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Abstract. The increasing information density in magnetic recording, the miniaturization in
magnetic sensor technology, the trend towards nanocrystalline magnetic materials and the
improved availability of large-scale computer power are the main reasons why micromagnetic
modelling has been developing extremely rapidly. Computational micromagnetism leads to a
deeper understanding of hysteresis effects by visualization of the magnetization reversal
process. Recent advances in numerical simulation techniques are reviewed. Higher order
finite elements and adaptive meshing have been introduced, in order to reduce the
discretization error. The use of a hybrid boundary/finite element method enables accurate
stray field computation for arbitrary shaped particles and takes into account the granular
microstructure of the material. A dynamic micromagnetic code based on the Gilbert equation
of motion to study the time evolution of the magnetization has been developed. Finite element
models for different materials and magnet shapes are obtained from a Voronoi construction
and subsequent meshing of the polyhedral regions. Adaptive refinement and coarsening of
the finite element mesh guarantees accurate solutions near magnetic inhomogeneities or
domain walls, while keeping the number of elements small. The polycrystalline
microstructure and assumed random magnetocrystalline anisotropy of elongated Co elements
decreases the coercive field and the switching time compared to zero anisotropy elements, in
which vortices form and move only after a certain waiting time after the application of a
reversed field close to the coercive field. NiFe elements with flat, rounded and slanted ends
show different hysteresis properties and switching dynamics. Micromagnetic simulations
show that the magnetic properties of intergranular regions in nucleation-controlled Nd–Fe–B
hard magnetic materials control the coercive field. Exchange interactions between
neighbouring soft and hard grains lead to remanence enhancement of isotropically oriented
grains in nanocrystalline composite magnets. Upper limits of the coercive field of
pinning-controlled Sm–Co magnets for high-temperature applications are predicted from the
micromagnetic calculations. Incorporating thermally activated magnetization reversal and
micromagnetics we found complex magnetization reversal mechanisms for small spherical
magnetic particles. The magnetocrystalline anisotropy and the external field strength
determine the switching mechanism. Three different regimes have been identified. For fields,
which are smaller than the anisotropy field, magnetization by coherent switching has been
observed. Single droplet nucleation occurs, if the external field is comparable to the
anisotropy field, and multi-droplet nucleation is the driving reversal process for higher fields.

1. Introduction

The micromagnetic theory is an approach to explain
the magnetization reversal or hysteresis effects of ferro-
and ferrimagnetic materials at an intermediate length
scale between magnetic domains and crystal lattice sites.
Originally in micromagnetics (Brown 1963a) a continuous
magnetization vector is used to describe the details of
the transition region between magnetic domains (Landau
1935) instead of taking account of the individual atomic
moments. Micromagnetism is a generic term used for
a wide variety of studies of magnetization structures and
reversal mechanisms in magnetic materials. Since the

mid 1980s the improved availability of large-scale computer
power has enabled the study of increasingly detailed and
subtle physical behaviour, which has also impacted on
the rapid technological development of advanced magnetic
materials. The increasing impact of magnetic materials
on many modern industries will continue well into this
century. Besides recording materials and soft magnetic
devices, also hard magnetic materials are key components
in information and transportation technologies, machines,
sensors and many other systems. Over the past few years
micromagnetism has been developing extremely rapidly
for several reasons. Modern soft and hard magnetic
materials and recording media consist of nanocrystalline
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grains with grain sizes less than 50 nm. Nanofabrication,
offering unprecedented capabilities in the manipulation
of material structures and properties, opens up new
opportunities for engineering innovative magnetic materials
and devices, developing ultra-high-density magnetic storage.
The reduced grain size considerably increases the storage
density of high-density magneto-optical and longitudinal
recording media (Weller 1999, Richter 1999). Nanoscale
Ni–Fe and Co patterned media are able to achieve
recording densities higher than 100 Gbits inch−2 (Chou
1997). Numerical micromagnetic modelling using the finite
difference or finite element method reveals the correlation
between the local arrangement of the magnetic moments
and the microstructural features on a length scale of
several nanometres. Computational micromagnetics gives a
quantitative treatment of the influence of the microstructure
and shape of the magnet device on the magnetization reversal
and hysteresis processes.

Traditional investigations of magnetization reversal in
small ferromagnetic particles assume spherical or ellipsoidal
particles uniformly magnetized along the easy direction
for zero applied field. At the nucleation field the
magnetization starts to deviate from the equilibrium state
according to the preferred magnetization mode (Frei 1957,
Aharoni 1962). The magnetization reversal mechanism
in nonellipsoidal particles has been rigorously studied
applying finite difference (Schabes 1988, Nakatani 1989) or
finite element techniques (Koehler 1992). The numerical
results clearly show that strong stray fields, which cause
the magnetization to become inhomogeneously arranged,
influence the reversal process drastically (Victora 1988, Yan
1988, Schabes 1991). Owing to stray field effects the
angular dependence of the nucleation field of nonellipsoidal
particles considerably deviates from the classical results
(Schmidts 1992). In addition to the self-demagnetizing
field of polyhedral particles, exchange and magnetostatic
interactions between the grains lead to inhomogeneous
magnetic states. Consequently interparticle interactions
affect the magnetic properties of ferromagnetic materials.
Spratt et al (1991) reported a reduced nucleation field
of two interacting cubic particles owing to magnetostatic
interactions. Fukunaga and Inoue (1992) investigated the
effects of intergrain exchange and magnetostatic interactions
on remanence and coercivity for an isotropic model magnet
composed of cubic particles. The results show that intergrain
exchange interactions increase the remanence and reduce the
coercive field of isotropic permanent magnets. To investigate
the effects of long-range magnetostatic interactions in
sintered permanent magnets, simplified numerical models
have been developed (Ramesh 1988, Blank 1991, Gabay
1992). These models take correctly into account the
interactions between the particles, but derive the nucleation
field of the individual particles by fitting the numerically
calculated demagnetization curves to experimental hysteresis
loops. Thus, these models favourably describe collective
effects on the demagnetization curve, whereas they neglect
the microstructural origins, which determine the nucleation
field. Hernando et al (1992) presented a one-dimensional
micromagnetic model for investigating intergrain exchange
interactions in hard magnetic materials. The formation

of a domain-wall like magnetization distribution at the
interface between neighbouring grains with different
orientation reduces the nucleation field drastically. Zhu and
Bertram (1988) studied interparticle interactions in thin-film
recording media represented by a two-dimensional array
of hexagonal grains. Decreasing the effective exchange
coupling between the grains enhances coercivity and reduces
coercive squareness. Long-range magnetostatic interactions
correlate the magnetization over several grains resulting
in magnetic clustering. New numerical procedures were
developed describing the dynamical behaviour by the
finite element method in three-dimensional micromagnetic
systems by Yang and Fredkin (1998). Modelling the
thin-film microstructure by randomly located ellipsoidal
particles, Miles and Middleton (1990) showed that the spatial
arrangement of the grains affects the hysteresis properties
owing to magnetostatic interactions. Micromagnetic models
have been used to derive the recording properties of dual-
layer thin-film recording media (Zhu 1992, Oti 1993). Vos
et al (1993) developed a micromagnetic model to investigate
interaction effects in particulate recording media. The
numerical results obtained for an assembly of ellipsoidal
particles show that the interplay between particle shape
and magnetostatic interactions significantly affects coercivity
and coercive squareness. Nanocrystalline ferromagnets
show excellent soft magnetic properties. As the grain
size becomes smaller than the ferromagnetic exchange
length, exchange interactions between the grains suppress
the magnetocrystalline anisotropy of the individual particles.
With decreasing grain size coercivity steeply decreases,
varying with the sixth power of the grain size (Herzer
1990). The random anisotropy model (Alben 1978) can be
successfully applied to describe the grain size dependence
of coercivity and initial permeability in nanocrystalline
ferromagnets. Whereas the random anisotropy model
completely neglects microstructural features, Navarro et al
(1993) investigated the role of intergrain exchange coupling
between magnetically hard and soft phases in nanocrystalline
ferromagnets.

A large number of scientific papers concentrate
nowadays on such areas as (i) how to incorporate thermally
activated magnetization reversal in the framework of the
micromagnetic concept (Boerner 1997, Chantrell 1998,
Lyberatos 1993, Nakatani 1997, Zhang 1999), (ii) how to
simulate the influence of complex microstructures on the
magnetization reversal and to expand the theory to new
techniques for the simulation of large-scale systems, such
as magnetic storage devices, sensors and others. Future
activities will concentrate on the development of hybrid
micromagnetic models including Monte Carlo approaches
(Hinzke 1999, Nowak 2000).

We developed a new numerical procedure to study
static and dynamic behaviour in micromagnetic systems.
This procedure solves the damped Gilbert equation for
a continuous magnetic medium, including all interactions
in standard micromagnetic theory in three-dimensional
regions of arbitrary geometry, polycrystalline grain structure
and physical properties. Sections 2–5 of the paper
give the micromagnetic background and the computational
details. This paper reviews recent advances in numerical
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micromagnetic 3D simulations and shows how our numerical
micromagnetic code has been used to solve actual problems
in novel magnetic materials and devices. This code has been
successfully applied to various problems, such as switching
dynamics of magnetic NiFe and Co elements (Schrefl
1997a, c) remanence enhancement in exchange-coupled,
nanocrystalline (Nd2Fe14B)x(Fe3B/α-Fe)1−x hard magnets
(Schrefl 1998, 1999b), the nucleation field of high energy
density Nd2Fe14B magnets (Suess 2000), the domain wall
pinning in high-temperature Sm(Co,Fe,Cu,Zr)7−8 magnets
(Streibl 2000), the thermal activation and switching field
of small Co particles (Scholz 2000) and the incorporation
of the method of adaptive mesh refinement (Scholz 1999).
Sections 6–8 present the numerical results focusing on
the interaction between microstructural features and the
magnetization reversal processes.

2. Micromagnetic equations

Micromagnetism is essentially a continuum approximation
which allows the calculation of magnetization structures
and magnetization reversal assuming the magnetization
to be a continuous function of position, and deriving
relevant expressions for the important contribution arising
from the exchange, magnetostatic and anisotropy energies.
Minimizing the total Gibb’s free energy with respect to
the magnetization yields a stable equilibrium state of the
magnetic structure. All energy terms but the stray field
energy depend only locally on the magnetization. Thus the
direct evaluation of the total magnetic Gibb’s free energy
requires both large memory space and long computation
time. The magnetostatic field is a long-range interaction
whose calculation is the most time-consuming part of the
micromagnetic problem. Introducing a magnetic vector
potential to treat the demagnetizing field eliminates long-
range interactions from the total magnetic Gibb’s free
energy (Asselin 1986, Aharoni 1991). This leads to a
sparse, algebraic minimization problem. Since the magnetic
polarization J and the magnetic vector potential A are
independent variables, the minimization can be performed
simultaneously with respect to J and A. Alternatively, it
is possible to introduce a magnetic scalar potential � to
compute the demagnetizing field. The energy functional is
free from any long-range term leading to effective numerical
algorithms that require only limited memory.

Starting from the vector of the magnetic polarization as
a function of space and time

J(r, t) = Js · u(r, t)
∑

u2
i = 1 (1)

leads to a standard total free energy expression for a system
within a certain volume:

Et(J,A) =
∫ [

A

J 2
s

(∇J)2 − K1

(
uc · J

Js

)2

−J · Hext +
1

2µ0
(∇ × A − J)2

]
dV (2)

or

Et(J, �) =
∫ [

A

J 2
s

(∇J)2

−K1

(
uc · J

Js

)2

− J · Hext − J · ∇�

]
dV (3)
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Figure 1. Damped gyromagnetic precession motion of a single
magnetic polarization vector J towards the effective magnetic
field Heff according to the Gilbert equation of motion.

with the constraint

�� = − 1

µ0
∇J . (4)

The temperature dependent constants Js , A, K1 are the
saturation polarization, the exchange constant and the
magnetocrystalline anisotropy constant, respectively. The
first term of the total energy expression is the exchange
energy, followed by the magnetocrystalline anisotropy
energy for uniaxial systems with the easy axis direction uc,
the Zeeman coupling to an external magnetic field Hext

and the stray field energy arising from magnetic dipole
interactions. The last term is the most severe problem to be
solved. In order to save computation time the demagnetizing
field is sometimes solved analytically. Because of this
problem there is also a tendency to utilize extremely
simplified, regular microstructures whose periodicity can
be used to speed up the magnetic field calculations, but
which can be shown to introduce unwanted artefacts into
the computational results. The direct computation of the
demagnetizing field from the magnetic volume and surface
charges (Aharoni 1996) scales with N2 in storage and
computation time, where N denotes the number of grid
points in a finite different or finite element discretization
of the magnetic device. Fast adaptive algorithms have
been applied in numerical micromagnetics using FFT or
multipole expansion on regular computational grids (Yuan
1992), in order to speed up the calculations. Finite
element based micromagnetic codes effectively treat the
microstructure of the system, including the shape of the
magnet and the irregular grain structure (Schrefl 1999a).
The FFT method cannot be applied on the corresponding
unstructured mesh, such as in finite element field calculation,
where micromagnetic finite element simulations introduce a
magnetic scalar or magnetic vector potential to calculate the
demagnetizing field (Schrefl 1999a). Fredkin and Koehler
(1990) proposed a hybrid finite element (FE)/boundary
element (BE) method to treat the open boundary problem
associated with calculation of the magnetic scalar potential.
This method is accurate and allows the calculation of
the magnetostatic interaction between distinct magnetic
elements without any mesh between the magnetic particles.
However, the conventional boundary element method
requires storage of a dense matrix.
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From the thermodynamical principle of irreversibility,
the equation of motion for the magnetic polarization was
derived by Landau and Lifshitz (1935)

∂J

∂t
= − |γ |

1 + α2
(J × Heff )− α

Js(1 + α2)
[J × (J × Heff )]

(5)
with

Heff = −δEt

δJ
(6)

or in the equivalent form given by Gilbert (1955)

∂J

∂t
= −|γ |(J × Heff ) +

α

Js

(
J × ∂J

∂t

)
. (7)

In numerical micromagnetics generally the following scheme
is used in order to calculate a hysteresis loop. At first the
model magnet is saturated applying a high external field.
The uniform magnetic state with magnetization pointing
parallel to the field direction corresponds to a minimum
of the total magnetic Gibb’s free energy. The repeated
minimization of the energy for decreasing and increasing
the applied field provides the hysteresis curve. A small
change in the external fields alters the energy surface slightly
and thus the system is no longer in equilibrium. Unless
the change of the external field alters the curvature of the
energy surface, the current position of the system will be
close to a local minimum of the energy. If the local
minimum vanishes as the curvature changes, the system has
to find its path towards the next local minimum. Equations
(5) and (7) describe the physical path the system follows
towards equilibrium (figure 1). The effective field Heff ,
which provides the torque acting on the magnetization, is the
negative functional derivative of the total magnetic Gibb’s
free energy. The first term on the right-hand side of (5)
and (7) describes the gyromagnetic precession, where γ

is the gyromagnetic ratio of the free electron spin. The
second term describes the dissipation of energy. It causes
the magnetization to become aligned parallel to the effective
field as the system proceeds towards equilibrium; the Gilbert
damping parameter α is dimensionless. Alternatively,
numerical minimization methods may be used to compute
the equilibrium states, which considerably reduce the
computational effort as compared to the numerical integration
of the Gilbert equation. The dynamic micromagnetic
simulation allows one to describe the time evolution of the
magnetization, if the damping parameter α is sufficiently
known. For common ferromagnetic materials α is not
constant and depends nonlinearly on the magnetization. For
numerical convenience α is often set to a value between 0.1
and 1, which results in a reduced computation time. Usually
the Gilbert damping parameter is determined from the line
broadening in ferromagnetic resonance measurements. The
deeper understanding of the damping process is rather
complex. The origin of magnetic moments is primarily
due to the spin of the charge carriers. Only quantum
mechanics describes the interactions between the charge
carriers with each other. In the phenomenological description
of micromagnetics the effect of the microscopic physical
processes are accommodated into the single parameter α,
which governs the rate of approach to equilibrium and is

y, (t) 

x
∆

∆

(∆t) 

boundary condition 

(i,j+1) 

(i,j-1) 

(i+1,j) (i-1,j) 

(i,j) 

Figure 2. Schematic discretization of a given region in the
(x, y)/(x, t) plane, subdivided into FD elements, in which the
micromagnetic equations are satisfied.

used to fit the experiment (Inaba 1997). The fact that α has
different values under different conditions, and appears to
be a function of the magnetization state, indicates that the
extent of the contribution from spin–spin interactions, which
can be formulated in terms of magnon–magnon scattering
processes, plays an important role in determining the value
α (Wongsam 2000, Garanin 1997).

3. Micromagnetic concept of the finite difference
technique

The finite-differences (FD) method is a widely used
numerical method for finding approximate values of solutions
of problems involving partial differential equations. The
basic idea of the method consists of approximating the partial
derivatives of a function u(r, t) by finite difference quotients
�x, �y, �z and �t .

u(x + �x, y, z, t) = u(x, y, z, t) + �x
∂u(x, y, z, t)

∂x

+
(�x)2

2

∂2u(x, y, z, t)

∂x2
+ · · · . (8)

The process of replacing partial derivatives by FD quotients
is known as a discretization process and the associated error is
the discretization error. A partial differential equation can be
changed to a system of algebraic equations by replacing the
partial derivatives in the differential equation with their FD
approximations. The system of algebraic equations can be
solved numerically by an iterative process in order to obtain
an approximate solution. The FD method is nowadays widely
used to solve elliptic, hyperbolic and parabolic equations.
Most numerical micromagnetic simulations rely on the finite
difference method (Zhu 1995).

Figure 2 schematically shows a given region in the
(x, y)/(x, t) plane, subdivided into FD elements, in which
the partial differential equation is satisfied. The solution or
derivative is specified on the boundary. The approximate
solution at the interior grid points is obtained by solving a
system of algebraic equations. Replacing both space and
time derivatives by their FD approximations, we can solve
for the u(i, j) in the difference equation explicitly in terms
of the solution at earlier values of time. This process is called
an explicit-type marching process. Stable solutions are only
obtained in all cases if the chosen time steps are sufficiently
small compared to the spatial discretization.

In order to solve numerically the Landau–Lifshitz (5)
or Gilbert equation (7) with the effective field (6), we
have to convert it into a form which can be translated
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into an algorithm for a digital computer with finite speed
and memory. We have to reduce the problem of finding
a continuous solution to one with finite dimensionality
(Grossmann 1994). In the FD method, as later in the FE
method, we replace the continuous solution domain by a
discrete set of lattice points. In each lattice point we replace
any differential operators by FD operators. The conditions
on the boundary of the domain have to be replaced by
their discrete counterparts. For some differential equations,
such as the wave equation in one dimension, it is even
possible to construct exact algorithms by non-standard FD
schemes (Cole 1998). However, this is rarely the case, and
so the finite difference method gives only an approximate
solution. For our problem of calculating the effective field
and integrating the Landau–Lifshitz or Gilbert equation, we
have to discretize time and space into regular lattices. For the
space discretization a regular cubic lattice has been chosen,
because it allows the simplest implementation and irregular
lattices are more efficiently handled with the FE method. The
time integration is also done on a regular lattice.

Each computational cell has a magnetic moment
�x�y�zJi/µ0 which is the product of its volume�x�y�z
and the saturation magnetization of the material. The time
evolution of the magnetization is obtained by integrating
equation (5) or (7) for each computational cell. The local
field is calculated after each time step for each computational
cell. In order to calculate the contribution of the exchange
interaction to the effective field, we have to discretize the first
term in equation (2). The final result of the contribution of
the discretized exchange energy to the effective field at the
lattice site i is

Hexch,i = 2A

�x2 · J 2
s

∑
i∈NN

Ji (9)

where NN stands for the indices of the nearest neighbours.
The approximation of the partial derivatives by FDs is

only valid for small arguments, and in our case for small
angles between neighbouring magnetization vectors. Other
exchange energy representations have been suggested and
compared (Donahue 1997), but none of them has significant
advantages over the one derived above. The contributions
by the external field and the magnetocrystalline anisotropy
to the effective field are straightforward:

Hani = 2K1

J 2
s

uc(J · uc). (10)

Another difficulty arises from the calculation of the
demagnetizing field. Within each computational cell, the
Wigner–Seitz cell of the lattice point, the magnetization is
assumed to be homogeneous. We could now try to discretize
Poisson’s equation of the scalar magnetic potential � inside
the magnet and Laplace’s equation of � outside the magnet.
However, for a lattice of homogeneously magnetized cubes,
it is possible to calculate the demagnetizing field analytically
(Schabes 1987). The expressions obtained are quite complex
and computationally expensive to implement. Since the
calculation of the demagnetization field by a magnetic scalar
potential is very efficiently implemented in the FE package,
a third possibility has been chosen for the FD program.

This is the approximation of the demagnetization field of
each computational cell by the field of a magnetic dipole in
the centre of the cell with the magnetic moment �x3Ji/µ0

(Opheusden 1990, Boerner 1997).

Hdip = − �x3

µ04π

∑
j �=i

(
Jj

R3
ij

− 3
Rij (Jj · Rij )

R5
ij

)
. (11)

The inaccuracy is not large and the true long-range nature
of the problem is kept (Aharoni 1991). This is due
to the fact, that the quadrupole moment of a uniformly
magnetized cube is identically zero. Only the next term in a
multipole expansion, the octapole term, would give a nonzero
contribution (DellaTorre 1986). Many research groups use
the FD method for their micromagnetic simulations. The
calculation of the demagnetizing field is often done by
more advanced methods based on the analytic solution for
homogeneously magnetized hexahedra (Schabes 1987) or
fast Fourier transformations (Berkov 1998, Fabian 1996).
However, stiff modes cause deteriorating convergence rates
(Lewis 1997).

Another problem arises from complicated geometries
(possibly with curved boundaries) and irregular microstruc-
tures. As the finite difference method requires the use of a reg-
ular lattice, it is difficult to handle curved boundaries, because
they are always approximated by small steps. Only recently,
the ‘embedded curved boundary method’ succeeded in gener-
ating results similar to those of the FE method (Parker 2000,
Gibbons 1999). Expect in the case of simple geometries
and boundary conditions, it is almost impossible to achieve
a direct analytical solution of the micromagnetic differential
equations. Numerical methods are generally required to ob-
tain the solution for all but the simplest geometries, but the
use of the FD method can become tedious, when modelling
complex shapes found in micromagnetic problems.

4. FE techniques in micromagnetics

The FE method has become a well established method
in many fields of computer aided engineering, such as
structural analysis, fluid dynamics, and electromagnetic field
computation. However, its flexibility in modelling arbitrary
geometries comes at the cost of a more complex mathematical
background. There are three main steps during the solution
of a partial differential equation (PDE) with the FE method.
First, the domain, on which the PDE should be solved, is
discretized into finite elements. Depending on the dimension
of the problem these can be triangles, squares, or rectangles
in two dimensions or tetrahedrons, cubes, or hexahedra for
three-dimensional problems. The solution of the PDE is
approximated by piecewise continuous polynomials and the
PDE is hereby discretized and split into a finite number
of algebraic equations. Thus, the aim is to determine the
unknown coefficients of these polynomials in such a way,
that the distance (which is defined by the norm in a suitable
vector space) from the exact solution becomes a minimum.
Therefore, the FE method is essentially a minimization
technique for variational problems. Since the number of
elements is finite, we have reduced the problem of finding
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Figure 3. (a) Triangulation of a two-dimensional domain into
finite elements. (b) Interpolation using a linear function within a
triangular finite element between the nodal points 0, 1 and 2. (c) is
an example for the shape function ϕ2(x, y) for a quadrilateral.

a continuous solution for our PDE to calculating the finite
number of coefficients of the polynomials.

The principle of the FE method involves transforming
the field equations into an energy functional:

I [J,A] =
∫

F {Jx(r), Jy(r), Jz(r), Ax(r),

Ay(r), Az(r),�(r) . . .} dV. (12)

The functional I [J,A] has a numerical value at each point
within a region and is an integral representation throughout
the entire field volume of the variables that are functions of the
geometry, material properties, the potential solution and its
derivatives. The first variation of the energy functional with
respect to its variables yields the original PDE of the field.
Asselin and Thiele (1986) showed that the first variation of (2)
leads to Brown’s micromagnetic (Brown 1963a) equations
and the equation for the vector potential A. A suitable
functional will therefore be any expression whose minimum,
obtained by differentiation with respect to potential and being
set equal to zero, is the field expression. This procedure is
performed for each nodal potential at each element in a set of
linear algebraic equations which describe the entire region.
Under these conditions, the distribution of J(r, t) may be
determined from the energy functional rather than from the
PDE at the nodal points of the mesh and suitably interpolated
within each finite element.

The FE method is a particular Galerkin method,
which uses piecewise polynomial functions to construct
the finite dimensional subspace. The solution domain is

divided into many small subdomains, referred to as finite
elements. In two space dimensions these elements are
usually triangles (figure 3(a)) or convex quadrilaterals, while
in three dimensions tetrahedra, prisms and hexahedra are
commonly employed. This subdivision process is usually
called triangulation. The collection of all elements is referred
to as the FE mesh or grid. The FE solution is initiated by
dividing the entire region into elements of various shapes,
as shown in figure 3. These element boundaries adapt much
more readily to complex geometries than in the case of FD
elements.

The value of the potential/function u(r) is calculated at
N nodal points of the mesh, and the function is interpolated
in each element (linear, quadratics, cubics, . . .):

u(x, y) = a + b1x + c1y + b2x
2 + c2y

2 + · · · b3x
3 + c3y

3 + · · · .
(13)

Within each element, the potential/function u(r) is described
in the 2D space according to its nodal values ui :

u(x, y) = 1

L

2∑
i=0

Li(x, y)ui. (14)

In micromagnetics the magnetic polarization is defined at the
nodal points of the FE mesh. The magnetic polarization J(r)

may be evaluated everywhere within the model magnet, using
the piecewise polynomial interpolation of the polarization
on the FE mesh. Figure 3(b) illustrates the interpolation
using a linear function on a triangular finite element. The
polarization in a point r within the element is the weighted
average of the magnetization at the nodal points 0, 1 and 2.

J(r) = 1

L0 + L1 + L2

2∑
i=0

LiJ(ri )

= 1

L
[L0J(r0) + L1J(r1) + L2J(r2)] =

2∑
i=0

ϕiJ(ri ). (15)

L denotes the total area of the element and Li are the areas
of the subtriangles. A similar interpolation scheme applies
for tetrahedral elements in three dimensions. The function
ϕi = Li/L is called a shape function, which equals one on
the node i and is zero on all the other nodes of the element
(figure 3(c)). The shape function ϕi(r) satisfies the condition

ϕi(rj ) = δij (16)

where rj denotes the cartesian coordinates of the nodes
j = 1, . . . , N . Figure 3(c) depicts an example for the shape
function ϕi .

The FE mesh is used to integrate the total magnetic
Gibb’s free energy over the magnet. The energy integral is
then replaced by a sum over cells (triangles, tetrahedrons,
hexahedrons, etc), and (15) is applied to perform the
integration of the energy over each cell.

Both static and dynamic micromagnetic FE calculations
start from the discretization of the total magnetic Gibb’s
free energy (2). When J(r) is approximated by piecewise
polynomial functions on the FE mesh, the energy functional
reduces to an energy function with the nodal values of the
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polarization, Ji = (Jx,i , Jy,i , Jz,i), as unknowns. The total
energy may be written as

Et = Et [J(r)] = Et(Jx,1, Jy,1, Jz,1, Jx,2, Jy,2, Jz,2, . . . ,

Jx,N , Jy,N , Jz,N ) (17)

where N is the total number of nodal points. The
minimization of (17) with respect to the 3N variables Ji

subject to the constraint |Ji | = Js provides an equilibrium
distribution of the polarization. To satisfy the constraint,
polar coordinates θi, φi for the polarization at node i may
be introduced, such that Jx,i = Js sin θi cosφi , Jy,i =
Js sin θi sin φi , Jz,i = Js cos θi . An alternative approach
(Koehler 1997) is to normalize the magnetization in the
discretized energy function (17), replacing Ji by Ji/Js . In
both cases, the minimization may be effectively performed
using a conjugate gradient method (Gill 1993). Conjugate
gradient based minimization techniques require the gradient
of the energy to select the search directions. Using polar
coordinates, the gradient of the energy can be expressed as

∂Et

∂θi
= ∂Et

∂Jx,i

∂Jx,i

∂θi
+

∂Et

∂Jy,i

∂Jy,i

∂θi
+
∂Et

∂Jz,i

∂Jz,i

∂θi

= − ViHeff,i · ∂Ji

∂θi
(18)
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∂Jx,i

∂φi
+

∂Et

∂Jy,i

∂Jy,i

∂φi
+
∂Et

∂Jz,i

∂Jz,i

∂φi

= − ViHeff,i · ∂Ji

∂φi
. (19)

The effective field Heff at the nodal points of the FE mesh
is calculated within the framework of the box method. The
effective field at nodal point i of the FE mesh is approximated
by (Gardiner 1985)

Heff,i = −
(
δEt

δJ

)
i

≈ − 1

Vi

∂Et

∂Ji

(20)

whereVi is the volume of a ‘box’ surrounding the nodal point
i.

Both static and dynamic micromagnetic calculations
require evaluation of the effective field (20) at the nodal
points of the FE mesh. The effective field is the sum of the
exchange field, the anisotropy field, the magnetostatic field,
and the external field. The exchange field and the anisotropy
field depend only locally on the magnetization or its
spatial derivatives and thus may be directly calculated using
(20). The magnetostatic field depends on the magnetization
distribution over the entire magnet. It arises from the
non-zero divergence within the grains (‘magnetic volume
charges’) and the intersection of the magnetization with
the grain surface (‘magnetic surface charges’). Numerical
micromagnetics makes use of the well established methods
for the FE calculation of magnetostatic fields (Silvester
1983). The magnetostatic field is either derived from a
magnetic scalar or magnetic vector potential. The FE
discretization of the corresponding PDE leads to a system
of linear equations. Owing to the local character of the
equations the corresponding system matrix is symmetric
and sparse. State of the art solution techniques for sparse
linear systems consist of a preconditioning step, followed
by the iterative solution of the linear system using a

conjugate gradient based method. For a given FE mesh the
preconditioning of the system matrix has to be done only
once, reducing the effort for the subsequent calculations of
the magnetostatic field to about N1,3 (Marsal 1989), where
N is the total number of grid points. Thus, the use of the FE
method to treat the auxiliary problem for the magnetostatic
field provides an alternative fast solution technique without
any restriction on the geometry of the magnetic particles.

The magnetostatic contribution to the effective field is
the negative gradient of the magnetic scalar potential. The
magnetic scalar potential satisfies the Poisson equation

��(r) = 1

µ0
∇ · J(r). (21)

Outside the magnetic particle J equals zero and thus (21)
reduces to the Laplace equation. At the boundary of the
magnet r the boundary conditions hold

�int = �ext (∇�int − ∇�ext ) · n = 1

µ0
J · n. (22)

Here n denotes the outward pointing normal unit vector.
The magnetic scalar potential is regular at infinity. The
Galerkin method is applied to transfer the magnetostatic
boundary value problem to a system of linear equations. The
PDE (21) is multiplied by test functions, and integrated over
the problem domain. Within the framework of the Galerkin
method, the shape functions ϕi , given by (16), are used as
test functions.∫ [

��(r) − 1

µ0
∇ · J(r)

]
· ϕi(r) dV = 0. (23)

The test functions ϕi are the basis functions for the expansion
of � on the FE mesh.

�(r) =
∑
i

ϕei (r)�i = ϕei (r)�i (24)

where �i denotes the values of the magnetic scalar potential
at the nodes of the element. Integration by parts of (23),
inserting the boundary condition (22), and replacing�(r) by
(24) yields the sparse, linear system of equations that gives
the potential �, at nodes i of the FE mesh.

In order to impose the regularity condition, the FE mesh
has to be extended over a large region outside the magnetic
particles (at least five times the extension of the particle (Chen
1997)). Various other techniques have been proposed to
reduce the size of the external mesh or to avoid a discretization
of the exterior space. The use of asymptotic boundary
conditions (Yang 1998) reduces the size of the external mesh
as compared to truncation. At the external boundary, Robbin
conditions, which are derived from a series expansion of the
solution of the Laplace equation for� outside the magnet and
give the decay rate of the potential at a certain distance from
the sample, are applied (Khebir 1990). A similar technique
that considerably reduces the size of the external mesh is the
use of space transformations to evaluate the integral over the
exterior space. Among the various transformations proposed
to treat the open boundary problem, the parallelepipedic shell
transformation (Brunotte 1992), which maps the external
space into shells enclosing the parallelepipedic interior
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domain, has proved to be most suitable in micromagnetic
calculations. The method can be easily incorporated
into standard FE programs transforming the derivatives of
the nodal shape functions. This method was applied in
static three-dimensional micromagnetic simulations of the
magnetic properties of nanocrystalline permanent magnets
(Schrefl 1998, Fischer 1998a).

An alternative approach to treat the so-called open
boundary problem is a hybrid FE/BE method (Fredkin 1990,
Koehler 1997). The basic concept of this method is to split
the magnetic scalar potential into � = �1 + �2, where
the potential �1 is assumed to solve a closed boundary
value problem. Then the equations for �2 can be derived
from (21)–(22), which hold for the total potential � =
�1 + �2. The potential �1 accounts for the divergence of
the magnetization and �2 is required to meet the boundary
conditions at the surface of the particle. The potential �1

is the solution of the Poisson equation within the magnetic
particles and equals zero outside the magnet. At the surface of
the magnet natural boundary conditions hold. The potential
�2 satisfies the Laplace equation everywhere and shows a
jump at the boundary of the magnetic particle

�int
2 (r) − �ext

2 (r) = �1(r). (25)

These conditions define a double layer potential �2 which
is created by a dipole sheet with magnitude �1. �2 can be
evaluated using the BE method (Jackson 1982). After dis-
cretization, the potential �2 at the boundary nodes follows
from a matrix vector multiplication �2 = B�1, where B is
a m × m matrix which relates the m boundary nodes with
each other. Once �2 at the boundary has been calculated,
the values of �2 in the particles follow from Laplace’s equa-
tion with Dirichlet boundary conditions, which again can be
solved by a standard FE technique. The matrix B depends
only on the geometry and the FE mesh and thus has to be
computed only once for a given FE mesh. Since the hybrid
FE/BE method does not introduce any approximations, the
method is accurate and effective. The use of the BE method
easily treats the magnetostatic interactions between distinct
magnetic particles and requires no mesh outside the mag-
netic particles. Suess et al (1999) applied the hybrid FE/BE
method, in order to simulate the effect of magnetostatic inter-
actions on the reversal dynamics of magnetic nano-elements.

5. Static and dynamic numerical micromagnetic
simulations

The use of a magnetic scalar potential in numerical
micromagnetic calculations (3), requires one to solve a
system of linear equations associated with the magnetostatic
boundary value problem (4), whenever the total magnetic
Gibb’s free energy or the effective field has to be
evaluated. An alternative approach to treat the magnetostatic
interactions is the use of a magnetic vector potential.
Then micromagnetic problems can be reformulated as
an algebraic minimization problem with the nodal values
of the magnetization angles θi, φi and the nodal values
of the magnetic vector potential A as unknowns (2).
The simultaneous minimization of the total energy with

respect to J and A provides the equilibrium configuration
of the magnetization (Aharoni 1996). The integral of
(2) is an integration over the entire space and proper
techniques to treat the open boundary problem have to be
applied. The first variation of (2) gives the unconstrained
curl–curl equation for the magnetic vector potential, which
is the equation commonly solved in magnetostatic field
calculations. Thus, the use of a magnetic vector potential
in numerical micromagnetics treats the magnetostatic field
in the very same way as conventional FE packages for
magnetostatic field calculation (Demerdash 1990).

Either a box scheme or the Galerkin method can be
applied to discretize the Gilbert equation of motion (7) in
space. This reduces to three ordinary differential equations
for each node of the FE mesh, using the box scheme (9)
to approximate the effective field. The resulting system of
3N ordinary differential equations describes the motion of
the magnetic moments at the nodes of the FE mesh. The
system of ordinary differential equations is commonly solved
using a predictor corrector method or a Runge–Kutta method
for mildly stiff differential equations. Small values of the
Gilbert damping constant α or a complex microstructure will
require a time step smaller than 10 fs, if an explicit scheme
is used for the time integration. In this highly stiff regime,
backward difference schemes allow much larger times steps
and considerably reduce the required CPU time. An implicit
time integration scheme can be derived, applying the Galerkin
method directly to discretize the Gilbert equation (7). A
backward difference method (Hindmarsh 1995) is used
for time integration of the resulting system of ordinary
differential equations. Since the stiffness arises mainly from
the exchange term, the magnetostatic field can be treated
explicitly. During a time interval τ , the Gilbert equation
is integrated with a fixed magnetostatic field using a higher
order backward difference method. The magnetostatic field
is updated after time τ , which is taken to be inversely
proportional to the maximum torque maxi |Ji × Heff,i |
over the FE mesh. The hybrid FE/BE method is used to
calculate the magnetostatic field. In highly stiff regimes, the
semi-implicit scheme requires less CPU time as compared
to a Runge–Kutta method, despite the need to solve a
system of nonlinear equations at each time step. A semi-
implicit time integration scheme was applied to calculate the
magnetization reversal dynamics of patterned Co elements,
taking into account the small-scale, granular structure of the
thin film elements (Schrefl 1999c). Dynamic micromagnetic
calculations using the FE method and backward difference
were originally introduced by Yang (1996) and applied to
study the magnetization reversal dynamics of interacting
ellipsoidal particles (Yang 1998).

6. Numerical simulations of NiFe and granular Co
elements

Patterned magnetic elements used in random access
memories (MRAM) and future sensor applications require
a well defined switching characteristic (Kirk 1999).
The switching speed of magnetic devices has been of
interest since the application of magnetic core memories.
Recently, experimental measurements as well as numerical
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Figure 4. Top view of polarization patterns during the switching of the elements with rounded (a) and slanted ends (b), assuming an
extension of 100 × 50 × 10 nm3 and a Gilbert damping constant of α = 0, 2. The external field Hext = −80 kA m−1 is applied at an angle
of 5◦ with respect to the long axis.

micromagnetic simulations (Russek 1999, Gadbois 1998,
Koch 1998) were applied to analyse the reversal modes and
switching times of MRAM memory cells. Russek (1999)
showed that it is possible to successfully switch pseudo-
spin valve memory devices with a width of 400–800 nm
with pulses whose full width at half maximum is 0.5 ns.
Gadbois et al (1998) investigated the influence of tapered
ends and edge roughness on the switching threshold of
memory cells. Koch et al (1998) compared experimental
results with micromagnetic simulations of the switching
speeds of magnetic tunnel junctions. In a theoretical study,
Kikuchi (1956) investigated the dependence of the switching
time on the Gilbert damping constant α. Solving the Gilbert
equation of motion, he derived the critical value of α which
minimizes the reversal time. The critical damping occurs for
α = 1 andα = 0.01 for uniform rotation of the magnetization
in a sphere and an ultra-thin film, respectively.

Using the hybrid FE/BE method (Schrefl 1997b), we
investigated the influence of size and shape on the switching
dynamics of sub-micron thin-film NiFe elements. The
numerical integration of the Gilbert equation of motion
provides the time resolved magnetization patterns during the
reversal of elements with flat, rounded, and slanted ends. A
Runge–Kutta method, optimized for mildly stiff differential
equations (Sommeijer 1998), proved to be effective for the
simulation using a regular FE mesh and α � 0.2. However,
for an irregular mesh as required for elements with rounded
ends and a Gilbert damping constant α = 0.1 a time step
smaller than 10 fs is required to obtain an accurate solution
with the Runge–Kutta method. In this highly stiff regime,
backward difference schemes allow much larger time steps
and thus the required CPU time remains considerably smaller

Figure 5. Time evolution of the magnetization component parallel
to the field direction for a 2:1 aspect ratio NiFe element with
flat (A), rounded (B), and slanted (C) ends with an extension of
100 × 50 × 10 nm3.

than with the Runge–Kutta method. Since the stiffness arises
mainly from the exchange term, the demagnetizing field
can be treated explicitly and thus is updated after a time
interval τ . During the time interval τ the Gilbert equation
is integrated with a fixed demagnetizing field using a higher
order backward difference method. τ is taken to be inversely
proportional to the maximum torque acting over the FE mesh.

Figure 4 compares the transient state during magneti-
zation reversal of a NiFe thin film element with rounded
and slanted shapes. A spontaneous magnetic polarization of
Js = 1 T, an exchange constant ofA = 10−11 J m−1 and zero
magnetocrystalline anisotropy were assumed for the calcula-
tions. The extension of the tetrahedron elements was smaller
or equal 5 nm, which corresponds to the exchange length of
the material. At first the remanent state of the elements was
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Figure 6. (a) Vortex domain formation at an applied field of 19 kA m−1 for an elongated NiFe nano-element with 10 nm thickness.
(b) Magnetization reversal in a two-pointed elongated element, in which the end domain formation is suppressed at Hext = 43 kA m−1.
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Figure 7. (a) Microstructure of the polycrystalline Co element with 200 × 40 × 25 nm3. (b) FE discretization of the element.
(c) Magnetization ripple structure for zero applied field.

calculated solving the Gilbert equation for zero applied field.
The initial state for these calculations was a ‘C’-like domain
pattern. This procedure is believed to provide the minimum
energy state for zero applied field. Then a reversed field of
Hext = 80 kA m−1 was applied at an angle of 5◦ with re-
spect to the long axis of the particles. Figure 5 gives the
time evolution of the magnetization component parallel to
the field direction during the switching process for the NiFe
elements with an extension of 100×50×10 nm3 and a Gilbert
damping constant of α = 0.2 and clearly shows the effect of
the element symmetry on magnetization reversal. Switching
occurs by nonuniform rotation of the magnetization. The el-
ements with slanted ends show the fastest switching speed.
As compared to the other elements the magnetization remains
nearly uniform during the reversal process, which reduces the
switching time. After the rotation of the magnetization to-
wards the direction of the applied field, the magnetization
precesses around the direction of the effective field. As a
consequence the magnetization as a function of time shows
oscillations. Micromagnetic FE simulations show that the
shape, the size, and the damping constant significantly influ-
ence the switching behaviour of thin-film elements.

Submicron NiFe elements with an extension of 200 ×
100 × 10 nm3 switch well below 1 ns for an applied field
of 80 kA m−1, assuming a Gilbert damping constant of
0.1. The elements are reversed by nonuniform rotation.
Under the influence of an applied field, the magnetization
starts to rotate near the ends, followed by the reversal of the
centre. This process only requires about 0.1 ns. In what
follows, the magnetization component parallel to the field
direction shows oscillations which decay within a time of
0.4 ns. The excitation of spin waves originates from the
gyromagnetic precession of the magnetization around the
local effective field. A much faster decay of the oscillations
occurs in elements with slanted ends, where surface charges
are caused in the transverse magnetostatic field. The time
required for the initial rotation of the magnetization decreases
with decreasing damping constant and is independent of the
element shape. However, the element shape influences the
decay rate of the oscillations. A rapid decay is observed in
elements with slanted ends.

Magnetic nano-elements may be the basic structural
units of future patterned media or magneto-electronic
devices. The switching properties of acicular nano-elements
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Figure 8. Time evolution of the magnetic polarization parallel to
the field direction (long axis) during the reversal of Co elements
for zero and random magnetocrystalline anisotropy under the
influence of a reversed field of 140 kA m−1, using a Gilbert
damping constant α = 1.

significantly depend on the aspect ratio and shape of the
ends. Pointed ends suppress the formation of end domains in
the remanent magnetic state of NiFe nano-elements (Schrefl
1997a). As a consequence the switching field decreases by
a factor of 1/2 as compared to elements without blunt ends.
Figure 6(a) shows the vortex formation at the blunt ends of an
elongated NiFe element as magnetization reversal is initiated.
In bars with one pointed end, the formation of the domains
starts from the flat ends. Once vortices are formed, they easily
break away from the edges causing the reversal of the entire
element. Narrow elements with a width smaller than 200 nm
remain in a nearly single-domain state. Pointed ends suppress
the formation of domains in NiFe elements (figure 6(b)).
The simulations predict a spread in the switching field due
to magnetostatic interactions of the order of 8 kA m−1 for
an array of neighbouring 200 nm wide, 3500 nm long and
26 nm thick NiFe elements with a centre-to-centre spacing
of 250 nm.

In elements with zero magnetocrystalline anisotropy
and in elements with random magnetocrystalline anisotropy,
magnetization reversal occurs by the formation and motion
of vortices. However, in granular Co elements with random
magnetocrystalline anisotropy, vortices form immediately
after the application of a reversed field. For zero
magnetocrystalline anisotropy a vortex breaks away from
the edge only after a waiting time of about 0.8 ns. A
similar behaviour was found by Leineweber and Kronmüller
(1999) in small hard magnetic particles, where a waiting
time after the application of an applied field occurred, before
the nucleation of reversed domains is initiated. Figure 7
shows schematically the microstructure of the polycrystalline
Co element with a size of 100 × 40 × 25 nm3. The
FE simulation shows that the polycrystalline microstructure
significantly influences the magnetization reversal process.
Edge irregularities and the random anisotropy reduce both
coercive field and switching time as compared to reference
calculations, assuming zero magnetocrystalline anisotropy.
Figure 8 compares the time evolution of the magnetization

for the Co element with random and zero magnetocrystalline
anisotropy. The competitive effects of shape and random
crystalline anisotropy lead to a magnetization ripple structure
at zero applied field. Sharp edge irregularities help to create
vortices, which will move through the width of the element.
This process starts at a reversed field Hext = −95 kA m−1

and leads to the reversal of half of the particle. Following
that, a second vortex forms and the entire Co element
becomes reversed. Reference calculations using the irregular
geometry and zero magnetocrystalline anisotropy reveal a
switching field of Hs = −110 kA m−1 as compared to Hs =
−140 kA m−1 for a regular geometry and zero anisotropy
and Hs = −96 kA m−1 for irregular geometry and random
anisotropy. The ease of vortex formation also reduces the
switching time. The magnetization reversal was calculated
for a constant applied field ofHext = −140 kA m−1, using the
minimum energy state at zero applied field as the initial state
for the dynamic calculations. The analysis of the transient
states given in figures 9 and 10 shows that magnetization
reversal occurs by the formation and motion of the vortices
in both samples. For zero magnetocrystalline anisotropy and
an external field close to the coercive field a vortex breaks
away from the edge, only after a waiting time of about 0.8 ns.
Increasing the external field fromHext = −140–190 kA m−1

drastically reduces the waiting time. Controlling the time
evolution of the micromagnetic energy contributions during
magnetization reversal shows that the formation of vortices
leads to an increase in the exchange energy during the reversal
process.

7. FE simulation of small- and large-grained hard
magnets

7.1. High energy density Nd2Fe14B permanent magnets

The coercive field of high-performance Nd–Fe–B based mag-
nets is determined by the high uniaxial magnetocrystalline
anisotropy as well as the magnetostatic and exchange interac-
tions between neighbouring hard magnetic grains. The long-
range dipolar interactions between misaligned grains are
more pronounced in large-grained magnets, whereas short-
range exchange coupling reduces the coercive field in small-
grained magnets (figure 11). FE models of the grain structure
are obtained from a nucleation and growth model and subse-
quent meshing of the polyhedral regions. Numerical micro-
magnetics at a subgrain level involves two different length
scales which may vary by orders of magnitude. The char-
acteristic magnetic length scale on which the magnetization
changes its direction is given by the exchange length in soft
magnetic materials and the domain wall width in hard mag-
netic materials. For a wide range of magnetic materials, this
characteristic length sale is in the order of 5 nm, which should
be significantly smaller than the grain size. The simulation of
grain growth using a Voronoi construction (Preparata 1985)
yields a realistic microstructure of a hard magnet. Starting
from randomly located seed points the grains are assumed
to grow with constant velocity in each direction. Then the
grains are given by the Voronoi cells surrounding each point.
The Voronoi cell of seed point k contains all points of space
which are closer to seed point k than to any other seed point.
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Figure 9. Transient states during the reversal of a Co element with zero magnetocrystalline anisotropy under the influence of a constant
reversed field of 140 kA m−1. Vortexes break away from the flat ends only after a waiting time of about 0.8 ns.
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Figure 10. Transient states during the reversal of the granular Co element with random magnetocrystalline anisotropy under the influence
of a constant reversed field of 140 kA m−1. at an applied field of 95 kA m−1. The decrease in the switching field has to be attributed to both
edge irregularities and random anisotropy.

In order to avoid strongly irregular shaped grains, it is possi-
ble to divide the model magnet into cubic cells and to choose
one seed point within each cell at random. Different crystal-
lographic orientations and different intrinsic magnetic prop-
erties are assigned to each grain. In addition, the grains may
be separated by a narrow intergranular phase (Fischer 1998a).
Once the polyhedral grain structure is obtained, the grains are
further subdivided into finite elements. An example is the 2D
grain structure of figure 12 with an overlay of the triangular
mesh inside the grains and outside the magnet (Schrefl 1992).
The polarization is defined at the nodal points of the FE mesh.
Within each element the polarization is interpolated by a poly-
nomial function. Thus, the magnetic polarization J(r) may
be evaluated everywhere within the model magnet, using the
piecewise polynomial interpolation of the polarization on the
FE mesh.

High energy density Nd–Fe–B magnets (BHmax >

400 kJ m−3) are produced by the sintering technique, which
leads to grain sizes above 1 µm (Sagawa 1984). The
doping of elements changes the phase relation and favours the
formation of new phases. Additional secondary nonmagnetic
intergranular phases decrease the remanence and interrupt the
magnetic interactions between the grains, thereby improving

J 

exchange interaction 

dipolar interaction 

J 

Figure 11. Long-range dipolar interactions and short-range
exchange coupling between misaligned magnetic grains.

the coercivity of large-grained sintered magnets (Fidler
1997). In magnets with higher Nd concentrations, grain
size, misorientation and distribution of grains control the
coercive field. The higher the Nd content of the magnet and
therefore the volume fraction of the Nd-rich intergranular
phase, the more reduced is the contribution of the exchange
and also dipolar coupling between the grains. In contrast
to the Stoner–Wohlfarth theory (Stoner 1948), the coercive
field will increase with decreasing alignment of the easy
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Figure 12. 2D model of the granular microstructure obtained by a
Voronoi construction. The triangular FE mesh is overlaid inside
the grains (m) and outside the magnet (s).

axis if the anisotropy is reduced near the grain boundaries.
The FE simulations confirm the experimental results that
nonmagnetic Nd-rich phases at grain boundary junctions
significantly increase the coercive field. Micromagnetic
3D FE calculations were used to simulate the influence
of Nd-rich phases located at grain boundary junctions,
reduced anisotropy near the grain boundaries, and the degree
of misalignment on the nucleation of reversed domains.
Figure 13(a) shows the 3D model of the FE model and the
generated mesh near the junction of neighbouring grains.
For a perfect microstructure the numerical results agree well
with the Stoner–Wohlfarth theory. The most misoriented
grain, which has the largest angle between the c-axes and
the alignment direction, determines the coercive field. The
coercive field decreases with increasing misalignment. A
reduction in the magnetocrystalline anisotropy near the grain
boundaries leads to a linear decrease in the coercive field.
The coercive field decreases from 3200 to 900 kA m−1 as the
anisotropy constant in a 6 nm thick region near the grain
boundaries is reduced from its bulk value to zero. The
reduction in the magnetocrystalline anisotropy reverses the
dependence of the coercive field on the degree of alignment.
The coercive field increases by about 80 kA m−1 as the
misalignment angle is changed from 8◦ to 16◦. This effect
has to be attributed to a higher demagnetizing field in
the well aligned sample, which initiates the nucleation of
reversed domains into the defect region. The FE analyses
confirm that nonmagnetic Nd-rich phases at grain boundary
junctions significantly increase the coercive field. The
coercive field increases by about 15% as a nonmagnetic Nd-
rich phase near the grain boundary junctions is taken into
account. The simulations show that the presence of the
Nd-rich phase significantly changes the exchange and the
magnetostatic interactions. As a consequence, the nucleation
of reversed domains is suppressed. The simulations allow
the identification of the regions within the microstructure

a 

b 

Figure 13. (a) 3D FE model of the grain boundary junction of
neighbouring hard magnetic grains. For the calculations, the
misalignment of the grains was varied from 8◦ to 16◦. The
isosurfaces (b) show the regions, where reversed domains are
nucleated at Hext = −960 kA m−1 assuming K1 = 0 in the
intergranular region.
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Figure 14. Comparison of simulated and experimental
demagnetization curves of high remanent Nd2Fe14B magnets. The
calculated curves assume bulk values and zero magnetocrystalline
anisotropy of the intergranular region between the hard magnetic
grains.

where reversed domains are nucleated (figure 13(b)). The
comparison with experimental data provides a detailed
understanding of magnetization reversal in high energy
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Figure 15. Grain structure model of 343 grains of a multi-phase
nanocrystalline Nd2Fe14B/(Fe3B, α-Fe) magnet resulting from a
Voronoi construction used for the FE simulations.

density permanent magnets. The demagnetization curves
of figure 14 compare perfect grain boundaries, distorted
grain boundaries and experimental data. The influence of
the magnetocrystalline anisotropy of the intergranular region
on the coercive field is clearly shown. The simulations
explain experimental data, which show a decrease in the
coercive field with increasing misalignment (Kim 1994).
Similar numerical results were obtained by Bachmann et al
(1998), who used a FE method combined with an atomic
exchange interaction model based on the Heisenberg model
for localized interacting magnetic moments in a system with
small grain size (< 100 nm).

7.2. Nanocrystalline, composite Nd2Fe14B/(α-Fe, Fe3B)
magnets

Exchange interactions between neighbouring soft and hard
grains lead to remanence enhancement of isotropically
oriented grains in nanocrystalline composite magnets (Davies
1996, McCallum 1987, Coehoorn 1989, Hadjipanayis
1988, McCormick 1998, Kanekiyo 1993, Kuma 1998).
Nanocrystalline, single-phase Nd–Fe–B magnets with
isotropic alignment show an enhancement of remanence
by more than 40% as compared to the remanence of
noninteracting particles, if the grain size is of the order
of 10–30 nm. Our numerical micromagnetic calculations
have revealed that the interplay of magnetostatic and
exchange interactions between neighbouring grains influence
the coercive field and remanence considerably (Schrefl
1994a, b, 1997c, 1998, 1999b). Soft magnetic grains in
two- or multi-phase, composite permanent magnets cause
a high polarization, and hard magnetic grains induce a
large coercive field, provided that the particles are small
and strongly exchange coupled. Figure 15 shows a typical
grain structure model of 343 grains resulting from grain

growth simulation using a Voronoi construction used for
the FE simulations. This model was used to calculate the
influence of the volume fraction of the different phases
(Nd2Fe14B, Fe3B, and α-Fe) and the grain size on the
hysteresis properties. Theoretical limits for remanence
and coercivity were derived by numerical micromagnetic
Fe simulations for Nd2Fe14B/(Fe3B, α-Fe) nanocrystalline
permanent magnets. The coercive field shows a maximum
at an average grain size of 15–20 nm. Intergrain exchange
interactions override the magnetocrystalline anisotropy of
the Nd2Fe14B grains for smaller grains, whereas exchange
hardening of the soft phases becomes less effective for
larger grains. The magnetization distribution at zero applied
field for different grain sizes, clearly shows that remanence
enhancement increases with decreasing grain size. Owing
to the competitive effects of magnetocrystalline anisotropy
and intergrain exchange interactions, the magnetization of
the hard magnetic grains significantly deviates from the local
easy axis for a grain size D � 20 nm. Regions with
a deviation angle greater than 40◦ may cover entire hard
magnetic grains forD = 10 nm. As a consequence coercivity
drops, since intergrain exchange interactions help to
overcome the energy barrier for magnetization reversal. With
increasing grain size the magnetization becomes nonuniform,
following either the magnetocrystalline anisotropy direction
within the hard magnetic grains or forming a flux closure
structure in soft magnetic regions. Neighbouring α-Fe
and Fe3B grains may make up large continuous areas
of soft magnetic phase, where magnetostatic effects will
determine the preferred direction of the magnetization. The
large soft magnetic regions deteriorate the squareness of
the demagnetization curve and cause a decrease in the
coercive field for D > 20 nm. A vortex-like magnetic
state with vanishing net magnetization will form within the
soft magnetic phase, if the diameter of the soft magnetic
region exceeds 80 nm. Figure 16 presents the calculated
magnetization distribution in a slice plane of a 40 vol%
Nd2Fe14B, 30 vol% α-Fe, and 30 vol% Fe3B magnet with
a mean grain size of 30 nm for zero applied field. The
magnetic polarization J remains parallel to the saturation
direction within the soft magnetic grains, whereas it rotates
towards the direction of the local anisotropy direction
within the hard magnetic grains. The demagnetization
curves of figure 17 give the contributions of the different
phases (α-Fe, Fe3B, Nd2Fe14B), in addition to the total
magnetic polarization. The numerical integration of the
Gilbert equation yields the transient magnetic states during
irreversible switching and thus reveal how reversed domains
nucleate and expand. The comparison of the demagnetization
curves and the magnetization distribution clearly shows that
irreversible processes are associated with the irreversible
switching of hard magnetic grains. Magnetization reversal is
dominated by the rotation of the magnetic moments within
the soft magnetic grains. During this process, the magnetic
polarization of the soft phase remains correlated within an
area covering several α-Fe/Fe3B grains. This collective
behaviour of neighbouring soft magnetic grains has to be
attributed to exchange interactions. The magnetocrystalline
anisotropy hinders the rotation of J within the hard phase,
leading to a high exchange energy density at the interface
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Nd2Fe14B Fe3B α-Fe 

Figure 16. Magnetization distribution in a slice plane of a 40 vol% Nd2Fe14B, 30 vol% α-Fe, and 30 vol% Fe3B magnet with a mean grain
size of 30 nm for zero applied field. The arrows denote the magnetization direction projected on a slice plane and show a vortex-like state
after irreversible switching.
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Figure 17. Numerically calculated demagnetization curves of the
various contributions of a 40 vol% Nd2Fe14B, 30 vol% α-Fe, and
30 vol% Fe3B magnet with a mean grain size of 30 nm.

between the different phases. When the expense of exchange
energy becomes too high, a reversed domain nucleates within
the Nd2Fe14B grain and the entire hard magnetic grain
becomes reversed.

The calculations show a linear trade off of remanence
and coercivity as a function of the α-Fe to Fe3B ratio. The
coercive field Hc and the remanence Jr cover the range of
(Hc, Jr) = (340 kA m−1, 1.4 T) to (610 kA m−1, 1.1 T) for
a composite magnet containing 40% Nd2Fe14B, (60 − x)%
Fe3B and x% α-Fe. The replacement of α-Fe with Fe3B
improves the coercive field without a significant loss in the
remanence. The substitution of Nd by Tb or Dy increases the
hard phase anisotropy and reduces the saturation polarization.
The coercivity of two-phase Nd2Fe14B/α-Fe magnets can
be improved by about 30% without a significant loss in
remanence. Only a moderate change in the intrinsic magnetic
properties of the hard phase is required, in order to achieve
this increase in the coercive field. A large number of papers
have been published so far and several authors have predicted
remanence enhancement and the reduction of the coercive
field in nanocrystalline permanent magnets, using analytical
micromagnetic calculations or 2D or 3D FD or FE methods

(Kneller 1991, Skomski 1993, Fischer 1998b, Fukunaga
1992, Leineweber 1997).

7.3. Precipitation hardened, high-temperature
Sm(Co, Cu, Fe, Zr)7−8 magnets

The search for novel soft and hard magnetic materials for
high-temperature advanced power applications is an active
area of research worldwide. The increase in the operating
temperature of motors, generators and other electronic
devices leads to an improvement in their efficiency. In
the development of high-temperature magnets the activities
concentrate on the improvement of precipitation hardened
Sm(Co,Fe,Cu,Zr)7−8 magnets and the search for new
compounds with sufficiently high values of magnetization
and coercive field at elevated temperatures. A new series
of magnets with Hc up to 1050 kA m−1 at 400 ◦C has been
developed (Liu 1999, Tang 2000). These magnets have low-
temperature coefficients of Hc and a straight line B versus H
(extrinsic) demagnetization curve up to 550 ◦C. High Cu, low
Fe and a higher Sm concentration were found to contribute
to high coercivity at high temperatures. TEM investigations
show a cellular precipitation structure of about 60 × 120 nm
in size (Fidler 1983, Streibl 2000). The rhombic cells of the
type Sm(Co,Fe)17 are separated by a Sm(Co,Cu,Zr)5−7 cell
boundary phase. The development of the continuous, cellular
precipitation structure is controlled by the growth process and
the chemical redistribution process and is determined by the
direction of zero deformation strains due to the lattice misfit
between the different phases.

A 3D FE method was used to simulate domain wall
pinning in SmCo5/Sm2Co17 based permanent magnets. The
FE model (figure 18(a)) was built according to the cellular
microstructure obtained from TEM investigations. During
magnetization reversal the domain walls become pinned
at the continuous cell boundary phase. Depinning of
the domain wall starts at the corners of the cell structure
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Figure 18. (a) FE model used for the 3D micromagnetic
simulation of a high-temperature magnet consisting of a
continuous Sm(Co,Cu)5−7 precipitation structure with width d
and 27 Sm2(Co,Fe)17 rhombic cells (b). Calculated domain image
showing the depinning of a domain wall at Hext = 2300 kA m−1

for a cell size of 160 nm.

dmin 

Figure 19. Calculated pinning field as a function of the cell
boundary width of a precipitation hardened, high-temperature
Sm(Co,Cu,Fe,Zr)7−8 magnet. A minimum thickness dmin of the
precipitation structure is necessary in order to obtain a high
pinning field.

(figure 18(b)). The numerical results show a strong
influence of the dimension of the cell boundary phase on
the coercive field, which significantly increases with the
extension of the 1:5/7-type cell boundary phase. The
calculated values of the coercive field are in the range from
1000 to 2000 kA m−1, assuming a cell size varying from 80 to

160 nm. The difference in the magnetocrystalline anisotropy
between cell boundary and cell interior phases is determined
by the composition (especially the Cu content) of the magnet.
Three-dimensional micromagnetic simulation reveals that the
pinning field strongly depends on the intrinsic properties (Js ,
K , A). A minimum width of the cell boundary phase is
necessary to obtain high pinning fields (figure 19). Exact
precipitation structure parameters (controlled by composition
and processing) and the exact values of Js(T ), K1(T ) and
A(T ) are necessary to explain the coercive field at high
temperature.

8. Future trends

8.1. FE-adaptive mesh refinement

The FE method effectively treats magnetization processes in
samples with arbitrary geometries or irregular microstruc-
tures. Adaptive refinement schemes allow the magnetization
distribution to be resolved on a subgrain level, improving
the accuracy of the solution while keeping the computational
effort to a minimum. Recently, FE mesh refinement was ap-
plied in micromagnetic simulations of longitudinal thin film
media (Tako 1997), domain structures in soft magnetic thin
films (Hertel 1998), and domain wall motion in permanent
magnets (Scholz 1999). The discretization of the micromag-
netic equations gives rise to two types of discretization errors.
One is associated with the evaluation of the exchange field,
the other arises from the FE computation of the magneto-
static field. Improvements in the micromagnetic resolution
can be made by a uniform increase in the level of discretiza-
tion. However, this places more computational nodes in areas
where the magnetization remains uniform. Ideally, it would
be most efficient to place new nodes where the error is high-
est. The aim of adaptive mesh refinement schemes is to obtain
a uniform distribution of the discretization error over the FE
mesh (Penman 1987). In order to decide where to refine the
mesh, refinement indicators should give a good estimate of
the local error. A second criterion for the selection of er-
ror estimators for adaptive meshing are the computational
costs. Error estimators should be cheap to evaluate and thus
error indicators derived from the current FE solution on an
element-by-element basis are preferred.

Within the framework of micromagnetism (Brown
1963a, Aharoni 1996), the magnitude of J is assumed to
be a constant over the whole magnet, which depends only on
the temperature

|J | = Js(T ). (26)

This condition can only hold at the nodal points of the
FE mesh. The linear interpolation (equation (15)) does
not preserve the magnitude of the magnetization within
a finite element. Bagneres-Viallix et al (1991) proposed
to use the deviations of the length of the magnetization
vector from the centre of an element as the refinement
indicator. The magnetization distribution of a one-
dimensional domain wall can be calculated analytically.
Thus, the true discretization error of the FE solution can
be evaluated. Numerical investigations of one-dimensional
mesh refinement showed that the error estimator based on the
norm of the magnetization shows the very same functional
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dependence on the number of finite elements as the true error
of the solution. However, the deviation of |J | from Js within
an element may be used as an error indicator for adaptive
refinement schemes. Successive refinement of elements
where |J | deviates from Js will lead to a fine mesh in areas
with large spatial variation of the magnetization direction.
After several refinement steps the constraint (equation (26))
will be approximately fulfilled on the entire FE mesh.

Refinement indicators that point out the exchange
discretization error are usually based on the spatial variation
of the magnetization (Hertel 1998). They identify domain
walls, vortices, or magnetic inhomogeneities near edges
and corners. In order to consider the discretization error
associated with the magnetostatic field calculation, Tako
et al (1997) suggested a refinement indicator based on
the divergence and curl of both the magnetization and
magnetic field. Simulating the magnetization structure
of two-dimensional magnetic nano-elements, Ridley et al
(1999) showed that this refinement indicator correctly
identifies the regions where the true error in the computed
magnetic field is high. In longitudinal thin-film media the
granular microstructure significantly influences the remanent
magnetization distribution. The adaptive refinement
clearly improves both the efficiency and accuracy of
the computations of magnetization patterns in thin-film
microstructures obtained from a Voronoi construction (Tako
1997). A refinement indicator based on the spatial variation
of both magnetization and magnetic field is used to point
out elements in which refinement is necessary. Elements
which show a refinement indicator greater than 20% of
the maximum value over all elements are subdivided by
regular division. The numerical results indicate a significant
improvement in the calculated magnetization structure after
refinement. The magnetization tends to form vortices
which do not fully develop in the coarse grid. With
further refinement the structure is allowed to attain a lower
energy state, allowing a more complete development of
the solenoidal structure. During the refinement process
the total energy decreases by about 50%, which clearly
indicates the success of the refinement indicator. Hertel
et al (1998) proposed a refinement scheme to resolve
vortices in micromagnetic simulations of domain structures
in soft magnetic thin-film elements. The discretization
error is reduced by moving nodes of the FE mesh towards
regions where higher accuracy is needed. In micromagnetic
simulations of domain structures in soft magnetic thin films,
this was accomplished by shrinking the elements in regions
with strong inhomogeneities. Thus, a high mesh density,
which results in a high micromagnetic resolution, was
obtained near vortices and domain walls, while keeping the
number of elements constant.

In hard magnetic materials the magnetization is uniform
within magnetic domains, whereas it is highly non-uniform
in domain walls, near nucleation sites, vortices or grain
boundaries. A coarse mesh may be sufficient in regions,
where the magnetization is almost uniform. Local mesh
refinement near grain boundaries, domain walls, vortices and
nucleation sites significantly reduces the number of degrees
of freedom. As domain walls can move due to external fields,
the discretization has to be adjusted adaptively during the

simulation. Scholz et al (1999) presented an algorithm that
adapts the FE mesh to the solution of the Gilbert equation.
Refinement of the tetrahedral mesh at the current wall
position and coarsening within the bulk of the domains leads
to a high-density mesh that moves together with the wall.
After each time step, error indicators based on the deviations
of |J | from Js , are calculated for each element. If the
maximum error indicator over all elements, ηmax , exceeds a
certain threshold the following refinement scheme is applied:
elements, whose error indicators exceeds 0.1ηmax are marked
for refinement, whereas elements with an error indicator
lower than 0.01ηmax are marked for coarsening. Then, the FE
mesh is refined by subdividing elements, which are marked
for refinement. Coarsening is effected by removing finite
elements which have been created by an earlier refinement
step (Bey 1995). Figure 20 shows the regions of fine mesh
at the current wall position during the simulation of domain
wall motion in thin Nd2Fe14B specimens. The wall moves
towards the boundary of a misoriented grain, where it remains
pinned owing to a reduction exchange and anisotropy energy
stored in the wall.

The presented method provides a reliable technique to
simulate domain wall movement with a minimum number
of finite elements. The alternate refinement and coarsening
reduces the space discretization error and thus avoids domain
wall pinning on a too coarse grid. Figure 20 shows an
example of FE mesh refinement during the simulation of
domain wall motion in a thin polycrystalline Nd2Fe14B
sample. The domain wall becomes pinned at the grain
boundary of misoriented grains.

8.2. Thermally activated magnetization reversal
processes

New experimental techniques allow spatially resolved
measurements of magnetic structures and an investigation of
isolated magnetic particles (Wernsdorfer 1997). All this leads
to an increasing interest in the understanding of the behaviour
of small magnetic particles down to nanometre regime,
especially their dynamics during magnetization reversal and
their thermal stability. Sufficiently large particles consist
of many magnetic domains due to demagnetization effects.
With decreasing size the single-domain state becomes
energetically favourable for particles with typical sizes much
less than 1 µm. Smaller particles in the range of only a
few nanometres become superparamagnetic, which means
that they are thermally unstable (Brown 1963b, Coffey
1998, Nowak 1999), since the energy barriers blocking
the magnetization reversal are small enough here to be
overcome by thermal fluctuations at room temperature.
This effect is thought to limit the density of information
storage. Hence, the understanding of the role of thermal
activation for the dynamical behaviour of ferromagnetic
particles is one of the most important subjects of modern
micromagnetism. It is interesting from a fundamental point
of view as well as for practical applications in information
storage devices. For still smaller particles, which then consist
only of a rather small number of atoms, quantum effects
set in, leading to magnetization reversal by tunnel effects.
Variational methods are used in continuum micromagnetic
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Figure 20. Granular microstructure and adaptive mesh refinement in the region of a moving domain wall, which becomes pinned at the
grain boundaries of misoriented grains.

theories to determine the minimum Gibbs’s free energy of the
system. Magnetization reversal processes occur when a local
energy minimum becomes unstable. The actual path of the
magnetization follows from the numerical integration of the
Gilbert equation of motion, which resolves the magnetization
processes in time and space. Taking into account
finite temperature, it is obvious that the magnetization
reversal takes place by thermal activation over finite energy
barriers. The finite temperature will also influence the high-
frequency magnetization reversal. The complex response
of the magnetization to rapidly changing applied fields has
historically been a problem for high-speed magnetic devices.
Projected data storage systems with a frequency greater than
250 MHz will be forced to confirm this challenge directly
for both heads and media. Effects of thermal activation
are included in micromagnetic simulations by adding a
random thermal field to the effective magnetic field Heff

(6). As a result, the Landau–Lifshitz equation is converted
into a stochastic differential equation of Langevin type with
multiplicative noise. The Stratonovich interpretation of
the stochastic Landau–Lifshitz equation leads to the correct
thermal equilibrium properties. Micromagnetic simulations
reveal the details of the magnetization distribution and
dynamic magnetization reversal processes. The knowledge
of the dynamic behaviour is of great importance for the
design of future magnetic recording media. When the
desired magnetization switching frequencies reach an order
of magnitude which is comparable to the intrinsic relaxation
time of the media, the switching dynamics have to be
investigated in more detail.

Thermal activation is introduced in the Landau–Lifshitz
equation (5) by a stochastic thermal field Hth, which is
added to the effective field. It accounts for the effects of the
interaction of the magnetization with the microscopic degrees
of freedom (e.g. phonons, conducting electrons, nuclear

spins, etc), which cause fluctuations of the magnetization
distribution. This interaction is also responsible for the
damping, since fluctuations and dissipation are related
manifestations of one and the same interaction of the
magnetization with its environment. Since a large number
of microscopic degrees of freedom contribute to this
mechanism, the thermal field is assumed to be a Gaussian
random process with the following statistical properties:

〈Hth,i (t)〉 = 0 (27)

〈Hth,i (x, t)Hth,j (x
′, t ′)〉 = 2Dδij δ(x − x ′)δ(t − t ′) (28)

D = αkBT

γ Js
. (29)

After adding the thermal field we get the stochastic Landau–
Lifshitz equation

∂J

∂t
= − |γ |

1 + α2
{J × (Heff + Hth)}

− α

Js · (1 + α2)
{J × [J × (Heff + Hth)]}. (30)

Hence, after FE discretization we obtain a system of Langevin
equations with multiplicative noise

∂Ji

∂ti
= Ai (J, t)+

∑
k

Bik(J, t)·Hth,k(t) i = 1, . . . , 3N.

(31)
The multiplicative factor Bik(J; t) for the stochastic process
Hth;k(t) is a function of J .

The mechanism of thermally activated magnetization
switching in small spherical particles with Js = 0.5 T,
A = 3.64 × 10−12 J m−1, K1 = 2 × 105 J m−3, α = 1 and
a radius of 11.5 nm has been investigated by the FE method
(Scholz 2000). The initial magnetization is homogeneous
and parallel to the easy axis of the particle. Its magnetization
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Figure 21. FE simulation of the dependence of the metastable
lifetime on the external field for a small spherical particle with
Js = 0.5 T, A = 3.64 × 10−12 J m−1, K1 = 2 × 105 J m−3, α = 1
and a radius of 11.5 nm.

distribution is destabilized by an external magnetic field,
which is parallel to the easy axis (z direction) but antiparallel
to the initial polarization. Since this is a metastable state, we
can expect the particle to overcome the energy barrier, which
is called the activation energy, and reverse its magnetization
after some time. The metastable lifetime (or relaxation time)
τ is defined as the time, which passes from the initially
saturated state Jz(0) = Js until Jz(τ ) = 0. In order to
measure the metastable lifetime a large number of simulations
have been performed for each set of parameters. After 200
measurements a waiting time histogram was obtained. The
integral of this histogram is proportional to the switching
probability P(t), which is the probability that the particle
has switched by a certain time. However, it is more common
to draw graphs for the (rescaled) probability of not switching
Pnot (t) = 1 − P(t). The magnetization reversal process can
happen in different reversal modes. In a particle with low
anisotropy the polarization rotates coherently, which means
that the magnetization remains almost homogeneous during
the reversal process except for small thermal fluctuations.
If the anisotropy is increased, it becomes favourable to
form a nucleus with reversed magnetization. Thus, a
droplet nucleates near the surface and expands until the
magnetization is completely reversed.

Figure 21 shows how the metastable lifetime decreases
when the external field is increased. The reversal mode
changes from nonuniform rotation to droplet nucleation as
the external field is increased from 0.8 (2K1/Js) to 1.1
(2K1/Js). A similar behaviour has been observed in Monte
Carlo simulations (Rikvold 1994), where this behaviour
is interpreted in terms of droplet theory. The Langevin
dynamics approach proved to be a suitable method to model
the effects of thermal activation in magnetic materials.

9. Conclusions

Micromagnetism treats magnetic materials as classical
continuous media described by appropriate differential
equations governing their static and dynamic behaviour. The
micromagnetic problem is reasonably well understood in the
framework of Brown’s equations. The numerical solution

of the governing equations can be effectively performed
using FE and related methods which easily handle complex
microstructures. FE techniques for an effective solution
of the basic static and dynamic equations were compared.
These include various methods to treat the so-called open
boundary problem in magnetostatic field calculation and
discretization schemes that allow sparse matrix methods for
the time integration of the equation of motion. FE simulations
successfully predict the influence of microstructural features
like grain size, particle shape, intergranular phases
and surface irregularities on the magnetic properties.
Adaptive refinement and coarsening of the mesh controls
the discretization error and provides optimal grids for
micromagnetic FE simulation of magnetization processes
in recording media, vortex formation in soft magnetic thin
films and of nucleation and expansion of reversed domains
in hard magnetic bulk materials. Theoretical limits for
remanence, coercive field, switching behaviour and other
properties have successfully been calculated for a large
number of materials. Incorporating thermally activated
magnetization reversal will predict the upper limits of
the switching frequency in thin-film recording media. In
the future new computational approaches, including the
development of hybrid micromagnetic models such as the
Monte Carlo methods, will obtain quantitative treatment of
the correlation between the microstructure and the magnetic
hysteresis properties of modern magnetic materials in large
systems and large timescale regions.
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