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Abstract. It is shown that, by the use of the Hilbert transform, it is possible to 
obtain values of the imaginary component, ~"(o), of the AC magnetic susceptibility 
of a colloidal suspension of single-domain magnetic particles, from experimental 
measurements of the real component, ~'(o). 

1. Introduction 

The real and imaginary components of the frequency- 
dependent, complex magnetic susceptibility of a 
ferrofluid, ~'(0) and ~ " ( w )  respectively, can usually 
be obtained using a measurement technique such as 
the toroidal technique of Fannin et a1 [l]. However, 
occasions arise when, due to the existence of a very 
low level of susceptibility, it is possible to obtain good 
quality data for ~ ' ( w )  but not for ~"(0). Also, other 
methods [2] may not lend themselves to a simple or 
accurate determination of ~"(0). In these two cases, 
an alternative analytical technique to determine ~ " ( w )  
is readily available since ~'(0) and ~"(0) are a Hilbert 
transform pair. 

In this paper we show that the application of the 
Hilbert transform technique does generate accurate data 
for ~ " ( w )  from a knowledge of ~'(0). The technique 
has been applied here to magnetic fluids, but, of 
course, i t  holds for any linear magnetic system. On 
a point of interest, for the case of a spin glass, the 
literature [3,4] reports on the determination of ~"(0) 
from a knowledge of ~ ' ( o ) ,  with measurements being a 
function of temperature at spot frequencies. 

2. Complex susceptibility 

The theory developed by Debye [SI to account for the 
anomalous dielectric dispersion in dipolar fluids has been 
used [6,7] to account for the analogous case of magnetic 
fluids. Debye's theory holds for spherical particles when 

0022-3727/93/112006+04$07.50 0 1993 IOP Publishing Ltd 

the magnetic dipole-dipole interaction energy, U, is 
small compared with the thermal energy kT. 

The complex frequency-dependent magnetic suscep- 
tibility, ~ ( o ) ,  may be written in terms of its real and 
imaginary components, where 

x (w)  = ~ ' ( w )  - ix"(w). (1) 

According to Debye's theory the complex suscepti- 
bility, x(o) ,  has a frequency dependence given by the 
equation 

x ( 4  = xm + (XO - xm)/(l + iwr) (2) 

where ,yo and xm indicate the values of susceptibility at 
w = 0 and at very high frequencies respectively. 5 is 
the effective relaxation time with 

r = I/" = I/27rfm (3) 

where f ,  is the frequency at which ~"(0) is a maximum. 
This may be expanded to show that 

x'@) = xm + (xo - xm)/(l + w2.CZ) (4) 

It follows that 

x"(w) = wr(x'(o) - xm). (6) 

For the Debye relationship, the relaxation time r can 
be found by determining, from the ~'(0) plot, the value 
of w, at ~'(0) = (XO - xm)/2. for which w,r = 1. 
Alternatively this frequency, w,/2n, also corresponds 
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3.1. Realization of the Hilbert transform 

The Hilbert transform may be implemented in the fre- 
quency domain by direct computation of equation (8). 
For discrete samples, this becomes a matrix multiplica- 
tion: 

h [ K ]  is an n by n matrix, whose elements are given by 
l /(u+u-l)nAf, whereu and U are the row andcolumn 
indices respectively, and A f is the frequency increment 
which cannot be greater than the start frequency. The 
computation of this formula is very time consuming, 
since it requires of the order of n2 multiplications 
and additions. Such a computational burden is greatly 
reduced by implementing equation (1 1). This involves 
calculating the inverse fast Fourier transform (m) 
of ~ ' ( f ) ,  multiplying by -i sgn(t) and calculating the 
Fourier transform of the result, as illustrated in the 
following flow chart: 

X[kI = h[KI  x [KI. (17) 

to the point at which the slope of the ~'(0) curve is a 
maximum. 

Thus it is a simple matter to generate the ~ " ( w )  curve 
by multiplying values of ( ~ ' ( 0 )  - xm) by UT. 

The above case for Debye is a particularly simple 
example. However for situations where we have a 
distribution of relaxation times, it is not possible to 
generate susceptibility curves by the method described 
above. In such cases, since the system is linear and 
causal, the real and imaginary components of x(o) are 
Hilbert transform pairs [8, 91. A brief explanation of the 
Hilbert transform follows. 

3. Hilbert transform 

The Hilbert transform of a function x ( t )  is defined as 
m 

J_m 
i ( t )  = I/n x ( s ) / ( t  - s ) d t  (7) 

= ( I /n t )*x( t )  (8) 
where * represents a convolution operation. This 
operation corresponds to phase-shifting all frequency 
components of x ( t )  by 90" and it may be represented 
by a linear system with an impulse response of 

h( t )  = l/Zf (9) 
and transfer function 

H ( f )  = -i sgn(f) f = o / h .  (IO) 
As convolution in the time domain is equivalent to 

multiplication in the frequency domain, equation (8) may 
be written as 

where i(f), H ( f )  and X(f) are the Fourier transforms 
of i ( t ) ,  h ( t )  and n ( t )  respectively. d ( f )  and i ( t )  are 
related by the expression 

m) = H(f)X(f )  (11) 

m 

i ( t )  = i(f)e'z""df (12) L 
lm 

and from equation (l l) ,  assuming that X ( f )  is an even 
function, it follows that 

i ( t )  = 2 X ( f ) s i n h f d f  (13) 

x ( t )  = 1/(1 + tZ). (14) 

x(f) = 7re-lz"fl (15) 

Consider the example of the function [IO] 

This function has a Fourier transform of 

and from equation (13) the corresponding Hilbert 
transform is 

i ( t )  = f/( l  + t 2 ) .  (16) 
It is of interest to note that equations (14) and (16) 

have the same form as the frequency-dependent term 
of ~'(0) in equation (4) and ~"(0) in equation (5) 
respectively. The components ,yo and xm are constants, 
and since the Hilbert transform of a constant is zero, it 
is clear that ~ " ( 0 )  of equation (5) is indeed the Hilbert 
transform of ~ ' ( w ) .  

This above method was used to obtain the Hilbert 
transforms presented in this paper. 

In a practical measurement, ~ ' ( f )  is measured at 
evenly spaced intervals from a start frequency of Af 
(Hz) to a frequency fm (Hz); the latter being the 
frequency where ,ym is deemed to have been reached. 
Also, the start frequency must be equal to, or be a 
multiple of, the incremental frequency. The technique 
also requires data at zero Hz and so it is necessary to 
either make a measurement at DC or to assume that the 
zero-frequency data are the same as those obtained at 
the first measurement point. Furthermore, since the FFr 
technique requires the signal to be transformed to be 
periodic, the negative of ~ ' ( f )  from 0 to -fm (Hz) 
must be generated. This is a simple matter since ~ ' ( f )  
is an even function of f and is easily implemented in 
software. 

A factor which should be considered when choosing 
the incremental measurement frequency A f and the final 
frequency fm is the fact that the ljolits of integration of 
the integral in equation (7) are from =km, In practice 
this is limited to &f,, which is equivalent to multiplying 
x'(f) by a rectangular window. Other types of windows, 
e.g. Hamming or Triangular, may be used in order to 
minimize the effects of the rectangular window. 

3.2. Application of Hilbert transform technique 

To test the accuracy of the proposed technique it was 
firstly applied to theoretical Debye curves, where one 
knew what the resultant Hilbert transform should be. It 
was then tested on data obtained in a dynamic situation. 

Initially equation (2), with xm = 0, was plotted for 
n = 8192 points and the resultant plots of ~"(o), ~'(0) 

and its Hilbert transform 2 ( w )  are shown in figure 1. It 
can be seen that ?(w) is indeed a good approximation 
to ~"(o), with some error existing in the low-frequency 
region of the plots. This error was reduced significantly 

2007 



P C Fannin et a/ 

Figure 1. A plot of ~"(o), ~'(0) and its Hilbelt transform 
&J), against log(f in Hz), for the Debye case with xm = 0 
and n = 8192 points. 
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Figure 2. A plot of ~"(o), ~'(0) and its Hilbert transform 
,&U), against log(f in Hz), for the Debye case with xm = 0 
and n = 16 384 points. 

by doubling the number of points to 16 384, as shown 
by the corresponding curves in figure 2. 

The technique was then applied to equation (2) with 
xm = 0.2 and n = 8192; the corresponding plots of 
~ " ( w ) ,  ~'(0) and its Hilbert transform ,$(y) are shown 
in figure 3. Again the Hilbert transform, x'(u), proved 
to be an excellent approximation to ~''(0). 

Thus, having shown the technique to be successful 
for theoretically generated data, it was then applied to 
data obtained for a ferrofluid. 

Measurements were made on a ferrofluid consisting 
of a colloidal suspension of single-domain cobalt ferrite 
particles with a log-normal volume distribution of 
median diameter 10.3 nm and standard deviation 0.54, 
dispersed in a perfluoro carrier. The process of 
relaxation of the magnetic moment of these particles is 
dominated by the Brownian relaxation mechanism 

re = 4nqr3 f kT (18) 

where r is the hydrodynamic radius of the particle and 7 
is the dynamic viscosity of the carrier liquid. This arises 
because the magnetic moment of most of  the particles is 
not free to rotate within the particles i.e. it is 'blocked' 
because of the high-energy barrier ( K V )  to rotation. 
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Figure 3. A plot of ~"(o), $(a) and its Hilbert transform 
,f'(@), against log(f in Hz), for the Debye case with 
xm = 0.2 and n = 8192 points. 
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Figure 4. A plot of ~"(o). ~'(0) and its Hilbert transform 
,&& against log(f in Hz). for a ferrofluid sample. 

K(= 2 x lo5 J m-3) is the effective anisotropy constant 
(a combination of shape and crystalline anisotropies) and 
V is the median magnetic volume of the particles. 

Measurements were performed over the approximate 
frequency range 50 H z  to 500 kHz in steps of 50 Hz 
and the resulting plots of ~ " ( w ) ,  ~ ' ( w )  and X'(o) are 
shown in figure 4. X{ (w)  proved to be a very good 
approximation to ~"(0). with U,, for both curves being 
identical. As with the case of the theoretical data, some 
error does exist, particularly in the low-frequency region, 
however this error can be reduced by reducing the size 
of the incremental frequency, Af. At high frequencies 
the onset of the 'window' effect can be seen with ?(U) 
crossing and becoming smaller than ~"(0). 

Regarding the experimental data, one should note the 
difference in broadness (or bandwidth) of the ~"(0) peak 
in figure 4, and that of the Debye profile in figure 1. This 
difference is due, in part, to the fact that the colloidal 
suspension consists of a distribution of relaxation times; 
it is also indicative of the level of system damping 
prevalent, with the former profile representing the more 
heavily damped system. 
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4. Conclusion 

It has been demonstrated, both in a theoretical and 
practical situation (involving a system of single-domain 
particles), that the use of the Hilbert transform does 
indeed generate accurate data for ~ " ( w )  from a 
knowledge of ~ ' ( w ) ,  thus verifying the usefulness of the 
technique, particularly in a dynamic situation. However, 
should the need arise, the technique can also be used 
to generate data on ~'(0) from a knowledge of ~ " ( w ) ,  
simply by taking the inverse Hilbert transform of ~"(0). 

This is due to the fact that the Hilbert transform of 
a Hilbert transform returns the original signal with a 
change in sign [ l  I]. 
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