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Abstract. Nanometre scale magnetic particles (‘nanoelements’ or ‘nanomagnets’) form a

rich and rapidly growing new area in condensed matter physics, with many potential
applications in data storage technology and magnetic field sensing. This paper reviews an
extensive study into the influence of shape on the properties of nanomagnets in the size range
35-500 nm. Elliptical, triangular, square, pentagonal and circular geometries have all been
considered. Itis shown that the size, thickness and geometric shape of nanomagnets all play a
vital role in determining the magnetic properties. The shape, size and thickness of a
nanomagnet are shown to be linked to its magnetic properties by two distinct phenomena.
The first is called configurational anisotropy and describes the role played by small deviations
from uniformity in the magnetization field within the nanostructures, which allow unexpected
higher-order anisotropy terms to appear. These anisotropies can often dominate the magnetic
properties. The second is the competition which exists between exchange energy and
magnetostatic energy. This competition determines whether the nanomagnets exhibit single
domain or incoherent magnetization and also controls the non-uniformities in magnetization
which lead to configurational anisotropy. Understanding the influence of shape opens the way
to designing new nanostructured magnetic materials where the magnetic properties can be
tailored to a particular application with a very high degree of precision.

1. Introduction theoretically using computer-intensive numerical algorithms
[3] (although, see as an exception [4]). The recent increase
One of the most exciting recent developments in magnetismin availability of low-cost, high-power processors has now
has been the use of nanometre fabrication techniques to formenabled nanomagnetism to become a widely studied branch
nanometre scale magnets. These so-called nanomagnets, @f condensed matter theory. Fourth, the semiconductor
nanoelements, possess by virtue of their extremely smallindustry may itself in the future benefit from nanomagnetism.
size very different magnetic properties from their parent Many of the problems currently facing future reduction in
bulk material. Interest in the study of these fascinating size of integrated circuits, such as the diminishing number
particles has been driven undoubtedly by the success of theof carriers present in a transistor gate and difficulties in
semiconductor microelectronics industry, in four different removing heat, may be solved by combining magnetic
ways. First, demand for magnetic hard disk data storageelements into microchips [5]. In the first instance this will
has grown commensurately with the spread and increaseprobably be in the form of non-volatile computer memory
in the capabilities of microcomputers. Hard disks store called MRAM (magnetic random access memory) and
their data as sub-micrometre scale magnetic domains. Aprocess control microchips with built-in magnetic sensors
detailed understanding of magnetism on the nanometrefor the automotive industry. The recent discovery [6] of
scale is therefore essential for developing new hard disks.how to inject spin polarized current from a ferromagnet
Moreover, it is generally thought that the current growth in into a semiconductor now means that in the future we
performance of hard disks (60—100% per annum compoundmay see fully hybrid magnetic—electronic devices which
increase in storage density) can only be sustained into theuse the spin of the electrons as much as their charge to
future if the hard disk itself is replaced by a massive array of perform logic operations and processing. Nanomagnets
magnetic nanoelements [1]. Second, the art and science ofmay ultimately even provide a suitable environment for
fabricating structures on the nanometre scale have benefitedmplementing quantum computation [7].
from the exponential shrinking in size of the integrated circuit A further, more fundamental motivation for studying
transistor [2], leading to enormous investment in optical nanomagnets comes from the history of magnetics research.
and electron beam lithography. Third, the mathematical While physicists have long recognised that reducing
equations governing magnetic behaviour on the nanometrea lengthscale is the natural way to study magnetism,
scale are highly nonlinear and can generally only be studied experimental techniques only reached a sufficiently advanced
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stage of development in the 1950s, enabling foundational
work to be performed by Prutton and others [8]. The
arrival of molecular beam epitaxy in the laboratory during
the 1980s allowed monolayer thickness magnetic films of
high structural quality to be routinely grown, leading to much
research during the 1980s and 1990s into two-dimensional
magnetic systems [9]. A number of exciting new phenomena
such as oscillatory exchange coupling [10], giant magneto-
resistance [11] and perpendicular surface anisotropy [12]
were discovered during this rich period, all associated in some
way with the fact that the film thickness had been reduced to
the nanometre regime. The next thing to do was, naturally,
to apply this principle to the other two dimensions. One-
dimensional magnetism has thus been studied in magnetic
wires [13] and zero-dimensional magnetism, in which all
three dimensions are structured in the nanometre lengthscale,
is currently one of the fastest growing fields in condensed
matter physics.

The most important property of a naturally occurring
magnetic element or alloy is its anisotropy. This refers to
the presence of preferred magnetization directions within
the material and is, ultimately, responsible for determining
the way in which a magnetic material behaves and the
technological applications for which it is suitable. In a
conventional magnetic material, anisotropy arises from the
shape and symmetry of the electronic Fermi surface and so is
intrinsic to the particular element or alloy and cannot easily be
tailored. In nanomagnets, however, the anisotropy depends
not only on the band structure of the parent material, but also
on theshapeof the nanomagnet. One of the most attractive
features of nanostructured magnetic materials, therefore, is
that their magnetic properties can be engineered by the choice
of the shape of the constituent nanomagnets.

The most widely studied shape of nanomagnet to date Figure 1. SEM images of some of the nanomagnets fabricated
has been rectangular, due largely to the applicability of such during this study. The sizes are 500 nm (left-hand column) and
structures to MRAM and spin-valve magnetic field sensors <100 nm (right-hand column).

[14]. A number of experimental [15] and theoretical [16]
studies have been conducted. Several other studies havi
investigated circular magnetic elements with either in-plane
or out-of-plane magnetization [17], this time often with an

eye to pa;‘ternetljl medlagor u][tra-hllgh dhensnly hsr% disk data uniformity can couple to the shape of the particle. The second
storage. A smaller number of workers ave looke at squareway comes as a result of the shape of the particle stabilizing
nanoelements [18]. None of these studies, however, has

. , ) or destabilizing the single domain state.
systematically compared the influence of different shapes. This paper is structured as follows. Section 2 describes

Inh.th;]s pa[t)]er we :;awew da_n ext:ns_l\;? compafrat;:/e St“dz the experimental and theoretical methods which we used
which we have performed Into the influence of shape and y,,ing the course of our study. Section 3 then describes the
size on the magnetic properties of nanostructures. We have, o neries which we have observed in elliptical nanomagnets

made small arrays of magng'uc nanostructures on a SIIICOn(section 3.1), triangular, square and pentagonal nanomagnets
substrate using high-resolution electron beam lithography. (section 3.2), isolated circular nanomagnets (section 3.3)

The nanomagnets were inthe size range 35-500 nmandinthe,j finally interacting circular nanomagnets arranged on a
thicknessrange 3—-15nmand had elliptical, triangular, square, g ctangular lattice (section 3.4). Important common themes

pentagonal and circular geometries, which respectively ore giscussed in section 4, followed by a conclusion in
correspond to rotational symmetries of order 2, 3, 4, 5 and ggction 5.

oo. The parent material was Supermalloy gi¥fie;sMosX

where X is other metals), which we chose because in
bulk, it is almost isotropic and so any anisotropy in the
nanomagnetg must come from their shape. A hlgh-senS|t|V|ty 2.1. Nanomagnet fabrication and characterization
magneto-optical method was then used to probe the magnetic
properties of these nanomagnets. We show that the geometridll of the samples were made using high-resolution electron
shape ofthe nanomagnets plays a key role in determining theirbeam lithography with a standard lift-off pattern transfer

?nagnetic properties in two distinct ways. The firstis through
a new phenomenon called configurational anisotropy, in
which very small deviations of the magnetization from

2. Experimental and theoretical methods
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process [19]. Two layers of polymethylmethacrylate Two different magnetic measurements were made using
(PMMA), one of molecular weight 495 000 and one of weight the magnetometer. The firstinvolved sweeping afield applied
950 000, were spun onto a single crystal silicon substrate.in the plane of the sample at 27 Hz and measuring the
Arrays of different geometric shapes were then exposed ontomagneto-optical response. This allowed a hysteresis loop
the sample in a Jeol 4000EX SEM/TEM operating at 100 kV, (normalized in amplitude te-1) of the nanomagnets to be
followed by 30 s of development in a 1:3 solution of methyl recorded. The second measurement uses a newly developed
iso-butyl ketone/iso-propyl alcohol. The array size was technique called modulated field magneto-optical anisometry
between (5um)? and (10um)?; the spacing between each (MFMA) [23, 24] to probe the energy surface experienced
nanomagnet was usually at least equal to the diameter of theby the magnetization as a function of the in-plane direction.
nanomagnet, and for the smallest structures was usually adn this technique, a large and static magnetic fieftl, is
large as three times the diameter. This ensured that there wagpplied in the sample plarperpendicularlyto the direction
negligible magnetostatic interaction between nanomagnets.of magneto-optical sensitivity. A small transverse oscillating
A 3-15 nm thick layer of NjoFesMos (‘Supermalloy’) field, H,, is then applied in the direction of the magneto-
followed, in most casesyba 5 nmthick anti-oxidation optical sensitivity, in order to cause the magnetization to
capping layer of gold were then deposited at a rate of oscillate aboutd. The measured response (referred to as
0.08 nm s by electron beam evaporation in an ultra-high the transverse susceptibility, once normalizeditp can be
vacuum chamber with base pressurex40-° mbar. An written as
unpatterned substrate was also presentin the chamberto allow 3 " -1
_ sen 0 _ (E ) )
structural and magnetic characterization of the unpatterned =y = +H (1)
magnetic film. Ultra-sonic assisted lift-off in acetone was OH, M,
used to remove the magnetic film from the unexposed partswhere is the mean magnetization directiofi (¢) is the
of the patterned sample. second derivative with respect t of the energy density
Transmission electron microscopy (TEM) and cross surface and, is the saturation magnetizatiot£” (¢)/ M,
sectional TEM showed the deposited Supermalloy to have s shown in the appendix to have the same magnitude and
a random polycrystalline microstructure with grains of size symmetry as the anisotropy field. Put simply, the reciprocal
~10 nm and a surface roughness of less than 0.5 nm.of the measured magneto-optical responsgy;.lis the
Scanning electron microscopy (SEM) was used to check thetotal internal field in the direction of the magnetization, i.e.
size and shape of the nanomagnets. Figure 1 shows some afhe externally applied field plus the effective anisotropy
these SEM images. field coming from the internal energy surface. A powerful
In addition to this structural characterization, we also probe of the energy surface of the nanomagnet can thus be
performed magnetic characterization. ~ Magneto-optical obtained simply by measuring %, as a function of direction
magnetometry was used to measure the coercivity Qe) andH.
and the anisotropy field (4& 1 Oe, uniaxial in-plane)
of the _unpa_tterned film. A B_—H looper was used to 53 Micromagnetic modelling
check its thickness and saturation magnetization (&00
60 emu cm?®). Temperature dependent measurements We have used the semi-classical formalism of micromagnet-
showed the unpatterned films were still ferromagnetic at ics [3] in order to provide a theoretical framework in which
300°C, which is not inconsistent with the expected Curie to interpret the experimental data. Micromagnetics is a con-

temperature of 400C and hence an exchange stiffness of tinuum theory for which a numerical finite-element method
~107% erg cn [20]. is used to find a magnetization vector field which minimizes

a Hamiltonian incorporating three energy terms: magneto-
static energy, exchange energy and Zeeman energy. Magne-
tostatic energy arises from the stray magnetic fields which
We have probed the room-temperature magnetic propertiesemanate from any divergence in the magnetization. Mag-
of the arrays of nanomagnets using a high-sensitivity netization divergence can arise inside a nanomagnet where
magneto-optical magnetometer [21], shown schematically in the magnetization field changes direction (‘volume charges’)
figure 2. The sample surface can be viewed under an opticalor at the interfaces of the structure where the magnetization
microscope, while a laser spot (diametg®) is movedover  is not parallel to the interface (‘surface charges’). The high
the surface until it is focused on top of one of the arrays of energetic cost of the magnetostatic surface charges means
nanomagnets. The reflected laser beam is then polarizatiorthat magnetostatic energy can often be reduced by introduc-
analysed in order to access the longitudinal Kerr effect [22], ing non-uniformity into the magnetization field. In the lesser
which serves as a probe of the component of magnetizationcases, this may be a little bending of the magnetization close
lying in the optical plane of incidence. An electromagnet to the edges of a structure. In more dramatic cases, this may
allows magnetic fields of up to 1000 Oe to be applied in the result in the formation of a superstructure within the magne-
plane of the sample. It is necessary to measurays of tization field, such as a vortex. These so-called incoherent
nanomagnets in order to obtain a sufficiently large signal. magnetization fields can reduce the net moment carried by
The high definition of the lithography means, however, that the nanomagnet to zero and so are technologically very im-
all of the particles in the array are virtually identical to each portant. The calculation of magnetostatic energy is entirely
other and so the measured average properties for the arraglassical. Exchange energy is, in contrast, a quantum me-
can also be interpreted as the individual properties of a singlechanical phenomenon and is ultimately responsible for ferro-
nanomagnet. magnetism. A positive exchange energy term arises wherever

2.2. Nanomagnetometry
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Figure 2. A schematic of the magneto-optical magnetometer used for probing the magnetic properties of nanostructures. Inset is an image
recorded by the charge-coupled device camera showing the focused laser spot, an igatatglare magnet and twg8n x 5 um arrays
of sub-micrometre nanomagnets. B.S denotes the beam splitter and N.D denotes the neutral density filter.

there is a gradient in the magnetization field within a nanos- (@)
tructure. Consequently, exchange energy drives nanostruc-

tures away from incoherent magnetization towards uniform

magnetization and, is in this sense, in competition with the

magnetostatic energy term. The balance point in the compe-

tition is ultimately determined by the size, shape and thick-

ness of the nanostructure: large structures are dominated by

magnetostatics and small structures are dominated by ex-

change. The final energy term is Zeeman energy which is (b)
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simply the energy of the magnetization in an externally ap- AARRARE AR R
plied magnetic field. Zeeman energy is always minimized ; ; i ;;;i : ; ;
when the magnetization is aligned with the applied field. A FAARRAARADR
magnetocrystalline anisotropy term would usually also be ; ; ARARER ; ; ;
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included in such calculations. We have ignored it for the A AR A
calculations shown in this paper because it is one to two AAXTANARR A
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orders of magnitude smaller in Supermalloy than the other

terms. ) o
. L . Figure 3. A plan view of the calculated magnetization vector
Figure 3 shows examples of equilibrium magnetization fie|ds in a square nanomagnet of edge length 100 nm and thickness
vector fields calculated for square nanostructures. Figure 3(a)20 nm when magnetized (a) parallel to an edge and (b) parallel to a

shows the vector field (also called a configuration) which diagonal.

occurs when one magnetizes the structure parallel to one of

its edges. This configuration is usually poetically named 3. Results

the ‘flower’ because of the way it flares out at the top and

bottom, like the centre of a daffodil. Figure 3(b) shows the 3.1. Elliptical nanomagnets

configuration associated with a square magnetized along its3 y 1 Experimentalresults. Figure 4 shows the hysteresis
diagonal. ‘We name this configuration the ‘leaf” because |4ops for ellipses of major axis 250 nm, minor axis 125 nm
of the way that it bows out in the centre and then nips gng thickness 10 nm obtained by sweeping an in-plane
together at the ends, like a plant leaf. We shall discuss thegppjied field and recording the magneto-optical signal. One
physics of these and other configurations in more detail in ggeg clearly that the loop which was measured with the
section 3.2. applied field directed along theajor axis (+4°) of the

The numerical calculation of an equilibrium magnetiza- nanostructures displays high remanence and high coercivity,
tion field can be repeated for each value of a varying applied as is characteristic of easy-axis behaviour, whereas that taken
field in order to simulate a hysteresis loop, or as a function of along theminor axis 4°) of the nanostructures displays
nanomagnet orientation in order to predict anisotropy values. near-zero remanence and coercivity, as is characteristic of
Full details of the numerical algorithm used to implement this uniaxial hard-axis behaviour. Supermalloy itself is nearly
formalism can be found in [25]. magnetically isotropic, and so this large difference between
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Figure 4. Hysteresis loops measured in two in-plane directions of 700 T T T T T
elliptical nanomagnets of major axis 250 nm and thickness 10 nm. 6001 H_
_ _ _ —~ 500
the major and minor axes must come from magnetostatic )
shape anisotropy. The hard-axis saturation field 318 Oe 9 400+

for the loop in figure 4) is, in such cases, always a good 300+
measure of the effective anisotropy field, enabling us to 200+
determine the effective uniaxial shape anisotropy field as a 100
function of lateral size and thickness for the ellipses. The B
results are shown in figure 5 for 1:2 aspect ratio ellipses. For
completeness we have also plotted in figure 5 the coercive
field as measured from the easy-axis loops. One immediately |\/|ajor axis (n m)

sees that the uniaxial shape anisotropy and coercivity fall ®)

off with increasing ellipse size and increase with increasing

thickness. This is usual magnetostatic behaviour, governedFigure 5. The experimentally measured (a) saturation field in the

by the fact that the demagnetizing field is, to first order, hard direction and (b) coercive field in the easy direction of
elliptical nanomagnets of different size. The nanomagnets were of

independent of the absolute size of a magnetic element, but .5 ' nma), 10 nm @) and 15 nm f@). The curves are to
depends only on the ratio of the thickness to the lateral gyide the eye. '

H

0
0 100 200 300 400 500 600

size.
1000 T T T

3.1.2. Theoretical results. In order to model
mathematically the expected shape anisotropy we have used 800 - .
the micromagnetic simulation code described in section 2.

. . )
This allows the magnetic energy of a nanomagnet to be 600 *—
calculated firstly when magnetized along its major axis and  ~
then along its minor axis. The uniaxial shape anisotropy :m 400- I
field is then given by AU /m whereAU is the difference in 200L _ el T
these two energies amdis the magnetic moment carried by T T ]
a nanomagnet. Note that this method takes full account of 0 ! ! !
the deviations from uniform magnetization which occur in a 0 100 200 300 400

non-ellipsoidal body, such as a planar ellipse. We have used
up to 21 870 cubic finite-element cells, each of length 2.5 nm
and values of 800 emu crafor the saturation magnetization _ . . .
s 1 . Figure 6. A comparison between experimentally (points) and
and 105 x 107" erg Cm for the exchange stiffness. theoretically (curves) determined shape anisotropy fields for
We have plotted in figure 6, using a full curve, the results elliptical nanomagnets of thickness 5 nm. The three theoretical
from the micromagnetic calculations for nanostructures of lines are calculated assuming an edge roughness of 0 nm (—),
thickness 5 nm alongside the experimental data for this 5nm¢----- )and 10 nm (- - - -). The insets are ‘silhouettes’ of
thickness taken from figure 5. One sees that the agreemenf0 of the modelled ellipses using the same meshing density as
. . . -_used in the calculations, with an edge roughness of 0 nm (upper)
between the theoretical line and the experimental data isanq 10 nm (lower).
poor: the measured anisotropy fields are in general a factor
of two smaller than the theoretical values. This is surprising
given that shape anisotropy is a long established concept[27]. Furthermore, the intrinsic grain size of the deposited
In performing the micromagnetic modelling, however, we Supermalloy {10 nm) may also limit the lithographic edge
have assumed the nanomagnets to be perfect ellipses. Iglefinition. The edge definition of the experimental ellipses
is well established that PMMA lithographic processes have can thus be no better than approximately 10 nm. We have
a maximum spatial resolution of 5-10 nm [26], due partly therefore repeated the modelling, only this time assuming
to the size and radius of gyration of the PMMA molecules a sinusoidal edge profile of peak-to-peak amplitgd@m)

Major axis (nm)
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Figure 7. Hysteresis loops measured from different (b) squ ©p 9

nanostructures. For comparison (a) shows the loop from the

unstructured Supermalloy. Theaxis of each graph is _ 3.2. Triangular, square and pentagonal nanomagnets
magnetization normalized to the saturation value. The applied
field in the schematic pictures of the nanostructures is assumed to Figure 7 shows a selection of some of the hysteresis

point up the page. The nanostructures had thicknesses of (a) 6 nmloops measured from nanomagnets of triangular, square and
(b) 5 nm, () 5 nm and (d) 3 nm. pentagonal shape [29]. One immediately sees that the loops
are very different from each other and from that obtained
from the conventional unstructured material. The properties
covered range from those usually associated with moderately

and wavelength 2 (nm). Figure 6 shows the result of this
calculation (assuming again a thickness of 5 nm) for two

different values of. The insets in figure 6 are ‘silhouettes ‘hard’ magnetic materials with switching fields of hundreds

of tvv_o of the m_odelled e”'ps?s using the same meshing of oersteds (Figure 7(b)) down to those associated with very
density as used in the calculations. The agreement between_

: ; : soft’ magnetic materials with a high relative permeability
experiment is now much improved. The edge roughness

clearly plays a vital role; the effective shape anisotropy sgitable for fie_ld Se”Sif‘g (e.g. the p(_anta%ons of figure 7(d)
of the ellipses, even as large as 500 nm, can be reducecﬁ”th an _effectlve relative pgrmeablllty o 3000_and zero
by a factor of just under two simply by introducing a few ystgre3|s). These changesin prc_Jpertles are a direct result of
nanometres of roughness to the lateral interfaces. Figure gvarying the thickness and, most importantly, the symmetry

shows the best agreement between the experiment and)f the nanomagnets in the arrays.

theory for an edge roughness of between 5 and 10 nm, [N order to quantify the effects of shape, size and
which is entirely consistent with the PMMA grain size. "thickness more precisely, we have measured the three key

This is also consistent with recent numerical results from Magnetic parameters, coercivity, susceptibility (4, times
Gadboiset al [28] who found a significant reduction in the the zero-field gradient of the normalized hysteresis loop), and
switching fields of elongated magnetic memory elements hysteresis (# M, times the area of the normalized hysteresis

once a small edge roughness was introduced into theloop), from the loops as a function of size, thickness and
calculations. symmetry order of the nanomagnets. The results are shown
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Figure 9. Experimentally measured susceptibilities as a function
of nanomagnet size for different thicknesses (3 @1 6 nm (@)
and 7.5 nmif)) and nanomagnet geometries, see figure 8.

Figure 10. Experimentally measured hysteresis as a function of
nanomagnet size for different thicknesses (3 @1 6 nm (@)
and 7.5 nmi)) and nanomagnet geometries, see figure 8.

infigures 8-10, where, in order to be able to compare different  ariations in these three parameters as the size and thickness
geometries, we express the size of the nanomagnets by th‘?/ary, and hence a strong change in the shape of the hys-
square fO_Ot of their area. ) teresis loops of figure 7, suggests that the nanomagnets pos-
Despite the large volume of experimental data presentedgess a size-dependent anisotropy. We have therefore used the
across these three figures, one can see certain COMMOMagneto-optical magnetometer in MEFMA mode to measure
features. The coercivity (figure 8) and hysteresis (figure 10) girectly the magnitude and symmetry of any anisotropy in the
data both show a rise or plateau as the nanomagnet size ianomagnets of thickness of 5 nm, and we present the results
reduced, followed by a sharp fall to zero. As the thickness in figure 11. In these polar plots, the angle gives the in-plane
is increased, both CoerCiVity and hysteresis increase and tthirection¢ within the nanomagnet, the radius gives the ra-
fall to zero coercivity and hysteresis occurs at smaller sizes. djus of the nanomagnet in that direction and the colour gives
The squares show much stronger peaks in these two data sethe experimentally measured quantity,/d¢ (and hence
than the triangles and pentagons. the anisotropy field—see equation (1)) for a nanomagnet of
The susceptibility data (figure 9) tracks the coercivity that size. Figure 11 shows experimental data from 22 dif-
and hysteresis data, but in the opposite sense. One seeferent arrays of nanomagnets (eight sizes of triangles, eight
that as the size decreases, susceptibility at first remainssizes of squares and six sizes of pentagons), each measured in
constant or falls slightly, but then rises sharply. The thinner either 19 or 37 different directions(0-180 in 10° steps for
nanomagnets then show an additional fall in susceptibility as triangles and squares and 0-1805° steps for pentagons)
the size is further decreased. As the thickness is increasedmaking a total of 526 experimental measurements.
susceptibility is reduced and the susceptibility peak occurs at Itis readily apparent from figure 11 that there are indeed
smaller sizes. strong anisotropy fields present in all of the nanomagnets
Coercivity, hysteresis and susceptibility are all deter- studied. The triangular nanomagnets exhibit anisotropy with
mined by anisotropy. The fact that one sees such strong6-fold symmetry, the square nanomagnets show a 4-fold
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Figure 12. The strength of the dominant anisotropy term shown
in figure 11 expressed (a) as an anisotropy field and (b) as an
anisotropy energy per nanomagnet for nanomagnets of different
size and symmetry (trianglea}], squarestf) and pentagon)).
Table 1. Experimentally determined values for the parametérs
andl, of equation (3).
C lo Cl’l2
Shape n  (nmY) (nm) (nnT?)
Square 4 ®B3+003 59+6 53+05
. . . e Triangle 6 016+0.02 55+3 59407
Figure 11. The experimentally measured anisotropy field inside Pentagon 10 05+0005 79+20 50+05

5 nm thick nanomagnets of (a) triangular, (b) square and

(c) pentagonal symmetry. These are colour polar plots where the
direction gives the in-plane direction in the nanomagnet, the radius . . . .
gives the nanomagnet radius in that direction and the colour gives €ase). In figure 12(a) we plot the anisotrdigydsdirectly, as

the experimentally measured anisotropy field of a nanomagnet of returned by the MFMA experiment, whereas in figure 12(b)
that size. High field values correspond to easy anisotropy axes andwe have plotted the anisotroppergyof a single nanomagnet
iow values 1o hard anisolropy axes. The fateral scaje of the figure - (in units ofkT wherek is the Boltzmann constant arfdis

500 nm. Data we?e recorded across a°118?hge agd then plotted 298 K) using equation (2). Importantly, one sees in this figure
twice to fill 360°. that whereas the anisotrofiiglds show an initial rise with

increasing lateral size, which then either falls again (squares

symmetric anisotropy and the pentagonal nanomagnetsand triangles) or forms a plateau (pentagons), the anisotropy
possess a remarkable 10-fold anisotropy.  Frequency€energycan be described approximately by the straight line
doubling occurs in the triangular and pentagonal structuresrelationship
because energy is always quadratic in the magnetization and U
so odd symmetry orders cannot be supported. T C(W Area — lp) whenU > 0 3)

We applied a Fourier analysis to the plots of figure 11
in order to obtain the magnitude of the anisotropy fields as where the experimentally determined paramet€rsand
a function of the nanomagnet size and symmetry, and showlp are given in table 1. The table also shows that the
the results in two different forms in figure 12. The appendix quantityCr? is found to be approximately constant across all
shows that the anisotropy enerffyand the anisotropy field  nanostructures (at one thickness). This thus gives us a useful

H, of any system are related by phenomenological tool for rapidly assessing how magnetic
properties are influenced by size and symmetry.
2M;V H, . ; . : '

U= —5— 2 The anisotropy energy is particularly interesting because

n of a phenomenon called superparamagnetism [30], which

where n is the symmetry order of the anisotropy amd is the process by which anisotropy energy barriers can be

is the volume of the particle (a single nanomagnet in this overcome by théT thermal energy fluctuations in nanometre
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scale magnets. One would thus expect the coercivity
and hysteresis to fall to zero once the anisotropy energy
becomes comparable to a fekT (the precise prefactor
depends upon the symmetry order of the anisotropy and
the timescale over which the experimental measurements
are made). The phase transition from ferromagnetism to
superparamagnetism should also be accompanied by a peak
inthe susceptibility at the critical point of the phase transition.
Conversely, once the anisotropy energy is larger than a
few kT, the coercivity and hysteresis should approximately
follow the anisotropy field and the susceptibility should
be low. This is all consistent with the observations of
figures 8-10 for 5 nm thick structures. The anisotropy field of
the squares shows a peak in figure 12(a) as the element size
is reduced and this peak is reflected directly in the square
coercivity data (figure 8) and the hysteresis data (figure 10).
The pentagon anisotropy field shows no peak, and this is
also reflected directly in the coercivity and hysteresis data.
Finally, the triangle anisotropy field does show a peak just
like the square, but because the anisotr@mergiesare
lower in the triangle (due to the high valuein equation

(2)), thermal activation sets in at a larger size and prevents
the peak from being seen in the coercivity and hysteresis
data. The anisotropy energies (figure 12(b)) fall below a w w
few kT at around 80 nm and this is approximately where -200  -100 0 100 200

one sees a peak, or one side'of. a peal§, in the 5 nm thick Field (Oe)

susceptibility data (figure 9). It is interesting to note that the

susceptibility peak occurs at much larger lateral sizes andrigure 13. Hysteresis loops measured from circular nanomagnets
has a much greater amplitude in the 3 nm thick structures. of diameter §) and thicknesst}: (a)d = 300 nm,r = 10 nm and
This is because the configurational anisotropy field is reduced (P) ¢ = 100 nm, = 10 nm. The schematic annotation shows the
becaus_e of the d_ependence of the dem_agnetizi_ng field ongignqgngg'?ﬁevggg_a circular nanomagnet, assuming a field
the ratio of the thickness to the lateral size. This reduced

conflguratlo_nal anisotropy field then becomes_ an even more; s account the non-uniformity of the magnetization which
reduced anisotropy energy because ofitherm in equation

(2). Superparamagnetism in very thin structures therefore ”?USt accompany a given mallgnetlzatlon direction, energy
. . : . _differences do arise. An anisotropy thus appears with a
begins at much larger lateral sizes. The high magnetic

. : o .~ symmetry which is related to that of the geometric shape of
softness which results could have important applications in . . . .
magnetic Sensors the nanostructure. This is called configurational anisotropy
gAn im ortant. estion remains: hv should the because it comes from the differences in energy of the
imp quest . Ins. - why uo different configurations (flower and leaf in the case of a
geometric shapes studied in this section exhibit any

. L 7 square) which arise as the magnetization direction is varied.
anisotropy at all? The demagnetizing field of any structure is
described by a second rank Cartesian tensor and so can onl
exhibit uniaxial (2-fold) symmetry. There is therefone
shape anisotroppresent, at least in the conventional sense, Circular nanomagnets are potentially very attractive for
in the plane of these non-elongated higher-order symmetry many technological applications. Their circular form means
structures. The answer comes from a phenomenon calledthat they lack both shape anisotropy and configurational
configurational anisotropy First proposed by Schabes and anisotropy. If they are made from an intrinsically isotropic
Bertram [31] during a theoretical study of magnetic cubes, material, it should therefore be possible to change their
we recently predicted [32] and observed experimentally magnetization direction by even very weak applied magnetic
[23] its key role in planar magnetic nanostructures, such asfields. They could thus form the heart of an extremely
those described in this paper. The demagnetizing field is sensitive magnetic field sensor. More fundamentally, one of
only uniform in an ellipsoidal body and so must be non- the most important theorems in nanomagnetism is Brown’s
uniform in any finite planar structure. This can be seen fundamental theorem [33] which states that, because of
in the micromagnetic simulations of planar squares shown a competition between magnetostatic energy and guantum
in figure 3. The important point to realise is that the two mechanical exchange energy, magnetic domain formation
configurations shown in figurettave different energied his should be entirely suppressed in very sma#10-8 m)
is entirely due to the deviations from uniform magnetization magnetic particles, causing nanomagnets to behave as single
which they exhibit. Consequently, although the energy of giant spins. Experimental data on the bounds of validity of
a perfectly uniformly magnetized square is independent of Brown’s theorem in well controlled systems are currently in
the in-plane magnetization direction, as soon as one takesgreat demand.

Normalised magnetisation

-1 H .

¥3.3. Circular nanomagnets
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Figure 14. An experimentally determined phase diagram: vortex
(O) and single domain®). The solid line shows a lower bound to

the theoretical phase boundary between the vortex state (above the
boundary) and the single domain state (below the boundary).
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3.3.1. Experimental results. We have measured hysteresis 11
loops from circular nanomagnets as a function of diameter R
(50-500 nm) and thickness (6—15 nm) [34]. We find that
the hysteresis loops thus obtained fall into one of two
classes. Figure 13 shows a representative hysteresis loop
from both of these classes with schematic annotation. The
first class, which we call the ‘vortex phase’ is typified by the
300 nm/10 nm loop (figure 13(a)) as follows. As the applied
field is reduced from minus saturation, the nanomagnets
retain full moment, until a critical field slightly below
zero at which point nearly all magnetization is lost. The

tization th ivel the field i Figure 15. A theoretically determined hysteresis half loop for a
magneuzation then progressively reappears as the Tield ISgjrq g nanomagnet of diameter 300 nm and thickness 10 nm (and

increased from zero, until positive saturation is achieved. so should be compared with figure 13(a)). The broken curve parts
The sudden loss of magnetization close to zero field is very of the loop indicate a metastable state. The calculated
characteristic of the formation of a flux closing configuration; mMagnetization vector fields are shown for three points on the loop
the simplest of these is a vortex in which the magnetization P @ and R, assuming a field oriented up the page.

vector remains parallel to the nearest edge at all points

in the circular nanomagnet. In large structures, this state Weak in-plane anisotropy intrinsic to the Permalloy family.
lowers the system energy by reducing stray fields and henceHysteresis loops of this class thus have a saturation field of
lowering magnetostatic energy. Increasing the field then merely afew oersted. We found that the remanence vanished
deforms the vortex by pushing its core away from the centre if the field was applied parallel to the uniaxial hard axis
of the nanomagnet, until it becomes unstable and the vortexinstead of the easy axis, as would be expected for such a
is eventually annihilated [35], although not until a field of reversal mechanism.

several hundred oersted has been reached. This vortex phase We have classified all of our experimental data from
leads to magnetic properties which are dramatically different circular nanomagnets in terms of vortex or single domain
from those which would occur if the magnetization simply behaviour and have plotted the result in figure 14.

rotated under the action of a weak field.

The second class of loop, which we call the single 3.3.2. Theoretical results. In order to verify that the
domain phase, is typified by the 100 nm/10 nm loop class of behaviour typified by figure 13(a) is indeed due to
(figure 13(b)). These loops retain a high remanenc8(%) vortex formation we performed micromagnetic calculations
and switch at a very low field¥ 5 Oe). This is characteristic  to simulate one half of the loop, in which 5656 cubic finite-
of single domain behaviour: all of the nanomagnets within element cells, each of length 5 nm, were used.
the array retain all of their magnetization to form an array Figure 15 shows the half-loop which we have calculated
of giant spins, and magnetization reversal occurs by eachfor a circular nanomagnet of diameter 300 nm and thickness
giant spin rotating coherently [36]. The absence of shape 10 nm (i.e. the same size as that measured in figure 13(a)).
anisotropy (except that due to any ellipticity in the nominally The precise mechanism by which a vortex is first nucleated
circular shape) and configurational anisotropy then meansis highly complex and is beyond the scope of this study. We
that the only anisotropy opposing the coherent rotation is the therefore assume that a vortex is present under zero field.

Db
O T
BB BB I I ISP IS I I IS ST
OGS EE S S
P e
By

R10



Property variation with shape in magnetic nanoelements

s X
o000 0000

Field Field
0000 0000

(@).] x=180nm 11 x=180nm ]

- X=120nm E

(&) D DO US

®00¢

= b

00000000 OD

Q000006

5 f\\

W

-10 0 10 -10 0 10
Field (Oe) Field (Oe)

Figure 17. Experimentally measured hysteresis loops for
different lattice spacings and applied field directions. All loops
were measured within the field rangd 50 Oe, the large panels
show high-magnification views around zero field; the insets show
the full measured loop. The vertical axis of all loops is
magnetization normalized by the saturation value.

minimum. Whether a thermally activated transition from
Figure 16. SEM images of rectangular lattices of circular the metastable state to the thermodynamic ground_ state is
nanomagnets. Each nanomagnet is 60 nm in diameter and has a © 0ccur depends upon the temperature and the timescale
y-direction lattice parameter of 180 nm. Thalirection lattice over which the hysteresis loop is swept out. The theoretical
parameter is (a) 180 nm, (b) 110 nm and (c) 90 nm. simulation of figure 15 does not allow for thermally activated
transitions, which accounts for the difference between the
One sees that as the applied field is increased from that pointexperimental and theoretical vortex annihilation fields of
the calculated loop traces out an almost identical path to that283 Oe and 423 Oe respectively.
obtained experimentally in figure 13(a). Both show a small As the lateral size and thickness of the nanomagnets is
degree of curvature followed by an abrupt annihilation event decreased, our calculations show that the range of applied
atafield of several hundred oersted. Figure 15 also shows thdields for which the vortex state is metastable increases until
calculated magnetization vector fields within a single circular the vortex can never nucleate and so the reversal mechanism
nanomagnet at three different points on the hysteresis loop.must be replaced by the Stoner—Wobhlfarth coherent rotation
These agree well with the schematic representations showrshown in figure 13(b). We have marked onto the experimental
in figure 13(a). phase diagram of figure 14 the calculated phase boundary
We have marked parts of the theoretical half-loop of below which vortex nucleation is impossible. One sees that
figure 15 by a broken curve. These correspond to metastablehe experimental data agree very well with the theoretical
regions, i.e. those for which the magnetization configuration line: no vortex nucleation was observed below it. We stress
leads to a local minimum in the free energy, but not a global that the theoretical line isot a prediction for the transition
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from vortex to single domain behaviour, but is rather a lower 100 | | | | | | 5000

limit to that boundary. Experiment and theory are thus in

agreement: in order to observe the useful single domain state, § 80 + -4000

circular nanomagnets must be either very thin or laterally ~— -

small. 860 | 43000

— ~

3.4. Interacting nanomagnets S 40 1 72000

So far in this section we have discussed the influence of the g 20 L 411000

shape of nanomagnets on their magnetic properties. All ofthe a

experiments performed in our study and many of the potential 0 I L 0

technological applications of nanomagnets do not use a single

nanomagnet, but rather alarge ensemble of magnets arranged 100 2000

on some lattice. If the lattice spacing is sufficiently small

(expressly not the case in the work described so far), the = 80 b

magnetic field emanating from one nanomagnet can influence E 1500

its neighbours. In this case, one must also consider the 8 60 L

geometry of thdattice as well as the shape of the motif. S 1000 2
In order to demonstrate and investigate the phenomenon 2 20 F

of magnetostatic interactions, we have made a number of g

arrays of 60 nm diameter circular nanomagnets arranged on g 20 L 500

a rectangular lattice [37]. The-direction lattice period was a2

kept constant at 180 nm (i.e. three times the diameter of the 0

nanomagnets) whereas thelirection lattice period varied in 60 80 100 120 140 160 180 200

different arrays from 180 nm down to as small as 80 nm (i.e. x-period (nm)

leaving only 20 nm between neighbouring edges). Figure 16

shows SEM images of some of the lattices. (b)

Figure 17 shows hysteresis loops obtained from the Figure 18. Remanence (open circles) and susceptibility (full
different lattices for the cases of the field applied along circles) measured as a function of lattice spacing for the field
the latticex- and y-directions. One sees that when the appllied.along (a) the lattice-direction and (b) the lattice
nanomagnets are widely separated (e.g. figure 17(a)) they'd'reCt'on'
hysteresis loops have a characteristic ‘S’ shape, are fully
closed (i.e. zero area inside the loop) and are virtually
identical in the two measurement directions. As thaxis
spacing is reduced, however, the loops show a significant
change in their central region, theaxis loop opening
up while the y-axis loop becomes more sheared (e.g.
figures 17(c) and 17(d)).

Each nanomagnet, being 60 nm in diameter and 7 nm
thick, is small enough to be in the single domain state
(cf figure 14) and can therefore be represented, to a gOOdwith the line joining their centres (i.e. the-direction in

approximation, as a point magnetic dipole located at the this experiment) and an energy maximum (hard axis) when

nanomagnet centre. The magnetic field emanating from SUChaIigned perpendicular to this line (i.e. thedirection).

a magnetic dipole falls off with the cube of the distance from Consequently, whereas the remanence rises in the loops
it. The largestlattice period( = 180 nm—see figures 16(a) measured in thec-direction, the loops measured in the

and 17(a)) causes the nanomagnets to be spaced by threg_gjrection become increasingly sheared as a uniaxial hard
times their own diameter, which is a sufficiently large distance girection appears.

for magnetostatic interactions between nanomagnets to be  \ye showed earlier in this paper how the shape of a

relatively weak. The measured average property of the |atticenanomagnet can induce configurational anisotropy which
is, thus, approximately the same as the individual property can overcome thermal fluctuations and thus lead to abrupt
of an isolated nanomagnet, as in all of the other experimentschanges in the susceptibility, remanence and coercivity. In
reported so far in this paper. In this case, the weak intrinsic the case of interacting particles, the anisotropy induced by the
uniaxial anisotropy of Supermalloy is unable to stabilize rectangular lattice can give the same effect. Figure 18 shows
the zero-field magnetization against thermal fluctuations (in the susceptibility (labelled¢; this time) and remanence
contrast to the larger single domain particles measured inmeasured experimentally in the lattise and y-directions
figure 13(c)), leading to a time-averaged remanence of zero,as a function of the lattice-direction spacing. One sees
and hence the closed, superparamagnetic hysteresis loops dh Figure 18(a) a peak in the susceptibility)at= 100 nm
figure 17(a). coinciding with the onset of remanence, in direct analogy
As the separation between the nanomagnets is nowwith the peak in susceptibility in figure 9 coinciding with the
reduced, as shown in figures 16(b) and 16(c), the rise of coercivity (figure 8) and hysteresis (figure 10).

magnetostatic coupling between nanomagnets (especially,
but not exclusively, between nearest neighbours) becomes
stronger, to the point at which it can overcome the thermal
fluctuations. When this occurs, the spins essentially remain
parallel and locked together in thedirection even under
zero applied field, leading to increased remanence in the
x-direction loops of figures 17(c) and 17(d).

Magnetostatic coupling is an anisotropic coupling, with
an energy minimum (easy axis) when the dipoles are aligned
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As expected, no peak in susceptibility is observable
in the y-direction of the lattice (figure 18(b)) because l ﬁmw T
this is now the ‘hard’ magnetization direction and so
never displays remanence. The effect of magnetostatic
interactions is nevertheless still very much in evidence with
the susceptibility falling with decreasing separation as the
nanomagnets become increasingly coupled. The fact that
thex- andy-direction susceptibilities do not become exactly
equal in the limit ofX = Y = 180 nm is due to the presence
of weak uniaxial anisotropy in the Supermalloy and other
experimental artefacts.
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The experimental and theoretical results presented above ;
have highlighted the two important ways in which a Field (Oe)
2?20?2?5[ sthzhzzteenlp fizerxﬁzhltfhemzrg]gggc ir?trrggi:;[fssri ure 19. An experimentally measured hysteresis !oop from
. . : g square nanomagnets of edge length 400 nm and thickness 10 nm.
anisotropy.  This anisotropy then determines all of The schematic annotation shows the magnetization field assuming
the macroscopic magnetic parameters such as coercivitythe positive applied magnetic field to be pointing up the page.
remanence, hysteresis and susceptibility. Unsurprisingly,
elongated shapes such as ellipses and rectangles introducgtapilizing the single domain state, the two are actually linked
a uniaxial shape anisotropy. ~ Shape anisotropy is anpecause anisotropy itself stabilizes the single domain state at
interaction between the mean magnetization direction andremanence.
the form of the nanomagnet, i.e. it occurs even in perfectly So far we have discussed the stability of the single
uniformly magnetized structures, such as ellipsoids. Shapedomain state at remanence. This, however, is not the
anisotropy is in this sense a phenomenon associatedonly case of interest. Incoherent magnetization structures
with the zeroth spatial order of the magnetization field. as a vehicle for achieving magnetization reversal are also
More surprisingly, non-elongated shapes which possess amportant, i.e. a nanomagnet can be single domain under
definite rotational symmetry, such as triangles, squares,zero field, but then go via a vortex or similar state as
pentagons, etc, also introduce an anisotropy related tothe magnetization changes direction under the action of an
their size and symmetry, called configurational anisotropy. applied field. We have not discussed the microscopic details
Configurational anisotropy is an interaction between the of switching mechanisms in this paper except to postulate
deviations of the magnetization from uniformity and the form  that the very small circular nanomagnets switch by coherent
of the nanomagnet. Itis therefore a phenomenon associatedotation. The reason for our silence on this subject is
with first and higher spatial orders of the magnetization field. that hysteresis loops are not a good tool for investigating
The second way in which a nanomagnet's shape the microscopic details of magnetization reversal. Direct
influences its magnetic properties is the extent to which it imaging, such as Lorentz microscopy [38] or spin-polarized
stabilizes a single domain state, by preventing incoherentSEM [39] are really required for this. Nevertheless, one
magnetization fields such as vortices or domain patterns.can infer a certain amount about the reversal mechanism
Size alone can do this, as was demonstrated in the circularfrom hysteresis loops. Figure 19 shows a hysteresis loop
nanomagnets, which were found to be single domain for sizesmeasured from 10 nm thick squares of edge length 400 nm.
less than approximately 100 nm. Form can also play an As described earlier, the loop shows almost full remanence,
important role: all of the elliptical, triangular, square and even though a circle of such dimensions would have most
pentagonal nanomagnets were found to be single domaincertainly collapsed into a vortex at remanence. There is
even at sizes as large as 500 nm. There are two reasons fothen the usual abrupt coercive transition as the magnetization
this. The first is associated with the sharp angles betweenbegins to change direction. This jump does not, however,
edges in shapes such as triangles. These increase the energychieve full switching, but rather leads into a more gentle
of vortices because of the sharp turn, and hence the increasedlope which eventually takes the magnet into saturation. Our
exchange energy, which occurs if the magnetization is to explanation for this is that the initial abrupt transition was not
remain parallel to the edges. The second reason is moreto a fully reversed single domain state but to some incoherent
applicable to elongated structures and concerns anisotropydistribution such as the ‘U’ shaped buckle shown in the
Anisotropy generally encourages the single domain state overschematic annotation of figure 19. The gentle slope then
vortex formation because, in the former case, the systemfollows the further distortion and eventual annihilation of the
can lower its energy by aligning all of the magnetization buckle. Thus, eventhough geometric shaping had suppressed
with an anisotropy easy direction. Incoherent magnetization incoherent magnetizatioat remanencedomains are still
distributions usually have a proportion of the magnetization involved inthe reversal process at higher fields. Defectsinthe
in the anisotropy hard direction. Thus, although we have nanomagnets will certainly play some role in the nucleation
presented the influence of shape on magnetic properties agnd annihilation of the buckle structure, although further
being comprised of two separate issues, i.e. anisotropy andexperiments are required to establish their precise role.

4. Discussion

Normalised magnetisation
<
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Exchange energy and magnetostatic energy werelattice. They explained this as being due to deviations
introduced in section 2 as ‘natural enemies’: magnetostatic from the perfect uniformly magnetized state of each particle.
energy is minimized by non-uniform magnetization, This is very interesting because it is the interacting analogy
exchange energy is minimized by uniform magnetization. to configurational anisotropy a higher-order anisotropy
The simplest application of this competition principle can appears because of first and higher spatial order terms in
be seen in figure 14 where small, circular structures arethe magnetization field. In this case, however, the non-
dominated by exchange energy and so show the singleuniformity couples to the geometry of tHattice instead
domain state and large circular structures are dominated byof to the geometry of thenotif as occurs in configurational
magnetostatic energy and so show the vortex state. We cananisotropy.
however, go further than this and say that the exchange-
magnetostatic competition is also evident in the phenomenon
of configurational anisotropy. As we have already stated,

configurational anisotropy is & property of non-uniform \ye have presented a review of an extensive study which
magnetization fields. The degree of the non-uniformity \ye haye performed into the influence of shape and size on

and hence the strength of the configurational anisotropy s magnetic properties of nanostructures. We have shown
are, however, dictated by the exchange-magnetostalicy,a; shape plays an essential role in determining magnetic

competitiqn. This. can be seen in' figure 12(b) where the properties, on the one hand by inducing anisotropy and
configurational amsptropy energy IS §een to ,depe’,‘d UpoNyn the other hand by stabilizing/destabilizing the single
the nanomagnet’s size by a straight line relationship. The domain state. We have shown the key role played by
straight line does not, however, pass through zero, but ratherg || geviations from uniformity in the magnetization field

cuts ther-axis ataround 60 nnidin table 1). Thisisthe size  ipin the nanostructures. These small deviations allow

at which exchange.begi.ns to dominate Fhe structure anq >%he shape of the nanomagnets themselves and the shape
suppresses non-uniformity in the magnetization field, leading of the lattice on which they are arranged to couple into

to a collapse in the configurational ani;otropy. T&jeffset, the magnetic energy surface, causing unexpected higher-
and hence the exchange-magnetostatic competition, can evell yor anisotropy terms to appear which can dominate the

ESOShl%Vén to_b?hresponslble Iolrda"t of ft?e pealgs f(t) ar(zjufzd magnetic properties. Equally important is the competition
S . ?t:nt”:h eex]E_)erlmte_n al a_aot 'gures =19 .an di "which exists between the quantum mechanical exchange
uppose thatfhe configurationa’ anisotropy energy vane Inenergy and the classical magnetostatic energy. This not

a perfectly _Ilnear fa_shlon with the_sq_uare root_ of the area only determines whether a nanostructure will exhibit a single
g-edzf\?ic; ?Z;nw%?;llgttlr?gn(s». Substituting equation (3) into domain state, but also controls the magnetization deviations
q give which allow the coupling between (non-elongated) shape and
CkTn? magnetism. Understanding these things opens the way to
« =T (4) designing new nanostructured magnetic materials where the
2M, /A . . . i N
magnetic properties can be tailored to a particular application
where ¢ is the thickness of the nanomagnet, i.e. the with a very high degree of precision.
configurational anisotropy field would vary with the
reciprocal of the nanomagnet size, showing a divergence aSacknowledgments
that size is reduced to zero instead of the rise and subsequent
fall which one sees in figure 12.  The high magnetic Thiswork would not have been possible without the excellent
softness which we have observed in small nanomagnets ofassistance of my colleagues, Professd E Welland,
definite geometric shape is therefore another example of thepy A O Adeyeye and D K Kltsov. Much of the work
dominance of exchange over magnetostatic energy in verydescribed in this paper was funded by the UK Royal Society.

as that which causes the single domain phase in figure 14.

We concluded section 3 with a description of )
magnetostatically interacting circular nanomagnets. We Appendix
showed that the shape of tHattice could be imposed
on the nanomagnets’ properties through magnetostatic
interactions. In that case, we showed how uniaxial properties
developed. This is analogous to shape anisotropy, i.e. aSuppose that the anisotropic energy density of a magnet
uniaxial magnetic property arising from a difference in the can be described by the functiofi(¢) where ¢ is the
experimental lengthscales of two orthogonal directions. Justmagnetization direction. The anisotrofigld H, is defined
as perfectly uniformly magnetized particles can only exhibit as the magnetic field which would need to be applied to
shape-induced uniaxial anisotropy, and no higher symmetrythe magnet in the directiop in order to give the same
orders, in principle only a rectangular lattice can induce energy profile as the functiafi(¢) for small deviations of the
anisotropy through interactions: a square or hexagonal magnetization abous. Let the size of any deviations of the
lattice of interacting, uniformly magnetized particles should magnetization direction from be described by the variable

be isotropic.  Nevertheless, Mathieet al [40] have  ¢. Inthis case, the Zeeman energy expression gives
reported experimentally #our-fold anisotropy in a sample

of interacting circular magnetic dots arranged on a square E = constant- M H, cosf (5)

5. Conclusion

A.1. Proof that the anisotropy field has the same
magnitude and symmetry askE” (¢) /M,
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and hence
dE . -
W MH,0 in the limit of smallg. (6)
Differentiating with respect t6 once more gives
d’E
— = MH,. 7
402 7

Sinced is simply the deviation i, the identity @ = d¢
can be made and hence

H —iE”()
“ = #).

®
A.2. Proof that anisotropy energy and anisotropy field
are related byU = 2M,V H,, /n?

A magnet with an anisotropy of rotational symmetry order
n will have a dependence of energyon the magnetization
directiong, which can be described by

U(¢) = A, K, cos % (9)

where A, is a scaling constant ang, is the anisotropy
constant. Differentiating this expression twice with respect
to ¢ gives

d?U@)  —nA,K,
dp2 2

cosng. (20)

The energylensity Ecan then be found by dividing the energy
by the volume of the magnét to give

d?E(¢)  —n?A,K,

307 >y % cosng. (11)
Substituting (11) into (8) then gives
nzAllKll
H,(p) = ———— . 12
(@ 2M.V cosné 12)

Comparing the magnitudes of the trigopnometric functions of
(12) and (9) then gives the desired relationship

u _ 2MsHV

n2

(13)
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