nanomagnet, being 60 nm in diameter and 7 nm
thick, is small enough to be in the single domain state
(cf figure 14) and can therefore be represented, to a good
approximation, as a point magnetic dipole located at the
nanomagnet centre. The magnetic field emanating from such
a magnetic dipole falls off with the cube of the distance from
it. The largest lattice period (X = 180 nm—see figures 16(a)
and 17(a)) causes the nanomagnets to be spaced by three
times their own diameter, which is a sufficiently large distance
for magnetostatic interactions between nanomagnets to be
relatively weak. The measured average property of the lattice
is, thus, approximately the same as the individual property
of an isolated nanomagnet, as in all of the other experiments
reported so far in this paper. In this case, the weak intrinsic
uniaxial anisotropy of Supermalloy is unable to stabilize
the zero-field magnetization against thermal fluctuations (in
contrast to the larger single domain particles measured in
figure 13(c)), leading to a time-averaged remanence of zero,
and hence the closed, superparamagnetic hysteresis loops of
figure 17(a).

As the separation between the nanomagnets is now
reduced, as shown in figures 16(b) and 16(c), the
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Figure 18. Remanence (open circles) and susceptibility (full
circles) measured as a function of lattice spacing for the field
applied along (a) the latticex-direction and (b) the lattice
y-direction.

magnetostatic coupling between nanomagnets (especially,
but not exclusively, between nearest neighbours) becomes
stronger, to the point at which it can overcome the thermal
fluctuations. When this occurs, the spins essentially remain
parallel and locked together in thex-direction even under
zero applied field, leading to increased remanence in the
x-direction loops of figures 17(c) and 17(d).

Magnetostatic coupling is an anisotropic coupling, with
an energy minimum (easy axis) when the dipoles are aligned
with the line joining their centres (i.e. thex-direction in
this experiment) and an energy maximum (hard axis) when
aligned perpendicular to this line (i.e. they-direction).
Consequently, whereas the remanence rises in the loops
measured in thex-direction, the loops measured in the
y-direction become increasingly sheared as a uniaxial hard
direction appears.

We showed earlier in this paper how the shape of a
nanomagnet can induce configurational anisotropy which
can overcome thermal fluctuations and thus lead to abrupt
changes in the susceptibility, remanence and coercivity. In
the case of interacting particles, the anisotropy induced by the
rectangular lattice can give the same effect. Figure 18 shows
the susceptibility (labelledχT this time) and remanence
measured experimentally in the latticex- andy-directions
as a function of the latticex-direction spacing. One sees
in Figure 18(a) a peak in the susceptibility atX = 100 nm
coinciding with the onset of remanence, in direct analogy
with the peak in susceptibility in figure 9 coinciding with the
rise of coercivity (figure 8) and hysteresis (figure 10).
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As expected, no peak in susceptibility is observable
in the y-direction of the lattice (figure 18(b)) because
this is now the ‘hard’ magnetization direction and so
never displays remanence. The effect of magnetostatic
interactions is nevertheless still very much in evidence with
the susceptibility falling with decreasing separation as the
nanomagnets become increasingly coupled. The fact that
thex- andy-direction susceptibilities do not become exactly
equal in the limit ofX = Y = 180 nm is due to the presence
of weak uniaxial anisotropy in the Supermalloy and other
experimental artefacts.

4. Discussion

The experimental and theoretical results presented above
have highlighted the two important ways in which a
nanomagnet’s shape influences its magnetic properties.
The first is the extent to which the shape introduces
anisotropy. This anisotropy then determines all of
the macroscopic magnetic parameters such as coercivity,
remanence, hysteresis and susceptibility. Unsurprisingly,
elongated shapes such as ellipses and rectangles introduce
a uniaxial shape anisotropy. Shape anisotropy is an
interaction between the mean magnetization direction and
the form of the nanomagnet, i.e. it occurs even in perfectly
uniformly magnetized structures, such as ellipsoids. Shape
anisotropy is in this sense a phenomenon associated
with the zeroth spatial order of the magnetization field.
More surprisingly, non-elongated shapes which possess a
definite rotational symmetry, such as triangles, squares,
pentagons, etc, also introduce an anisotropy related to
their size and symmetry, called configurational anisotropy.
Configurational anisotropy is an interaction between the
deviations of the magnetization from uniformity and the form
of the nanomagnet. It is therefore a phenomenon associated
with first and higher spatial orders of the magnetization field.

The second way in which a nanomagnet’s shape
influences its magnetic properties is the extent to which it
stabilizes a single domain state, by preventing incoherent
magnetization fields such as vortices or domain patterns.
Size alone can do this, as was demonstrated in the circular
nanomagnets, which were found to be single domain for sizes
less than approximately 100 nm. Form can also play an
important role: all of the elliptical, triangular, square and
pentagonal nanomagnets were found to be single domain,
even at sizes as large as 500 nm. There are two reasons for
this. The first is associated with the sharp angles between
edges in shapes such as triangles. These increase the energy
of vortices because of the sharp turn, and hence the increased
exchange energy, which occurs if the magnetization is to
remain parallel to the edges. The second reason is more
applicable to elongated structures and concerns anisotropy.
Anisotropy generally encourages the single domain state over
vortex formation because, in the former case, the system
can lower its energy by aligning all of the magnetization
with an anisotropy easy direction. Incoherent magnetization
distributions usually have a proportion of the magnetization
in the anisotropy hard direction. Thus, although we have
presented the influence of shape on magnetic properties as
being comprised of two separate issues, i.e. anisotropy and

Figure 19. An experimentally measured hysteresis loop from
square nanomagnets of edge length 400 nm and thickness 10 nm.
The schematic annotation shows the magnetization field assuming
the positive applied magnetic field to be pointing up the page.

stabilizing the single domain state, the two are actually linked
because anisotropy itself stabilizes the single domain state at
remanence.

So far we have discussed the stability of the single
domain state at remanence. This, however, is not the
only case of interest. Incoherent magnetization structures
as a vehicle for achieving magnetization reversal are also
important, i.e. a nanomagnet can be single domain under
zero field, but then go via a vortex or similar state as
the magnetization changes direction under the action of an
applied field. We have not discussed the microscopic details
of switching mechanisms in this paper except to postulate
that the very small circular nanomagnets switch by coherent
rotation. The reason for our silence on this subject is
that hysteresis loops are not a good tool for investigating
the microscopic details of magnetization reversal. Direct
imaging, such as Lorentz microscopy [38] or spin-polarized
SEM [39] are really required for this. Nevertheless, one
can infer a certain amount about the reversal mechanism
from hysteresis loops. Figure 19 shows a hysteresis loop
measured from 10 nm thick squares of edge length 400 nm.
As described earlier, the loop shows almost full remanence,
even though a circle of such dimensions would have most
certainly collapsed into a vortex at remanence. There is
then the usual abrupt coercive transition as the magnetization
begins to change direction. This jump does not, however,
achieve full switching, but rather leads into a more gentle
slope which eventually takes the magnet into saturation. Our
explanation for this is that the initial abrupt transition was not
to a fully reversed single domain state but to some incoherent
distribution such as the ‘U’ shaped buckle shown in the
schematic annotation of figure 19. The gentle slope then
follows the further distortion and eventual annihilation of the
buckle. Thus, even though geometric shaping had suppressed
incoherent magnetizationat remanence, domains are still
involved in the reversal process at higher fields. Defects in the
nanomagnets will certainly play some role in the nucleation
and annihilation of the buckle structure, although further
experiments are required to establish their precise role.
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Exchange energy and magnetostatic energy were
introduced in section 2 as ‘natural enemies’: magnetostatic
energy is minimized by non-uniform magnetization,
exchange energy is minimized by uniform magnetization.
The simplest application of this competition principle can
be seen in figure 14 where small, circular structures are
dominated by exchange energy and so show the single
domain state and large circular structures are dominated by
magnetostatic energy and so show the vortex state. We can,
however, go further than this and say that the exchange-
magnetostatic competition is also evident in the phenomenon
of configurational anisotropy. As we have already stated,
configurational anisotropy is a property of non-uniform
magnetization fields. The degree of the non-uniformity
and hence the strength of the configurational anisotropy
are, however, dictated by the exchange-magnetostatic
competition. This can be seen in figure 12(b) where the
configurational anisotropy energy is seen to depend upon
the nanomagnet’s size by a straight line relationship. The
straight line does not, however, pass through zero, but rather
cuts thex-axis at around 60 nm (l0 in table 1). This is the size
at which exchange begins to dominate the structure and so
suppresses non-uniformity in the magnetization field, leading
to a collapse in the configurational anisotropy. Thel0 offset,
and hence the exchange-magnetostatic competition, can even
be shown to be responsible for all of the peaks at around
100–150 nm in the experimental data of figures 8–10 and 12.
Suppose that the configurational anisotropy energy varied in
a perfectly linear fashion with the square root of the area
(i.e. l0 = 0 in equation (3)). Substituting equation (3) into
equation (2) would then give

Ha = CkT n2

2Mst
√
A

(4)

where t is the thickness of the nanomagnet, i.e. the
configurational anisotropy field would vary with the
reciprocal of the nanomagnet size, showing a divergence as
that size is reduced to zero instead of the rise and subsequent
fall which one sees in figure 12. The high magnetic
softness which we have observed in small nanomagnets of
definite geometric shape is therefore another example of the
dominance of exchange over magnetostatic energy in very
small structures, and is in this sense the same phenomenon
as that which causes the single domain phase in figure 14.

We concluded section 3 with a description of
magnetostatically interacting circular nanomagnets. We
showed that the shape of thelattice could be imposed
on the nanomagnets’ properties through magnetostatic
interactions. In that case, we showed how uniaxial properties
developed. This is analogous to shape anisotropy, i.e. a
uniaxial magnetic property arising from a difference in the
experimental lengthscales of two orthogonal directions. Just
as perfectly uniformly magnetized particles can only exhibit
shape-induced uniaxial anisotropy, and no higher symmetry
orders, in principle only a rectangular lattice can induce
anisotropy through interactions: a square or hexagonal
lattice of interacting, uniformly magnetized particles should
be isotropic. Nevertheless, Mathieuet al [40] have
reported experimentally afour-fold anisotropy in a sample
of interacting circular magnetic dots arranged on a square

lattice. They explained this as being due to deviations
from the perfect uniformly magnetized state of each particle.
This is very interesting because it is the interacting analogy
to configurational anisotropy: a higher-order anisotropy
appears because of first and higher spatial order terms in
the magnetization field. In this case, however, the non-
uniformity couples to the geometry of thelattice instead
of to the geometry of themotif as occurs in configurational
anisotropy.

5. Conclusion

We have presented a review of an extensive study which
we have performed into the influence of shape and size on
the magnetic properties of nanostructures. We have shown
that shape plays an essential role in determining magnetic
properties, on the one hand by inducing anisotropy and
on the other hand by stabilizing/destabilizing the single
domain state. We have shown the key role played by
small deviations from uniformity in the magnetization field
within the nanostructures. These small deviations allow
the shape of the nanomagnets themselves and the shape
of the lattice on which they are arranged to couple into
the magnetic energy surface, causing unexpected higher-
order anisotropy terms to appear which can dominate the
magnetic properties. Equally important is the competition
which exists between the quantum mechanical exchange
energy and the classical magnetostatic energy. This not
only determines whether a nanostructure will exhibit a single
domain state, but also controls the magnetization deviations
which allow the coupling between (non-elongated) shape and
magnetism. Understanding these things opens the way to
designing new nanostructured magnetic materials where the
magnetic properties can be tailored to a particular application
with a very high degree of precision.
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Appendix

A.1. Proof that the anisotropy field has the same
magnitude and symmetry asE′′(φ)/Ms

Suppose that the anisotropic energy density of a magnet
can be described by the functionE(φ) where φ is the
magnetization direction. The anisotropyfieldHa is defined
as the magnetic field which would need to be applied to
the magnet in the directionφ in order to give the same
energy profile as the functionE(φ) for small deviations of the
magnetization aboutφ. Let the size of any deviations of the
magnetization direction fromφ be described by the variable
θ . In this case, the Zeeman energy expression gives

E = constant−MHa cosθ (5)
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and hence

dE

dθ
= MHaθ in the limit of smallθ. (6)

Differentiating with respect toθ once more gives

d2E

dθ2
= MHa. (7)

Sinceθ is simply the deviation inφ, the identity dθ = dφ
can be made and hence

Ha = 1

Ms

E′′(φ). (8)

A.2. Proof that anisotropy energy and anisotropy field
are related byU = 2MsV Ha/n

2

A magnet with an anisotropy of rotational symmetry order
n will have a dependence of energyU on the magnetization
directionφ, which can be described by

U(φ) = AnKn cos2
nφ

2
(9)

whereAn is a scaling constant andKn is the anisotropy
constant. Differentiating this expression twice with respect
to φ gives

d2U(φ)

dφ2
= −n

2AnKn

2
cosnφ. (10)

The energydensity Ecan then be found by dividing the energy
by the volume of the magnetV to give

d2E(φ)

dφ2
= −n

2AnKn

2V
cosnφ. (11)

Substituting (11) into (8) then gives

Ha(φ) = −n
2AnKn

2MsV
cosnφ. (12)

Comparing the magnitudes of the trigonometric functions of
(12) and (9) then gives the desired relationship

U = 2MsHaV

n2
. (13)
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