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Abstract. A theory of capture of magnetic particles, in axially ordered filters, carried by 
laminar flow of a viscous fluid is presented. The particle trajectories are obtained in an 
analytical nearly closed form. This facilitates the numerical computation of isotelic 
curves and, since these demarcate the capture area, the determination of the filter 
performance. The particle trajectories, the particle capture length and the filter per- 
formance do not depend on the viscosity of the particle carrying fluid. However, they 
are in general different from those predicted by previous theories of capture in ideal 
flow. The main difference, as far as the filter performance is concerned, lies in a more 
complicated relationship between the capture area and the normalised capture length. 
The fact that the inflow and escape velocities have different magnitudes is less significant. 

1. Introduction 

High gradient magnetic separation (HGMS) is a method for the reinoval of micron-sized 
magnetic particles froin suspensions. It has attracted considerable attention in recent 
years, because the technique, already used commercially in mineral processing, offers the 
prospect of solving complicated problems encountered in the chemical, nuclear, bio- 
chemical, pharmaceutical and other industries. Moreover, the application of this method 
is not restricted to the production side of the industrial process but it can also be used for 
effluent treatment and general pollution control (Watson 1977, de Latour and Kolm 
1975). Consequently, HGMS may become an important part of future technology and it is 
therefore desirable to understand its physics in detail. Fundamental to the magnetic 
separation process is the mechanism of particle capture. A number of papers have 
already treated this subject (Watson 1973, 1975, Luborsky and Druminond 1975, Birss 
et ul 1976, Cowen et a1 1976, Uchiyama et a1 1976). The theory described by them has 
been restricted to the so-called ‘inviscid’ approximation, in which the fluid is considered 
to be ideal when interacting with the wires of the filter but viscous when interacting with 
the particles. The consequence of this inconsistency is that the results of these papers 
might be expected to give some discrepancies when compared with bulk or average 
measurements, but when individual particles are investigated disagreements of a funda- 
mental nature are bound to appear. 

Models of particle capture assuming the fluid to be viscous in relation to both particles 
and wires have only recently been described (Cummings et al1976, Clarkson et al 1976). 
They are concerned with a configuration where the magnetic field and the fluid flow are 
parallel and both are perpendicular to the wire axis. Here it is difficult to obtain an 
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analytical expression which simultaneously describes the fluid flow at close range and at 
large distances from the wire. Consequently, these models are of a predominantly numeri- 
cal character. 

The aim of this paper is to develop a consistent model which will analytically describe, 
as far as is possible, the particle capture in laminar flow. The calculations are therefore 
performed for the axial configuration, i.e. the fluid flow is considered to be parallel and 
the magnetic field perpendicular to the axes of mutually parallel wires of an ordered filter. 

2. Single wire 

2.1. Trajectories 

Consider a ferromagnetic wire of radius a and saturation magnetisation Ms placed 
coaxially in a tube of nonmagnetic material along the z axis of a Cartesian coordinate 
system (figure 1). The radius of the tube i: can be expressed in terms of the radius a as 
Fa = F/a and this convention of using subscript a to indicate this renormalisation will be 
used with other quantities throughout. Both the wire and the tube have the same length 
la .  A uniform magnetic field Ho, large enough to saturate the wire, is applied in the x 
direction. Spherical paramagnetic particles of radius Ra (Ra< 1) and susceptibility x 
are carried by a fluid of viscosity 7 which flows between the wire and the tube in the posi- 
tive z direction. The flow of the fluid is considered to be laminar, the pressure difference 
between the beginning and the end of the tube is PO. The particles are assumed to experi- 
ence a viscous force given by Stokes' law. 

The radial distribution of the fluid velocity va is governed by the differential equation 
(Landau and Lifshitz 1966) 

the solution of which is 

where 
= 2rag2 = (Fa2 - I)/ln i a  

and raq is the radius where V a  attains its maximum in the interspace between the wire and 
the tube. 

Integration of Va over the cross-section of the interspace gives the average fluid 
velocity To as 

The particle motion can be conveniently described in terms of cylindrical coordinates 
ra, 0 and Za, which are related to the Cartesian ones by the relations 

xa = ra COS 0 

ya=ra  sin 0 
and 
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The equations of motion can be derived by a procedure analogous to that of Watson (1973) 
and used by Birss et aI(l976) in treating the ideal flow case. The difference is, however, 
that instead of the ideal flow velocity VO and the magnetic velocity Vm the pressure 
difference PO and the magnetic pressure coefficient P m  are introduced by equation (2) 
and Vm/a=Pm/47la. If the inertia of the particle is neglected, the equations of motion 
for the laminar flow case take the form 

dra- P m  K COS 20 
--- -- (-+T) dt 471, ra5 

(4) 

where P, = #x HoMsRa21a is the magnetic pressure coefficient. This coefficient is of 
magnetic origin and is independent of viscosity. It has dimensions of pressure. The 
constant K=MS/2p0Ho and p0=4.rr x H m-l. SI units (Kennelly system) are used 
throughout. 

If the time is eliminated from (4), (5) and (6) the set of differential equations 

dra- _ _ _ _ _  +racot20  
d e  r a  sin20 (7) 

determining the trajectory of the particle is obtained. 
One important fact is immediately apparent: 7 does not enter into (7) and (8) at  all. 

Thus neither the shape of the trajectory nor the capture length depend on the viscosity 
of the fluid carrying the particles. Consequently, the performance of the filter, at least in 
the single-wire approximation, is also independent of 7. It is the throughput, which is 
inversely proportional to 7. 

The equation (7) is the same as the corresponding one in the ideal flow case (Birss et al 
1976). It can be solved analytically and the solution 

ra=(-Kcos 20+C Isin 201)1/2 (9) 
describes a family of trajectory projections on the xy plane. 

Two such curves (dashed curves) are shown, in the first quadrant, in figure 1 ; the 
curves in the other quadrants can be obtained by symmetry operations with respect to 
the x and y axes. The constant C is determined by the initial conditions, that is by the 
position {?ai, Bi}  of the particle when entering the tube. The magnetisation Ms is con- 
sidered to be saturated and consequently, if Hi is the internal field in the wire, it holds 
Hi 2 0. As the demagnetising factor, in the direction perpendicular to the wire axis, is 3, 
the constant K satisfies the relation O<K< 1. As rai 2 1 always holds, the constant C 
satisfies C >  (1 - K2)1/2. A trajectory projection starts on the unit circle at an angle BS 
(near to the y axis), follows a path reaching a maximum excursion ramax and returns to 
the unit circle at an angle Be (near to the x axis). The angles Os and Be are given by 

1 -KTIC/  (K2+C’-1)1/2 
2 ( K 2 + C 2  

= - arc cos 

where the minus and plus sign corresponds to 0, and Be,  respectively. 
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Figure 1. Trajectories in laminar and ideal flow. Laminar flow trajectories, 
ideal flow trajectories, - ----; trajectory projections, - - -. Parameters:K=O%, 
ramax=5  and 8, q = 3 5 ,  in=8 .7752 ,  raq=4.1833, Po/Pm=l, Vo/Vm=21.51O74, Fa0.07. 

The quantity ramax= (K2+ C2)1/4 can be used to label the trajectory projections. Two 
of those shown in figure 1 were calculated for typical values of K=0*8, ramax=5 and 8. 

The equation (8), describing the progress of the particle along the z axis, is different 
from and more complicated than the corresponding one in the ideal flow case. Neverthe- 
less it can be solved analytically in a nearly closed form. The solution of (8), depending 
on the initial position (rai, 8i} and the current position Ira, 61, can be obtained as 

za = 5 [zl(e) +z2(e) +qz3(~)]:*.  (1 1) 
P m  

The functions ZI(S), Zz(8) and Is(@ are 

where 62 = 8, + (21- 1) (8 - 8,)/2p. 
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The primitive function of one of the integrals in Z3(0) most probably cannot be 
expressed in closed form. It was therefore approximated by a finite series. This approxi- 
mation works very well as far as the trajectory as a whole is concerned. The solution (1 1) 
was checked, with increasing p ,  against the computed 'exact' solution, represented by an 
accurate, though more time-consuming, numerical integration of (8). The maximum 
error, for a value o f p  as low as 3, K=0.8, in any individual point of any trajectory with 
ramax 2 is found to be less than 1 %. The error decreases with increasing p and ramax. 

This and all other computations in this paper were carried out on the ICL 1904s 
computer at  the University of Salford using both the author's and NAG standard 
procedures (NAG Ltd, 7 Banbury Road, Oxford OX2 6"). 

If Bi=O,  then also B=O. The time can be eliminated from (4)  and (6)  giving the 
differential equation 

for the trajectory in the xz plane. The solution of (12) can be obtained as 

[Jl(ra) +qJz(ra)l:;'. Po 
Pm 

za  = .- 

The functions Jl(ra)  and Jz(ra) are 

In IK+ra2I ra6 ra4 ra2 K2(K+ 1) Jl(ra)= ----+(K+ 1) ---K(K+ 1) -+-- 
6 4 2 2 

A n  approximation, analogous to that used in (llc), had to be introduced in (13b). Its 
effect on the solution (1 3) is of a similar nature to that mentioned above, when discussing 
the solution (1 1). 

Two trajectories, given by solutions (9) and (1 l), for two different initial positions are 
shown by the solid curves in figure 1. Their characteristic parameters are K=0*8,  
ramax = 5 and 8, Po/Pm = 1 and q = 35. These trajectories for laminar flow conditions can 
be compared with the trajectories (dot-and-dash curves in figure 1) starting at the 
same initial positions but calculated for the assumption of ideal flow. The calculation 
was performed using formulae (9) and 

Za  = ( VO/' Vm) [ ~ I ( @ I $ ,  
which describe trajectories for the ideal flow case. The ratio Vo/Vm can be obtained by 
identifying VO with the average velocity 70, given by (3), and using the fact that Vm= 
Pm~/4q la .  The value of Vo/ Vm, for the ideal flow trajectories in figure 1, was found to be 
21 *5  1074. 

It can be seen that the two types of trajectories differ in their shape and capture length. 
Consequently, the capture area associated with a single wire is different for the laminar 
and ideal flow case. 

The analytical solutions (11) and (13) are significant for two reasons. Firstly, they 
make it easy to compare theory with experiment in general without being limited to a 
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certain range of parameters, as is the case with numerically computed solutions. Secondly, 
they are the necessary prerequisite for the numerical computation of isotelic curves and, 
as these curves demarcate the capture area, for finding the performance of the filter. 

2.2. Isotelic curves 

It  is convenient to define the normalised capture length La as 

Pmzae  
PO 

La=- 

where Zae is the actual wire length necessary to capture the particle. The quantity Z a e  

can be calculated from (11) and (9) (or from (13) if &=O)  by substituting the initial 
position (rai,  Of> and the end position (ra = 1, 0 = e,}. 

The isotelic curve is then defined as the locus of points (rai, ei} for which La has a 
constant value. 

‘Isotelic’ indicates that the capture occurs at the same distance from the origin. This 
term is a counterpart to isochronal which indicates that the capture occurs after the same 
period of time and which is applicable to the ideal case. For example, both particles in 
figure 1 are on an isotelic curve for the laminar flow conditions. 

The isotelic curves can be numerically computed for various La and q using (9), (lo), 
(1 1) and (13). This was performed for a typical value of K=0% and eighteen values of q 
from (IO, 2500), where for each q a family of eleven isotelic curves, for various La, was 
obtained. The values of La were in the range between zero and an upper limit determined 
by the substitution of fa into (13). An example of a family of isotelic curves for K=0*8, 
q= 35 and various values of La is shown in figure 2. The largest isotelic curve in figure 2 
is the last one which fits completely inside the tube of radius Fa. Thus the normalised 
capture length La=2.447 x IO4 which corresponds to this curve represents the limit of 
validity of the theory describing the capture on a single wire in a concentric tube for 
values K= 0.8 and q = 35. 

Figure 2. A family of isotelic curves for K=0*8, q=35 and La=O, 3 . 6 0 9 ~  10, 1.863 x 
lo2, 5,699 x 102, 1.346 x lo3, 2.702 x 103, 4.837 x lo3, 7.948 x lo3, 1.220 x 104, 1,770 x 
lo4, 2.447 x lo4. The capture area increases monotonically with increasing La.  
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The capture area A ,  is given by the area enclosed by the four isotelic curves at the wire, 
obtained by symmetrical operations with respect to the x and y axes. The area A ,  was 
evaluated by numerical integration for all isotelic curves computed previously. In this 
region of investigation, it was found that the area A ,  can be expressed, with a maximum 
error, at any point, of less than 1 %, as 

6 

i = O  
A ,  = 2 a4(la)i/4 

where ao= T and the other at(a0, a l ,  az, a4 and a6 > 0, a3 and a5 < 0) are functions of q 
only. Figure 3 shows all the coefficients at versus q over the investigated region. 

A 

B 
C 

I \ \ ’  

I \ \ 

Figure 3. Coefficients ai ( i=O, 1, 2 , .  . . 6 )  for K=0.8 as a function of q. Curves: 
A Ig ao, B Ig (11, C Ig a2, D Ig (-a3), E Ig a4, F Ig (-as), G Ig U6. 

The capture area A ,  in the ideal flow case is proportional to (La)l/2 and independent 
of 4. Since the quantity q is related to the boundary of the problem considered here, one 
can conclude that the more complicated nature of (15) is due to the delimitation of the 
fluid flow. In the case of a multiwire filter this will mean that the influence of other wires 
on the capture mechanism of the ‘representative’ single wire is taken into account. 

3. Multiwire filter 

3.1. Single-wire approximation 

An axial multiwire filter consists of a large number of thin ferromagnetic wires of radius a, 
which are all aligned essentially parallel to one another and also parallel to the direction 
of fluid flow. A magnetic field, sufficient to produce saturation magnetisation in the 



2126 R Gerber 

direction perpendicular to the wire axes, is applied. The distribution of wires in a plane 
orthogonal to the fluid flow is considered to be random and n, the number of wires per 
unit area, constant over the filter cross-section. The filling factor F is given by F=n.rr$. 
This factor can differ from one filter to another, depending on the construction and pur- 
pose. A typical value of F is about 0.07, which means that most of the filter’s space is not 
occupied by wires. This helps to suggest a model for an axial multiwire filter. A statistical 
average of velocity distributions in an annular space around each wire of the filter can be 
established. The statistical average has full axial symmetry and can be identified with 
expression (2). Thus a multiwire filter is replaced by a set of ‘representative’ single wires 
of identical environment, the values of a and n being kept unchanged. 

It remains to determine the parameter q = 2ruq2, q 2 2, in the expression (2). This can 
be done by linking q to PO,  the specific fluid impedance of the unloaded filter, defined by 

Po = po(l/S)Q (16) 

where PO is the pressure difference, Q the fluid discharge, I the lcngth and S the cross- 
section of the multiwire filter, all quantities to be determined experimentally. 

The discharge Q can, however, also be given as Q = nSQw, where 

is the discharge associated with one ‘representative’ wirc. Evaluating Q, in terms of q 
and F, and substituting in (16) gives, after rearrangement, 

The left-hand side of (17) contains only experimental quantities, the right-hand side is an 
implicit function in q. Thus q can be found nunierically for a given unloaded multiwire 
filter. 

In the absence of experiment, q can be roughly estimated for a given filter by assuming 
that the wires are arranged in a regular hexagonal pattern in a plane orthogonal to the 
fluid flow. Then rnq can be approximated by the distance from a wirc to the position of 
maximum fluid velocity, i.e. ragE(2.ir/3F2/3)1/2, and thus q%44.rr/3F 1/3.  The value of q 
is expected, in practice, to be larger than this estimate owing to the random distribution 
of wires and fluctuations in 12.  

If the wires of the filter are not rigid enough to stay in their positions when a magnetic 
field is applied (or alternatively if they are not fixed) the specific impedance pa will change 
due to the displacement of the wires from their equilibrium positions (Parker and 
Sheerer 1977 private communication). In this case the appropriate value of P O  in (17) is 
the experimental value of the specific impedance measured in the presence of the same 
magnetic field WO which is used to operate the separator. 

The concept just outlined links the capture mechanism on a single wire in a concentric 
tube to that of a multiwire filter. There is, however, a difference in the limit of validity 
of the theory. In a multiwire filler the theory is valid only up to the radius ruq, since this 
is the extremity, where the areas of competing influence of adjacent wires touch each 
other. Thus, in figure 1, the solid curve 01 can also be a trajectory in the annular space 
around a ‘representative’ single wire of a filter with filling factor Fz0.07. The solid 
curve ,B is a much less probable event because it starts at a radius rai > rap. The particle, 
depending on local conditions, has then a higher chance of being attracted by an adjacent 
wire. Consequently, the theory gives only approximate guidance in the ‘fuzzy’ region 
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above rag and below ?a. Beyond the value ?a the theory breaks down completely as has 
already been stated in $2. 

In a real multiwire filter the distance between adjacent wires varies, with a certain 
probability distribution, over a range of values. The flow pattern is rather complicated 
and the capture cannot be described in simple terms. However, the volumetric flow rate 
through channels between wires is approximately proportional to the 4th power of the 
channel size, whereas the number of channels per unit cross-section of the filter is inversely 
proportional only to the square of their size. Consequently, the capture in larger channels 
is statistically more significant for the filter performance than the capture in smaller 
channels. This is the justification for linking the value q to the specific fluid impedance PO.  
An exact statistical theory is beyond the scope of this paper. 

3.2 .  Filter performance 

Let N be the number of paramagnetic particles per unit volume of the fluid at the inlet 
of the filter. Considering unit area of the filter cross-section, the number of particles 
entering per unit time is Nin = N( VO),  where ( V O )  is the average velocity of the fluid in the 
filter (not to be confused with 70 in (3); in general ( VO)  $. PO). The number of particles 
(per unit cross-sectional area per unit time) coming out of the filter is Nout=Nnc( Ve), 
where Nnc is the number of particles per unit volume of the fluid in the filter which were 
not captured and ( V e )  is their average escape velocity. The probability that a particle 
will not be captured is (1 -a’Aa)” and consequently Nnc=(l -a’Aa)’N. Thus, since n 
is large, the formula for filter performance can be written as 

Nout = (( Vd/( V O ) )  exp ( - na2Aa)Nin. 

As all quantities in the argument of exp are known, it remains to determinate the velocity 
correction ratio (Ve)/( Vo). It can be given as 

= x (! - 1) [ - I +q +?: 4 (In $ - 3) + (t? - I )  ’ - q $ (In $ - I)] 

x (( x $ - A @ )  [ - 1 +2q+-- 7( In : -- 3 )]r 
where A ,  is given by (15). It is apparent that (Ve)/( Vo) is a quite complicated function 
of both q and La. However, this function can be approximated by its limiting value for 
Aa -+ 4 2 ,  i.e. by replacing (Ve) with the maximum escape velocity om. After perform- 
ing the limiting process (or by calculating um/(Yo) using (2)) the expression for filter 
performance is obtained as 

where ai ( i=O,  1, . . . 6 )  are functions of q, shown for K-0.8 in figure 3. 
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The approximation of {Ve)/( VO)  by vm/( VO)  is quite satisfactory, since 1 < (V,)/ 
(Vo)<vm/(Vo)  and vm/(Vo)  is close to unity for qE(10, 2500), as can be found by 
numerical evaluation of the pre-exponential factor in (19). 

The expression (19) describes the initial performance of an unloaded filter. However, 
it can also be used to estimate the filter performance during the filtration process, i.e. 
it can be applied with lower accuracy to a loaded filter. The main contributory factor to 
the deterioration of the filter performance, when particles are captured on the wire 
matrix, is the increase of the specific impedance p. Substituting p into (16) for po and 
using (14), a lower value of L, is obtained. This, when substituted in (19), accounts for 
the lower value of the filter performance. Other factors are disguised in changes of the 
coefficients ai. They are more difficult to evaluate because the particles are captured on 
the sides of the wires and (2) loses its axial symmetry. For the purpose of the estimate the 
coefficients ai may be considered to be approximately constant during the particle build- 
up process. 

4. Conclusions 

The mechanism of particle capture in axial filters presented in this paper is wholly con- 
sistent with the properties of real fluids. Thus the theory can be directly compared with 
experiment. This verification is aided by the fact that the trajectories are readily available 
in an analytical nearly closed form. In contrast with numerically computed solutions, if 
agreement with the present model is obtained in one particular instance it can be expected 
to be valid generally. 

As a counterpart to the fluid pressure difference PO, the magnetic pressure coefficient 
Pm was incorporated in the equations of motion. These equations do not depend on 7, 
the viscosity of the fluid. Consequently, if particles are being captured on a single wire in 
the axial configuration, the shape of the trajectories and the capture length does not 
depend on 7 either. This conclusion can be extended to axial multiwire filters, which can 
be represented in the single-wire approximation. The performance of these filters is then 
also viscosity-independent. 

The isotelic curves, defined here as the locus of initial positions of particles captured 
at the same distance from the origin, are in general different from the isochronal curves, 
defined as the locus of initial positions of particles captured after the same time. In the 
special case of ideal flow, both types of curves are identical, since the distribution of the 
fluid velocity is neglected and replaced by a constant fluid velocity VO. This may well 
have some effect on the particle build-up process, which for ideal flow has recently been 
described by Uchiyama et a1 (1977). 

The isotelic curves demarcate the capture area A,. It is this quantity and the filling 
factor F which are decisive for the filter performance. When calculating the filter per- 
formance, the different values of the inflow and the escape veIocities were also taken into 
account as the velocity correction ratio. This quantity, however, affects the filter per- 
formance much less than A ,  and F, since it is close to unity and appears in (19) only as a 
pre-exponential factor. This may explain why the ideal flow theories can be reasonably 
well fitted to the bulk or average measurements. 

The laminar flow theory presented here describes the capture mechanism at a single 
wire in a way which also, to a certain extent, takes the influence of adjacent wires into 
consideration. This is reflected by (15), where the capture area depends through the 
coefficients a6 on q and also on powers of L, other than 3. Thus it might be expected that 
the theory could apply even beyond the region of the single-wire approximation. 
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