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Abstract. Magnetic viscosity measurements consist of placing an ensemble 
of small magnetic particles in a very large magnetic field, which tends to align 
the magnetic moments, q,, of the particles in the  direction of the field and then 
Observing the decay, with time, of the magnetization when the field is removed. 
In measuring the magnetic viscosity, it is possible for magnetization data to be 
unavoidably lost due to the time delay between removing the applied field and 
making the first magnetization measurement. It is shown that, by taking the 
inverse Fourier transform of the frequency-dependent complex susceptibility, 
x(w) = ~ ' (0 )  - ix"(w), of the sample, it is possible to recover data corresponding 
to that which would have been measured during the period of the time delay. 

1. Introduction 

Magnetic viscosity measurements consist of placing an 
ensemble of small magnetic particles, such as a ferrofluid 
sample, in a very large magnetic field, which tends to 
align the magnetic moments, mp, of the particles in 
the direction of the field and then observing the decay, 
with time, of the magnetization, M&), when the field is 
removed. 

M , ( t )  is approximately given by 

~ , ( t )  = M,(O)e-'" (1) 

where M,(O) is the remanent magnetization at some 
arbitrary time taken as t = 0 and 'c is the average 
relaxation time of the particles. This phenomenon is 
usually referred to as magnetic viscosity because of the 
manner in which the measurements are made. Because 
of the nature of the magnetic viscosity measurements, 
they do not start at time t = 0 [l-31, resulting 
in the magnetization decaying during removal of the 
field. Thus magnetization data corresponding to the 
contribution of the magnetic moments relaxing during 
this time, through either N6el [4-6] or Brownian [7] 
relaxation mechanisms, are lost. Both these mechanisms 
are applicable in the case of a ferrofluid, whilst, in 
the case of a solid matrix, relaxation is by the N6el 
mechanism only. 

A distribution of relaxation times is associated with 
a distribution of particle sizes and anisotropy constants, 
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therefore it is not likely that one exponent is sufficient to 
describe the process, unless the distribution is extremely 
narrow. It is reported [8] that the experimental data in 
terms of M,(t) are better described by a In(t) dependence 
with 

(2) 
However, this expression does not reflect the nonlinear 
behaviour of a number of systems [9,lOl and it has been 
shown that this behaviour is governed by the distribution 
of energy barriers of the magnetic moments within the 
system. It has a fuaher limitation in that the average 
relaxation time, 5,  of the system, which is of interest, is 
incorporated into the constant C in equation (2). Aharoni 
[ 1 I] is very critical nf the use of this function which he 
says 'is so nnphysical and so inconvenient to use or to 
interpret' (sic). Indeed, unlike equation ( I ) ,  which can 
be extended to measurements at time t = 0, equation 
(2) diverges for both very short and very long times 
[12]. In order to incorporate a distribution of relaxation 
times in equation (I), Aharoni uses, for convenience, a r 
distribution function so that integration of the expression 
can be carried out analytically. This r function 
contains two adjustable parameters, which contain all 
the physical information necessary to characterize the 
particle distribution [ 131. He also suggests an alternative 
method of determining r ,  which involves measuring 
the AC magnetic susceptibility, ~ ( w ) ,  of the particles 
of the magnetic viscosity region. Provided that it 
is known where to look, a maximum in the Ix(w)[ 
versus frequency plot should be observed similar to that 
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M,(t) = C - Sln(r). 
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reported in  [I43 for very low temperatures, which would 
enable an average relaxation time to be determined. This 
method presupposes that the distribution is sufficiently 
narrow that the loss-peak maximum i s  not smeared out. 

In the study of ultra-fine, single-domain magnetic 
particles, as used for example in magnetic fluids, Fannin 
et al [15,161, have used measurements of the complex 
magnetic susceptibility, ,y (U), to determine an average 
relaxation time of the magnetic moments in almost 
zero magnetic field. Such measurements have been 
performed on fluids with packing fractions as low 
as 0.007. Measurements have also been made over 
the frequency range IO Hz to 1 GHz 1171; a very 
much greater number of decades than that employed 
in magnetic viscosity measurements, which, in the case 
of particulate systems, have generally been made on 
large (tape) particles where the relaxation times are many 
orders of magnitude longer. 

In this study, it is shown that, by determining the 
inverse Fourier transform ( I R )  of the complex suscep- 
tibility components, ~ ' ( w )  and ~"(o), respectively, it 
is possible to proceed from the frequency domain to 
the time domain and generate the corresponding decay 
curve, not only over many decades of time but for start- 
ing times equivalent to nanoseconds in the corresponding 
magnetic viscosity measurements. 

2. Complex susceptibility 

The theory developed by Debye [I81 to account for 
the anomalous dielectric dispersion in dipolar fluids 
has been used [16,19] to account for the analogous 
case of magnetic fluids. Debye's theory holds for 
spherical particles when the magnetic dipole-dipole 
interaction energy, U ,  is small relative to the thermal 
energy kT. The complex frequency-dependent magnetic 
susceptibility, ~ ( w ) ,  may be written in terms of its real 
and imaginary components, where 

x ( w )  = ~'(0) - ix"(o). (3) 

According to Debye's theory the complex susceptibility, 
~ ( w ) ,  has a frequency-dependence given by the equation 

x (0 )  = xm + (XO - xm)/(l + iwr) (4) 

where ,yo and ,ym indicate the values of susceptibility at 
w = 0 and at very high frequencies, respectively. r is 
the effective relaxation time with 

7 = I/om = 1/(2ilfm) (5) 

where f m  is the frequency at which ~ " ( w )  is a maximum. 
Equation (4) is often written as 

(~(0) - X ~ / ( X O  - xm) = 1/(1 + iw7). (6) 

To develop the relationship between the frequency- 
domain components, ~ ( w ) ,  of the magnetic sample and 
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its timedomain counterpart, it is necessary to review the 
procedure by which equation (6) is derived [20]. 

Consider the situation where a small DC field, HI,  is 
instantaneously applied to a system that is in equilibrium 
in a larger DC field, H .  This results in a rise transient, 
M ( t ) ,  of the approximate form 

M ( t )  = (XO -xm)[l - exp(-f/r)lHt. (7) 

For a linear system, the decay transient that follows 
instantaneous removal of HI is the mirror image of the 
rise transient, with an after-effect function, f(t), of 

fO) = (XO - xm)[exp(-t/dl. (8) 

It is readily shown [20,21] that the frequency-dependent 
susceptibility arising from application of an AC field, 
H I  exp(-iot), is given by 

and integrating by parts to obtain 

x(o)-xm xo - xm = (I - io~mexp(-r/r)exp(-iwr)dt 

(IO) 
= 1/(1 + iwr) i i i j  

the Debye equation. However, the integral of equation 
(9) is, by definition, the Fourier transform of the function 
-d(f(t))/dt, which can thus be obtained by taking the 
I!T of equation (9). Having determined [-d(f(t))/dt]. 
we have from equations (8) and (1) 

- (r/f(O))[d(f(t))/dtl = f(t)/f(o) 

where f(0) = (XO - xm). 
= exp(-t/r) = M,(t)/M,(O) (12) 

Equation (12) shows that the normalized plots of the 
ET of x(o)  and of the magnetization are equivalent, 
thus confirming that the technique presented is capable 
of determining magnetic viscosity data. 

3. The Fourier transform 

The Fourier transform, F(o), of a continuous function, 
f ( t ) ,  is defined as 

m 

f ( t )  exp(-iwt) dt (13) 

and its inverse function as 

F ( w )  exp(iot) dw. (14) 

As an example, consider the case where f ( t )  is a one- 
sided exponential pulse A exp(-t/r). From equation 
(13). the Fourier transform of f ( t )  is 

F(w) = Ar/( l  + iwr) (15) 
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which has the same form as equation (I]), the Debye 
equation. So, immediately it is known that the ET 
of x(w) should be an exponential function of form 
Aexp(-t/r). In reality x ( w )  is not a continuous 
function but a sampled function and so the discrete 
Fourier transform (DFT) must be used. 

If the number of samples is of the power of two 
then the DFT may be implemented using the fast 
Fourier transform (m) algorithm. Where x ( w )  consists 
of N samples, implementation of the FFT requires 
approximately N log2 N operations. The FFT technique 
is employed here. 

In a practical measurement, ~ ' ( f )  and ~ " ( f )  are 
measured at evenly spaced intervals, Af Hz. from a 
start frequency of Af Hz to a frequency fm Hz; the latter 
being the frequency at which xm is deemed to have been 
reached. Also, the start frequency must be equal to or 
a multiple of the incremental frequency. The proposed 
technique also assumes that the zero-frequency data are 
the same as that obtained at the first measurement point. 

Furthermore, since FFT techniques require the signal 
to be transformed to be periodic, the negative of x ' ( f )  
and ~ " ( f )  from 0 to -fm Hz must be generated. This is 
a simple matter since ~ ' ( f )  and ~ " ( f )  are even and odd 
functions of f and are easily implemented in software. 

A factor that should be considered when choosing 
the incremental measurement frequency A f and the final 
frequency fm is the fact that the limits of integration of 
the integral in equation (13) are &too. In practice this 
is limited to kfm, which is equivalent to multiplying 
~ ' ( f )  by a rectangular window. Other types of windows, 
such as Hamming or triangular, may be used in order to 
minimize the effects of the rectangular window. 

4. Application of the IFFT transform 

To test the validity of the proposed technique, it was 
first applied to theoretical Debye curves, where one knew 
(from equation (15)) what the resultant IFFT should be. It 
was then tested on data obtained in a dynamic situation. 

Initially, equation (6). with xo = 1 and xm = 0, 
was plotted for a maximum o = 5 x lo8 rad s-I, 
N = 8192 points and w,,, = lo6 rad s-', and the 
corresponding Debye plots of ~ ' ( o )  and ~"(0) as shown 
in figure 1. The corresponding transform plot of f ( i )  
against time is shown in figure 2(a) and it is found to 
be of the exponential form predicted. One notes that 
its magnitude falls to l/e of its peak value in a time of 
r s. This corresponds to the time constant r = I/%, 
thus establishing the fact that the 'time-constant-time' 
of the IFFT corresponds to the average relaxation time 
of the particles under examination. Figure 2(b)  shows 
the result for the case where ,ym = 0.2 with the time 
constant the same as in the previous case. This is as 
expected since 7 is a function of om, which remains 
unchanged. Figure 2 also displays some slight distortion 
at t x 0 (as highlighted by the inset to figure 2). This 
effect arises because w does not go to infinity but is 
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Figure 1. Plot of ~ ' ( u J )  and ~ " ( u J )  against UJ (rad s-') for 
the Debye case with ,ym = 0 and n = 8192 points. 

0.8 

t [51 x 10-6 

Figure 2. (a )  Plot of F(t) against f (s) for the Debye case 
with ,ym = 0, and (b) plot of f ( f )  against f (s) for the Debye 
case with X- = 0.2. The inset illustrates the distortion in 
f ( f )  as  f approaches zero. 

truncated at w = 5 x lo8 rad s-I, which corresponds to 
a time of 1.26 x 

The technique was then applied to a profile having 
two absorption peaks occurring at oml and U,,,?, 

corresponding to approximately 10' and 1.8 x IO7 rad 
SKI respectively, as illustrated in figure 3. This profile, 
which has two distinct slopes in the ~ ' ( w )  plot, can be 
described by the expression 

s. 

x (4 = xm? + (XO - xml )/( 1 + 
+ (x-1 - xmz)/(l + i w )  

where om, = ] /TI  and w d  = 1/r2. 

approximate form 

) 
(16) 

Now the I F "  of equation (16). uft), has the 

u(f) = ( I / d ( x o  - xml)exp(-f/Td 
+ ( 1 / d ( X m i  - xm2) exp(- th)  (17) 

so, provided that om, and wd are well separated, U(#) 
should display two distinct exponential curves. 

The log-linear plot of figure 4(a) shows the result 
of transforming the data of figure 3. It clearly shows 
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Figure 3. Plot of ~ ' ( w )  and ~"(0) against w (rad s-') for 
the double-Debye case with loss-peaks at w,,~ = l o 5  rad 
s-I and wm2 = 17.8 x lo6 rad s-', respectively. 
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Figure 4. (a) Plot of log(v(t)) against t (s) for the 
double-Debye case of figure 3. (b) Plot of log(v(t)) against 
t (s) for t h e  data of figure 5. 

the two distinct decaying exponentials, B and C, which 
intercept the y axis at approximate values of log(5.55) 
and log(3.85) respectively, as determined by equation 
(17) with (x-1 - xm2) = 0.02 and ( ~ 0  - xm~) = 0.07. 

Having established that the technique was successful 
with theoretically generated data, it was then applied to 
susceptibility data obtained for a ferrofluid consisting 
of a colloidal suspension of single-domain magnetite 
particles of volume fraction q = 0.01, with a log-normal 
volume distribution of median diameter of 12.1 nm and 
a standard deviation of 0.51 dispersed in a water carrier. 

Measurements were performed over the frequency 
range 400 Hz to 3.28 MHz in steps of 400 Hz and 
the resulting plots of ,$(U), ~ " ( w )  are shown in  
figure 5, with a first loss-peak of ~ " ( w )  occurring 
at w , ~  = los rad s-',  and an incomplete second 
peak at approximately w , ~  = 1.8 x lo' rad s-] 
(highlighted in the inset of figure 5). These parameters 
correspond to those chosen in the theoretical example 
of figure 3 and enable a comparison to be made 
between its transformation, figure 4(6), and the Debye 
transformation shown in figure 4(a). It should be noted 
that the ferrofluid sample consists of a distribution of 
particle sizes and hence a distribution of relaxation 
times, whilst the theoretical case consists of only 
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Figure 5. Plot of ~'(0) and ~ " ( w )  against w (rad s-l) for 
a colloidal suspension of magnetite particles (of volume 
fraction q = 0.01, with median diameter of 12.1 nm and 
standard deviation of 0.51) dispersed in water, with two 
loss-peaks at wml = lo5 rad s-' and wm2 = 17.8 x lo6 rad 
s-' respectively. The inset shows highlights of data 
centred on "2. 

two relaxation times represented by two Debye-type 
profiles; this fact being manifest by (i), the difference 
in slopes of the corresponding ~'(0) curves and (ii). no 
longer are the log-linear plots for the two exponential 
profiles linear, reflecting the presence of a distribution 
of relaxation times. Notwithstanding these differences 
between theoretical and dynamic profiles, the similarity 
between the corresponding transformed wave forms is 
quite satisfactory, with the lower frequency exponential 
cutting the y axis at almost the same point as its 
theoretical counterpart, whilst the second exponential 
intersects at approximately log(5.5), compared with the 
theoretical intercept of log(5.55). 

5. Conclusion 

The relationship between the complex susceptibility and 
the magnetic viscosity of a system of single-domain 
particles has been presented. It has been demonstrated, 
both in a theoretical and in a practical situation, that 
the use of FFT techniques enables one to process data, 
measured in the frequency domain, to generate data in 
the time domain; data that were unmeasurable directly 
in  the time domain. Here we have effectively performed 
the equivalent time measurement over the approximate 
range 0.3 x 10m6-2.5 x s; a time region outside that 
possible with current magnetic-viscosity measurement 
techniques. 

Several papers have been published by the authors on 
measurement of the complex susceptibility of ferrofluids 
[15-171; however, this is the first time that they have 
reported on the application of such measurements to 
determine time-domain equivalent data. 

The authors have recently reported [I61 on automated 
susceptibility measurements over the frequency range 
10 Hz to 1 GHz, corresponding to a dynamic range 
of eight decades of magnetization. To the authors' 
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knowledge, the current lower frequency limit of 
commercially available, suitable automated measuring 
equipment is 5 Hz. Should future developments result 
in this lower limit being reduced towards a frequency 
of Hz, which is currently available for automated 
dielectric measurements, then this would enable the 
potential of the technique presented to be fully utilized 
in extending time measurements to the usual magnetic- 
viscosity measurement domain. 
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