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Abstract
In magnetic resonance force microscopy single spin experiments, forces in
the attonewton range have to be measured. Non-commercial, soft single
crystalline silicon bar cantilevers with a high quality factor and minimized
spring constants have to be used, in order to improve the detection sensitivity.
In our low temperature force microscope we obtain force sensitivities of the
order of 10−18 N Hz−1/2 at 10 K (Gysin 2002 Temperaturerverhalten der
Elastizität und inneren Reibung mikromechanischer Resonatoren, Thesis
Basel).

Micrometre-sized magnetic particles, which generate a magnetic field of
500 G and magnetic field gradients (dB/dz � 1 G nm−1), are attached on
ultrasensitive cantilevers. A severe loss in force sensitivity and a frequency
shift are observed while exposing a cantilever with a magnetic tip to a
homogeneous magnetic field. To minimize the damping losses of the
cantilevers with ferromagnetic particles, various magnetic materials
(e.g. SmCo5, Nd2Fe14B, and Pr2Fe14B) with different grain and domain sizes
are investigated. The lowest magnetic dissipation is observed with SmCo5
and Pr2Fe14B tips. We try to explain the dissipation effect of cantilevers with
magnetic tips.

(Some figures in this article are in colour only in the electronic version)

Introduction: damping losses of cantilevers in an
external magnetic field

Magnetic losses in micrometre-size ferromagnets are of
fundamental interest for data storage, for spintronics and
quantum computing. A particular application is magnetic
resonance force microscopy (MRFM), demanding low
thermomagnetic fluctuations which perturb the spin relaxation
rate of the sample and the sensitivity of the mechanical
detector [2]. In order to study the thermo-fluctuation of the
magnetization the cantilever magnetometry is chosen for its
ability to indirectly measure the magnetization in a broad
temperature and magnetic field range.

In this work we measure and study the average
magnetization of hard multigrain magnetic materials like
SmCo5, Nd2Fe14B, and Pr2Fe14B and we correlate the losses
with the frequency oscillations of the mechanical detector and
with the static homogeneous field.

1. Theory: interaction between magnetic tip and
external magnetic field

The interaction between a magnetic particle and a homoge-
neous magnetic field can be measured by the frequency shift
induced on a mechanical lever. The frequency shift induced by
the interaction with the static magnetic field can be calculated
from the torque acting on the particle. Figure 1 sketches the in-
teraction between a tipped cantilever and an external magnetic
field. In order to calculate the torque acting on the cantilever
the total potential energy of the mechanical resonator in an ex-
ternal magnetic field is minimized. The total potential energy
is

E(θ, θm) = EZeeman(θ, θm) + ESpring(θ) + EAnisotropy(θm).

(1)

The total potential energy of the mechanical oscillator can
be calculated from three main terms [2]: the Zeeman energy
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Figure 1. Tipped cantilever in a magnetic field. The sketch
represents the cantilever with the magnetic particle subjected to the
external magnetic field. The magnetic particle exercises a lateral
force on the mechanical resonator, causing an increase in the
resonance frequency. A momentum at the end of the cantilever will
cause a reduction of the resonance frequency. The parameters are: l,
the length of the cantilever; xpk, the peak amplitude; Fz , the lateral
force; θ , the angle of oscillation; θm, the angle of the magnetization
rotation.

term, the potential energy of the spring and the anisotropy term
(we neglect the exchange energy). The Zeeman energy is

EZeeman (θ, θm) = −MsV B cos (θ − θm) (2)

where Ms is the magnetization, V the volume, B the magnetic
field, θ the cantilever deflection angle and θ − θm the angle
between the magnetization of the tip particle and the external
magnetic field.

The energy potential of the cantilever is given by

ESpring (θ) = 1
2 k0 (lθ)2 (3)

where k0 is the spring constant, l the length of the cantilever
and θ the deflection angle represented in figure 1.

The shape anisotropy energy in a magnetic material where
the grain size is smaller than the critical size of a single
magnetic domain is [3]

EAnisotropy(θm) = µ0 (MsV )2 D‖ cos2 (θm) + D⊥ sin2 (θm)

2V
(4)

where µ0 is the magnetic permeability in vacuum, and D‖
and D⊥ the principal values of the demagnetization factor of
a prolate spheroid parallel and perpendicular with respect to
the long axis.

When the grain size has the same dimension as that
of a magnetic domain the anisotropy term reduces to the
magnetocrystalline anisotropy (values reported in table 1).

In other words, the expression of the anisotropy depends
on the magnetocrystalline symmetry. The simple anisotropy
expression (5) is widely used, but sometimes it is necessary to
take high order anisotropy constants into consideration [4].

EAnisotropy (θm) = K1V sin2(θm). (5)

The anisotropy term can be distinguished between the
macroscopic shape anisotropy important in small aspherical

particles and the magnetocrystalline anisotropy, which is an
intrinsic lattice property. The single domain radius Rs is of the
order of 0.2 µm in a modern permanent magnet. Consequently
a magnetic particle larger than 1 µm is multidomain.

To calculate the anisotropy rotation angle θm we
minimize the potential energy. The solution is calculated
for the geometric anisotropy and for the magnetocrystalline
anisotropy.

∂E (θ, θm)

∂θm
= 0. (6)

For small angles (sin(θ) ≈ θ and cos(θ) ≈ 1) we find

θm =






B

B + µ0 Ms(D⊥ − D‖)
θ (geometric anisotropy)

B

B + 2K1
Ms

θ (crystalline anisotropy).

(7)
The torque �τ(θ, θm) acting on the cantilever can be

calculated using the first derivative of the total energy.
By minimizing the interaction with the magnetic field and
replacing θm with the equation (7) we obtain

‖�τ (θ)‖ = −∂E (θ)

∂θ
. (8)

Assuming small angles, the torque [2, 3] can be described by
the following relation:

‖�τ (θ)‖ = −‖�τmc(θ) + �τimc(θ)‖ = (τmc + τimc)θ

=
−

(
Bµ0 M2

s (D⊥−D‖)V
B+µ0 Ms(D⊥−D‖) + k0l2

)
θ

−
(

2B K1V
B+ 2K1

Ms

+ k0l2

)

θ.

(9)

The torque is then divided into two terms, the magnetic
torque �τmc that interacts with the magnetic field, and the torque
independent of the magnetic field �τimc. The torque independent
of the magnetic field is mainly due to the elasticity of the
cantilever. Consequently it can be neglected when studying
tip–magnetic-field interaction.

1.1. Frequency shift and damping factor

The torque acting on the cantilever induces a frequency
shift. This is measured by standard FM-detection: a lock-in
amplifier, a frequency counter or a phase lock loop called PLL.
The frequency shift and the damping factor can be calculated
with the motion equation of a damped harmonic oscillator
excited at constant amplitude.

mẍ + � ẋ + k0x + τmcθ

l
= A sin(ωt) (10)

where m is the mass, � is the damping factor, k0 the spring
constant, l the length of the cantilever and A the exciting
amplitude. From equation (10), the mechanical resonance
frequency of a weak damping harmonic oscillator is

ω =
√

k0

m
+ �k

m
=

√

τimc

ml2
+ τmc

ml2
−

(
�

2m

)2

(11)
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Table 1. Magnetic properties. The table summarizes and compares the magnetic saturation, the coercivity, the Curie temperature, the
anisotropy constant and the maximal radius for a monodomain of different magnetic materials.

Substance µ0 Ms (T) µ0 H0 (T) Tc (K) K1 (M J m−3) K2 (M J m−3) Rsd (nm) Structure

SmCo5 1.07 40 1020 17.2 764 Hexagonal
Sm2Co17 1.22 1190 3.3 Rhombohedral
Nd2Fe14B 1.61 7.6 585 4.9 0.65 107 Tetragonal
Pr2Fe14B 1.55 565 5 100 Tetragonal
YCo5 1.06 987 6.5
Fe 2.15 0.06 0.048 0.015 6 Uniaxial
Co 1.81 0.76 0.53 0 34
Ni 0.62 0.03 −0.005 0.005 16 Uniaxial

where the change of the spring constant is �k. The frequency
shift can then be calculated with the Taylor approximation:

�ω = ω − ω0 = ω0






√
√
√
√1 +

τmc
ml2 − (

�
2m

)2

ω2
0

− 1






∼= ω0
1

2

τmc
ml2 − (

�
2m

)2

ω2
0

. (12)

Finally, it is possible to compact the relation to

�ω

ω0
= 1

2

�k

k0
(13)

and calculate the relation between frequency shift and
magnetic field [2, 3, 5].

�ω = 1

2

ω0

k0
�k =

ω0
2k0

(
1
l2

Bµ0 M2
s (D⊥−D‖)V

B+µ0 Ms(D⊥−D‖) − �2

4m

)

ω0
2k0

(
1
l2

2B K1 V
B+ 2K1

Ms

− �2

4m

)

.

(14)

For large anisotropy constant (K1 � B Ms) the frequency
shift should have a linear relation with the magnetic field.
At higher magnetic field the frequency shift should tend
asymptotically to a constant value (ω0 K1V/(k0l2)). The first
relation of equation (14) depends on the geometry factor and
it must be used for isotropic multidomain samples or soft
materials. The second relation is directly correlated with the
anisotropic constant of the magnetic domain. Consequently,
this relation must be used for hard magnetic monodomains.
Also, the damping factor � can induce an effect on the
frequency shift.

1.2. The energy losses and the damping factor

In the previous section we have developed the relation that
connects the magnetic field to the frequency shift. In this
section we explain the damping factor that appears in the
frequency shift relation. The damping factor comprises many
independent mechanisms, which cause a loss of energy in the
system.

One such loss is the thermoelastic relaxation [1]. The
energy loss is caused by a delay of the elastic process between
two points of the mechanical oscillator causing an irreversible
process of energy loss. Experimental results show that the
thermoelastic process is independent of the applied magnetic
field.

Figure 2. Cantilevers and dissipations. This sketch represents the
different dampers acting on the mechanical lever. The left-hand one
represents thermoelastic relaxation and the right-hand one
magnetoelastic relaxation.

An independent dissipation process is also measured,
when a mechanical oscillator with magnetic tip is placed
in a magnetic field or interacts with a magnetic sample.
There are different mechanisms by which a variable
magnetic field can couple to a material and lose energy.
The main loss mechanisms for magnetic materials in a
magnetic field are hysteresis, conduction losses (eddy current),
domain wall resonance, and electron spin resonance. The
different mechanisms have diverse dependences on material
properties such as sample type, microstructure, frequency and
temperature.

The two effects are modelled with an independent spring
and damper, where the spring is the phenomenon in phase with
the change and the damper is the out-of-phase loss process.
Each independent process can be added in parallel, as shown
in figures 2 and 3.

The total potential energy and the losses are therefore

Et = ECantilever + EMagnetic particle (15)

�Et = �ECantilever + �EMagnetic particle. (16)

The quality factor is then calculated as the ratio between
total energy and loss energy per cycle.

Q = 2π Et

�Et
= 1

1
QCantilever

+ 1
QMagnetic particle

. (17)
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Figure 3. Energy dissipation processes. The different relaxation
process are considered independent and can be added. All processes
causing the dissipation energy are modelled with a spring assuming
the elastic process and a damper causing the dissipation.

The quality factor contribution of each independent
damping process is added in parallel. Figure 3 represents the
complete system with noise excitation.

The two dissipation processes are the origin of the
dephasing between excitation and detection. The dephase
signal is calculated with the parameter �t , which is the sum
of the different dephasing processes.

1.2.1. Losses due to the oscillating magnetic field. Losses
of energy are due to a change of phase between excitation and
detection. A central parameter, that is used in electrodynamics,
and that gives the relation between the magnetic flux and
the field, is the permeability. The permeability, µ, of a
material is defined by the relation B = µH = µ0µrH =
µ0(H + M), where B is the flux density (T ), H is the field
intensity (A m−1), M is the magnetization (A m−1), µ0 is
the permeability of free space (4π × 10−7 H m−1) and µr

the relative permeability of the material. Losses which occur
in a material because of the time varying magnetic field are
included in the relative permeability term by writing µr as a
complex number, µr = µrr − jµri, where j = √−1 [6, 7].

The real term µrr describes the permeability at a fixed
field without any losses. The imaginary term µri, which
describes the magnetic loss, arises from damping forces caused
by internal friction during domain rotation and Bloch wall
propagation.

Hysteresis losses: At low frequency this process
dominates and dissipates as heat in a magnetic material as it
generates a B–H hysteresis loop. The energy loss per unit
sample volume is �E = ∫

B dH . This loss is controlled
by factors that control the low frequency permeability and
coercivity such as porosity, grain size and impurity as well
as the intrinsic properties. The energy used for turning the
magnetization by θm degrees is equal to Ea = K1V sin2 θm.

Domain wall loss: At 100 kHz the small displacements
of the pinned domain wall with the applied field introduce
restoring forces. The wall has inertia and its movement is
accompanied by energy dissipation [9, 10]. This process due
to the frequency range can be ignored.

Eddy current losses: The eddy current depends on the
frequency of the varying magnetic field and the conductivity
of the material. It is well known than when the skin depth
δ = √

(1/(σπ f µ)) is large compared to the sample size the
influence of the eddy current on the magnetic field is entirely
negligible [6, 7].

The mechanical resonance frequency of the cantilever
is in the kilohertz range. At room temperature the best

conductor has a penetration of 0.5 mm. This dimension is 1000
times bigger than the tip size dimension. At boiling helium
temperature the skin depth of the majority of metal conductors
is reduced by around 1000 times. Consequently, the use of
conductors such as Ni, Co or Fe in the micron size range is
affected by the eddy current. Rare earth magnets do not have a
good conductivity and for this reason the eddy current can be
neglected for such magnets.

The RF field excitation has a frequency of more than a
gigahertz. This high frequency is still not able to cause an eddy
current loss in hard magnetic materials. This high frequency
can cause a severe eddy current loss in the silicon cantilever.
This is the reason why the RF coil is placed parallel to the
lever surface.

The energy dissipation is �E = aσ f 2 B2r 2, where a is a
constant shape dimension, σ the conductivity, f the frequency,
B the magnetic field and finally r the radius of the particle.

1.2.2. Tip–field interactions. The cantilever is placed in a
homogeneous static field. The vibration and the setup of the
cantilever induces a small varying field, which generates a
energy loss. The magnetic particle attached to the cantilever in
a constant magnetic field is subjected to a variation field caused
by the motion of the mechanical oscillator. It is possible to
suppose the cantilever with the magnetic particle polarized in
the direction of the static magnetic field and a small variation
field perpendicular to this. The representation of the model is
shown in figure 4.

The magnetic field Hac is calculated from the peak
displacement xpk and length l of the cantilever with the small
angle assumption. The frequency ω is the frequency of the
harmonic oscillator and M is the magnetization of the particle.

The variation fields present inside the material induce
rotation of the magnetic domains at the kilohertz range.
Since the induced motions are resisted by inertial, elastic
and frictional forces the response is generally a function of
the applied frequency [11]. In addition to the frequency
dependence the response is a function of the temperature, the
magnitude of magnetic field, the orientation and the magnetic
domains [11, 12].

Figure 5 represents a hypothetical hysteresis loop caused
by varying the static magnetic field. The bold line shows
the magnetization of the magnetic tip over the variation of
the static magnetic field. Parallel to the field the process is
elastic and dominated by the wall motions. Perpendicular to
the magnetic field the motion is dominated by domain rotation,
and small hysteresis loops are generated, causing a loss of
energy. Depending on the structure, it is possible to introduce a
demagnetization factor that causes a reduction of the remaining
magnetic field.

The magnetic field in the particle is H = H‖ + H⊥ =
H cos(θm) + H sin(θm) sin(ωt). In a continuous wave electron
spin resonance signal the applied field is normally swept from
a field H parallel to the particle magnetization to a field H
antiparallel. This sweep causes a loss of energy marked on
the left of the figure 5, but not detectable by the cantilever. In
fact, the loss is not correlated with the vibration frequency of
the mechanical oscillator and for this reason the Q factor is
constant. This supposition is true only when

Frequency of field sweep � Frequency of cantilever.
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Figure 4. Tipped cantilevers in a static field. The magnetic field acting on the magnetic particle can be modelled with the sum of the axial and
perpendicular components. The axial component for the low frequency sweeping can be shown as a quasistatic experiment. The perpendicular
component has a frequency of oscillation of the mechanical resonator and for this reason has a strong effect on the frequency shift.

Figure 5. Hysteresis loops. The figure shows the hysteresis loop of a magnetic material. The axial components do not cause losses on the
mechanical resonator, because the field is changed with a low frequency. Moreover, in the bold line part of the left graph the domains are
parallel to the field and are in lower potential. The right graph shows the real cause of the dissipation: by varying the field perpendicular to the
magnetic field a small loop is engendered.

Figure 6. Hysteresis loop of FeCo. The graph represents the
hysteresis loop of Fe10Co90 as a function of the frequency measured
by Giri and All [13]. On the origin of the graph the change of the
magnetization begins to be more difficult, because the magnetization
cannot follow the fast change of the induction field. For small loops
the energy dissipated is reduced with increasing frequency.

This relation demonstrates what many authors have
measured [2, 3, 5], but never explained. In other words
the energy loss is filtered by the mechanical resonator. The
hysteresis loop is dependent on the magnetic oscillation
frequency and is deformed as shown in the figure 6. The
figure represents the real loop of Fe10Co90 (for the measured
hysteresis loops please refer to [13]).

The more the frequency of the mechanical oscillator
increases, the less the magnetic domain attached to it follows
the magnetic field. This effect, which is caused by the inertia
of the magnetization, consequently reduces the minor loop
hysteresis and the magnetic permeability. The magnetic energy
loss per cycle, which corresponds to the area of the minor loop,
is then reduced.

In conclusion, at frequency lower than 1 kHz the domains
follow the induced magnetic field and the maximum energy
is dissipated. At higher frequency (>1–2 kHz) the magnetic
domains due to their inertia hardly follow the magnetic field
and the energy dissipated is then reduced.

1.2.3. Magnetic interaction losses. The damping measured
through the Q factor provides an important parameter of the
dissipation particle material and the imaginary part of the
magnetic permeability. In magnetic force microscopy (MFM),
one usually measures the frictional constant, which is related
to the imaginary magnetic permeability. The energy magnetic
loss is induced by the time varying magnetic field, which
produces an amount of energy dissipation during each period.
The total energy loss is extrapolated from the linear dispersive
media theory of losses [6, 7]. The theory shows that at a given
instant in time and space, the rate of heat generated per unit
volume caused by magnetic losses is given by

Plosses = ωµ0µi H
2
ac. (18)
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Table 2. Cantilevers and tip characteristics. The table shows the cantilevers on which a magnetic particle material has been glued. The
materials are Pr2Fe14B, SmCo5, ferrite and Nd2Fe14B. All material data are given by the magnet producer: www.Magnequench.com.

Cantilever Nanosensor 1 Nanosensor 2 Nanosensor 3 Nanosensor 4 Nanosensor 5 IBM 1 IBM 2

Material Pr2Fe14B Pr2Fe14B Pr2Fe14B SmCo5 Ferrite Nd2Fe14B Pr2Fe14B
µ0 Hc (T) 0.7 0.7 0.7 3.2 0.2 0.7
µ0 Ms (T) 0.986 0.986 0.986 1.05 0.4 0.986
K1 (MJ m−3) 0.3 0.3 0.3 1.3 0.04 0.3
Mass (ng) 5 40 275 4 10 0.22 0.29
Volume (fm3) 0.658 5.263 36.184 0.477 1.282 0.029 0.038
fi0 (Hz) 10734 10112 11020 10423 10523 2736 2801
f0 (Hz) 8663.7 7321.92 3494.29 8881 8152 2158 2110
k0 (N m−1) 0.155 0.123 0.11 0.155 0.127 0.000 14 0.000 18
Q factor 94 567 157 580 102 569 145 335 110 569 29 064 28 654
Fmin (N Hz−1/2) 6.83 × 10−16 5.76 × 10−16 1.03 × 10−15 5.45 × 10−16 6.52 × 10−16 7.93 × 10−17 8.08 × 10−17

In a complete cantilever oscillation period T , the energy
dissipated by a particle with volume V is therefore

�E = PlossesT = 2πµ0µiV H2
ac. (19)

The alternative magnetic field excitation can contribute
to the generation of phonons and dissipate the energy by
the relaxation processes through the magnetic material. This
dissipated energy can be connected with the dissipated energy
measured by the Q factor and the amplitude oscillation. The
energy loss for a cantilever oscillating with amplitude xpk is
given by

�E = 2π E

Q
= πk0ω

2x2
pk

Qω2
0

= πωx2
pk� (20)

where � = k0ω/(ω2
0 Q) represents the total friction [8]. The

imaginary part of the magnetic permeability can consequently
be determined by substituting the variable field Hac with
H xpk/ l and by comparing equations (19), (20). The
total friction and the imaginary magnetic permeability are
two parameters which determinate the amount of dissipated
energy. The imaginary permeability is mostly used in high
frequency magnetic field instruments for calculating the energy
dissipation. The MFM is a strong sensitive instrument, which
can measure small variation of this parameter.

2. Experiments: tip–field interactions

In the previous section we calculated the interaction between
the magnetic field and microsized magnetic particles. At small
magnetic fields, a linear relation connects the magnetic field,
which produces a torque on the mechanical beam, and the
frequency shift. The friction and the imaginary magnetic
permeability have been calculated as well. Thus, we conducted
a series of experiments, in order to verify the frequency shift
relation calculated in the previous section and to understand
the severe energy losses while exposing the cantilever to the
magnetic field.

2.1. Tip materials and setup

In this study we glued magnetic materials of various grain sizes
on five Nanosensors4 cantilevers with a mechanical resonance
4 NANOSENSORS, Rue Jaquet-Droz 1, CH-2007 Neuchatel, Switzerland
http://www.nanosensors.ch

frequency of 10 kHz and on two ultrasoft non-commercial
IBM5 cantilevers with a mechanical resonance frequency of
2.7 kHz. The magnetic materials and cantilever characteristics
are shown in table 2, before and after gluing the tip.

In order to attach the magnetic particle at the end of
the ultrasoft cantilever a really minuscule quantity of optical
glue6 was placed at the extremity of the cantilever using
an optical microscope and a home-built micromanipulator.
Small magnetic particles were placed on an AlO2 substrate
and scratched against an AlO2 substrate with the purpose of
reducing the dimension of the grains. After choosing the
particle, the permanent magnet was mounted at the end of a
cantilever.

The particle was localized and aligned with the magnetic
field (it is strongly recommended not to place the magnet
behind the magnetic particles, whereupon the particles become
fixed and impossible to remove from the surface). After the
particle was captured by the glue the cantilever was exposed
to UV rays for a few hours to harden the adhesive. Finally, all
cantilevers were photographed using the SEM microscope and
placed in a plastic box filled with argon gas with the aim of
reducing the oxidation of the magnetic particle.

The mass of the particle attached on the cantilever was
determined using the frequency shift. This is determined by the
difference between the first eigenfrequency of the cantilever
before attaching the magnetic particle to it, and after. The
mass is then calculated. For cross validation the mass was
determined by reconstructing the volume from the scanning
electron microscope (SEM) pictures represented in table 3
multiplied by the mass density.

To demonstrate and measure the magnetic dissipation
a dynamic mode cantilever was measured in vacuum at
10−6 mbar and at room temperature between the poles of an
electromagnet (Bruker maximal magnetic field 0.5 T). The
basic experiment was to measure the cantilever resonance
frequency and the damping as a function of the static magnetic
field. The cantilever frequency was measured with a Labview
program with the FFT of a signal acquired for 30 s with a
precision of 0.1 Hz, while damping was typically measured
by the cantilever ring-down time after abruptly turning off the
piezoelectric drive signal.

5 IBM Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland,
http://www.IBM.ch
6 Norland optical adhesive 65, Norland Products, PO Box 637, 2540 Route
130, Suite 100, Cranbury, NJ 08512, http://www.norlandprod.com
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Table 3. Tipped cantilevers. The table shows the cantilevers measured and their parameters, such as the resonance frequency, the spring
constant, the Q factor and the minimal detection force at room temperature.

The measurement was repeated after the cantilever
amplitude reached the steady state condition for a fixed
magnetic field. The lock-in was adjusted for maximal
sensitivity and the local oscillator, exciting the piezo, turned
off. The measurement was repeated 30 times and then the
field was changed to the next amplitude. The scheme of the
equipment used for this measurement is sketched in figure 7.

2.2. The frequency shift as a function of the magnetic field

The frequency shift was measured for the cantilevers
mentioned in the previous section. The frequency shift of
the tipped cantilevers changes linearly with the magnetic
variations. This tendency is experimentally demonstrated
with various hard magnetic materials. When the anisotropy
constant is larger than the product between the magnetic field
and the particle magnetization, K1 � B Ms/2 or (D⊥ −
D‖)µ0 M2

s /2 � B Ms/2, the slope can be fitted with the
following linear equation:

�ω =
(

1

2

ω0V Ms

k0l2

)

B − 1

8

ω3
0

k2
0

�2. (21)

The frequency shift depends linearly on the particle
volume and its magnetization. The tipped cantilever with a
hard magnetic particle is a relative magnetometer with a strong
linearity for constant temperature. Since the temperature
of the cantilever is not controlled the variation perturbs the
measurement and causes some oscillations.

In the case when the anisotropy factor is equal to or
smaller than the product between the magnetic field and the
particle magnetization, the slope changes and reduces to 0. The
ferrite particle shows this effect, since it has a change at 0.2 T.
In this case equation (14) should be used for fitting the curve.
The tabulated magnetic saturation of ferrite is at 0.4 T. So, the
anisotropy constant is K1 = B Ms/2 = 0.04 MJ m−3. The
inflection can be used subsequently to calculate the anisotropy
constant of each magnetic particle. We report the results in
figure 8.

Soft materials have small anisotropy and consequently
their magnetization is changed with the oscillations of the
cantilever. This change causes not only a rotation of the
magnetization but also a strong fluctuation field. This
introduces a broadening of the change of the magnetic field
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Figure 7. Tip–field interaction setup. The schematic diagram sketches the circuit used to measure the eigenfrequency and the Q factor of the
cantilever with the magnetic particle. The Labview program measures the eigenfrequency of the cantilever by FFT. The lock-in is then set for
the maximal sensitivity and when the oscillation of the cantilever is stable the local oscillator is turned off. The signal is measured for the
decay time and repeated for different magnetic fields.

Figure 8. Frequency shift versus magnetic field. The graph shows
the dependence of the frequency shift as a function the static
magnetic field applied. The labelling is the following: I stands for
IBM and N stands for Nanosensors; for the numbers see table 3. All
materials have a linear tendency and are fitted with equation (21).
Only the ferrite N5 shows saturation and is fitted with equation (14).
The change of temperature causes the perturbations.

interacting with the spins and consequently an increase of the
relaxation rate spins. The magnetization of the hard material is
also turned but with a smaller amplitude. For this reason, we
focus our study on hard magnetic materials.

2.3. The quality factor measurement as a function of the
magnetic field

In the previous section the quality factor is connected with
the friction and the imaginary part of the permeability.
Consequently, the Q factor is the parameter for measuring the
dissipation. The quality factor of the mechanical resonator was
measured using the ring-down measurement technique. Each
measurement was repeated 30 times for a constant magnetic
field and averaged. The data are represented in graph 9.

Figure 9. The graph shows the normalized Q factor of the different
mechanical levers. All trends are fitted using equations (17) and (20).
The Q factor can be fitted with the following equation:
Q = 1/(1/Q0 + ω2

0�/(k0ω)). The change in the Q factor is directly
proportional to the volume of magnetic material glued, and inversely
proportional to the anisotropy constant. The labelling is the
following: I stands for IBM and N stands for Nanosensors; for
numbers see table 3.

The Q factor of the cantilevers was fitted with two
inelastic processes, one caused by the thermoelastic relaxation,
and one caused by the tip–magnetic-field interaction. The
thermoelastic relaxation is not correlated with the magnetic
field. The Q factor change is directly proportional to the
volume of material glued and inversely proportional to the
anisotropy. The Q factor of the mechanical lever N4 does not
have a strong change, because SmCo5 has an anisotropy value
5 times larger than the anisotropy of the Pr2Fe14B material
glued on the cantilevers N1, N2, N3 and I2.

The magnetic friction losses for each magnetic material
were extrapolated from the Q factor measurements. The
magnetic friction was then divided by the volume of the
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Figure 10. The graph represents the magnetic friction per nm3 of
material as a function of the magnetic field. The dissipation is
correlated with the frequency. The higher the frequency the lower the
dissipation. SmCO5 has the highest anisotropy and consequently it
has the lowest dissipation. The labelling is the following: I stands for
IBM and N stands for Nanosensors; for numbers see table 3.

magnetic particle. The density friction can be plotted and
compared. The graph 10 represents the magnetic losses per
nm3 of magnetic material. The frictional loss of the isotropic
Pr2Fe14B material is represented by four curves with an offset
in between.

This curious effect can be explained by the frequency
oscillation of the mechanical lever. In fact, as explained in
the previous section the anisotropy constant is correlated with
the frequency oscillation. In the case of minor loop hysteresis
the energy losses are smaller, because the magnetization of the
particle has inertia to turn.

The SmCo5 has an anisotropy constant of 1.3 MJ m−3,
about 12 times lower than a monodomain. The large anisotropy
constant may explain the constant behaviour in the range
of 0.5 T. In the single spin experiment, Rugar [14] used a
submicrometre magnetic tip of SmCo5 for its incomparable
anisotropy.

The vitreous Nd2Fe14B spherical material has a curious
strong magnetic friction that is difficult to explain. It may
be attributed to the fact that the oxidation has dramatically
decreased the anisotropy constant.

The magnetic frictional losses could be further decreased
by reducing the particle to a monodomain dimension of
0.8 µm. In this case all domain wall losses would disappear
and the losses would be caused only by the hysteresis loop
of the magnetic domain. The anisotropy is increased to
17 MJ m−3 at room temperature, to 24 MJ m−3 at boiling
nitrogen temperature and finally to double the value at boiling
helium temperature.

We know that the domains are hardly turned at higher
frequency. In fact increasing the frequency causes a decrease
of the magnetic friction. The data are plotted in figure 11. This
behaviour is caused by the minor loop, where the field due to
the frequency change is not able to turn the domains.

The friction for volume samples has a dependence on
the frequency oscillation. Lower frequencies dramatically
increase the dissipation due to the hysteresis effect. For
frequencies higher than 10 kHz the friction is independent of
the frequency [2]. The wall resonance, the eddy current and

Figure 11. Magnetic friction versus frequency oscillation. The graph
shows the trend of the magnetic dissipation per nm3 as a function of
the frequency of the different Nanosensors cantilevers. The trend
increases at higher magnetic field.

Figure 12. Sensitivity as a function of the magnetic field and Q
factor. The graph shows the force sensitivity versus the magnetic
field as a function of the Q factor. The spring constant and the
frequency shift are supposed constant.

the electron spin resonance will increase the friction at higher
frequency.

2.4. The force sensitivity as a function of the magnetic field

The force sensitivity is strongly affected by the tip–magnetic-
field interaction. The choice of the right magnetic material
is consequently fundamental to maintain a high sensitivity
in order to measure single electron spin. The theoretical
minimum measurable detecting force is given by the following
equation:

Fmin√
� f

=
√

4k0kBT

w0 Q
= √

4�mm pkBT . (22)

Experimentally, it is found that the frequency shift and the
spring constant hardness do not have as strong an influence
on the force sensitivity as the Q factor. The force sensitivity
reported in figures 12 or 13 is calculated as a function of one
parameter only: either the Q factor or the spring constant.
In this way, the sensitivity change can be compared. The
magnetic damping loss is the major factor that reduces the
force sensitivity in a static field below 0.5 T.
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Figure 13. Sensitivity as a function of the magnetic field and
frequency shift. The graph shows the force sensitivity versus the
magnetic field as a function of the frequency shift and the spring
constant. The Q factor is supposed constant.

A maximal sensitivity of 7.5 × 10−17 N Hz−1/2 at room
temperature for the IBM cantilever is extrapolated. This force
sensitivity can be increased to 9×10−18 N Hz−1/2 by reducing
the temperature to that of boiling helium. This sensitivity is
an underestimation, because the anisotropy constant increases
while the temperature decreases. The same experiment should
be performed at boiling helium temperature. Moreover, the
sensitivity can be increased further by annealing the cantilever.
In this case the grain glued at the end of the cantilever
must to be a monodomain in order to decrease the correlated
demagnetization factor. Ne2Fe14B shows a curious loss of
force sensitivity for fields of more than 10 mT. Pr2Fe14B and
SmCo5 have a much better behaviour and the force sensitivity
holds for more than 100 mT at room temperature.

The anisotropy plays a central role in the friction process
as a function of the magnetic field. In fact the sensitivity
and the magnetic field range are directly correlated with the
magnetic anisotropy of the particle attached to the cantilever.
Low temperature and hard magnetic materials increase the
magnetic anisotropy constant, which decreases the magnetic
friction.

3. Conclusions: reduction damping losses

A cantilever tipped with hard magnetic materials is subjected
to a severe damping losses, while exposed to a static magnetic
field. A detection sensitivity of 10−18 N Hz−1/2 in the absence
on any magnetic field decreases to 10−16 N Hz−1/2 at 100 mT.
The principal cause of this sensitivity loss is due to the
magnetic hysteresis loop oscillating with the frequency of the
cantilever. Low frequency hysteresis changes do not have any
effect on the Q factor. The hysteresis loop due to the inertia of

the magnetic domain is inversely proportional to the frequency.
We find that a cantilever oscillating at 1 kHz has more magnetic
losses than one oscillating at higher frequency. From the
literature we can estimate that the optimal frequency oscillation
is around 5–10 kHz. For a cantilever tipped with SmCo5 or
Pr2Fe14B, a sensitivity of 10−18 N Hz− 1

2 is maintained constant
up to 100 mT. This sensitivity should be enough for a single
electron spin detection experiment.
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