The Magneto-Laboratory

The Magneto-Laboratory
Junior Group at the MPI for Marine Microbiology , Bremen
Head of the Group:
Dr. Dirk Schuler

 

Welcome at the homepage of the Schuler lab. Our group was established in 3/2000 as a result of the BioFuture programme of the BMBF. The main focus of our research is to seek an understanding of the biomineralization of magnetosomes in magnetotactic bacteria. Our funding is through BMBF, Deutsche Forschungsgemeinschaft, and MPG.

 

 

 

 Willkommen auf der Homepage der Arbeitsgruppe Schuler. Die Nachwuchsgruppe besteht seit 03/2000 als Ergebnis des BioFuture-Wettbewerbs des BMBF. Hauptgegenstand unserer Forschung ist die Untersuchung der Biomineralisation von Magnetosomen in magnetotaktischen Bakterien. Unsere Arbeiten werden unterstьtzt durch das BMBF, die Deutsche Forschungsgemeinschaft sowie die Max-Planck-Gesellschaft.

 

 

Laboratory members (1/2005)

 

Damien Faivre

Postdoctoral fellow

dfaivre@mpi-bremen.de

Astrid Gordes

Undergraduate

agaerdes@mpi-bremen.de

Karen Grunberg

Ph. D. student

kgruenbe@mpi-bremen.de

Katja Junge

Ph. D. student

kjunge@mpi-bremen.de

Claus Lang

Ph. D. student

clang@mpi-bremen.de

Andrй Scheffel

Ph. D. student

ascheffe@mpi-bremen.de

Katja Schmidt

Lab technician

eschmidt@mpi-bremen.de

Sabrina Schubbe

Ph. D. student

sschuebb@mpi-bremen.de

Dirk Schuler

Head of the lab

dschuele@mpi-bremen.de

Renй Sonntag

Undergraduate

 

Cornelia Stumpf

Lab technician

cstumpf@mpi-bremen.de

Susanne Ullrich

Undergraduate

sullrich@mpi-bremen.de

Astrid Bartel

Undergraduate

 

Mercedes Berlanga

Guest scientist

berlanga@ubxlab.com

Christine Flies

Ph. D. student

cflies@mpi-bremen.de

Richard B. Frankel

Guest scientist

rfrankel@calpoly.edu

Udo Heyen

Postdoctoral fellow

uheyen@mpi-bremen.de

Oliver Menke

Undergraduate

omenke@mpi-bremen.de

Daniel Schultheiss

Ph. D. student

dschulth@mpi-bremen.de

Cathrin Wawer

Postdoctoral fellow

cathrin.wawer@void.de

Nina Winter

Undergraduate

 

 

Research

 

Electron micrograph of Magnetospirillum gryphiswaldense. The ability of magnetotactic bacteria to orient and migrate along magnetic field lines is based on intracellular magnetic structures, the magnetosomes, which comprise nano-sized, membrane-bounded crystals of an magnetic iron mineral. The formation of magnetosomes is achieved by a biological mechanism that controls the accumulation of iron and the biomineralization of magnetic crystals with a characteristic size and morphology within membrane vesicles. Magnetosome biomineralization has stimulated a broad interdisciplinary interest. Recently, the characteristics of bacterial magnetosomes have been even used as biosignatures to identify presumptive Martian magnetofossils. In addition, a number of technological applications of magnetosomes have been considered. Research in our lab is focused on the microbiology of magnetotactic bacteria and the biochemistry and molecular biology of magnetosome formation. Ultimately, we seek to understand the molecular mechanisms that control magnetite biosynthesis in bacteria.

 

Projects

 

·        Ecology and diversity of uncultivated magnetotactic bacteria

·        Biochemistry and molecular biology of magnetosome formation in the magnetotactic bacterium Magnetospirillum gryphiswaldense

·        Production and characterization of bacterial magnetosome particles for their potential use in  biotechnological applications

 

Ecology and diversity of uncultivated magnetotactic bacteria

 

                                 

 

Diversity of magnetosome crystals found in various magnetotactic bacteria from different environments (bar represents 0.1 micrometer). Most of the bacteria shown have not been isolated in pure culture.

Hunting for magnetotactic bacteria in the mud of the German Wadden Sea.

 

Magnetotactic bacteria (MTB) are major constituents of natural microbial communities. A broad diversity of morphological and phylogenetic varieties can be found in many aquatic habitats. However, cultivation of MB has proven difficult because of their lifestyle adapted to chemically stratified habitats. Consequently, only few strains of MTB have been isolated in pure culture, which represent only a minority of the vast diversity of naturally occurring populations from largely unexplored habitats such as the marine environment.

In our lab, we are addressing the diversity of uncultivated MTB by various approaches. We attempt to isolate, cultivate and characterize novel MTB. In addition, we employ cultivation-independent, molecular methods in the analysis of MTB from natural environments.

 

Biochemistry and molecular biology of magnetosome formation in Magnetospirillum gryphiswaldense

 

The formation of magnetosomes in MTB is one of the most intriguing examples of the widespread occurrence of magnetic minerals in a diverse range of organisms. However, the molecular mechanisms controlling the biomineralization process so far have remained largely unknown.
We are interested in understanding the molecular interactions governing the biomineralization of magnetosomes. We employ molecular genetic, genomic, proteomic and biochemical techiques to identify the genes, proteins, and structures involved in the biological control of magnetite synthesis. For most experiments, we have chosen the freshwater bacterium Magnetospirillum gryphiswaldense as a model organism, because it can be cultivated more readily than most other MTB. M. gryphiswaldense forms a number of cubo-octahedral magnetosome crystals, which consist of the magnetic iron mineral magnetite (Fe3O4).

 

 

Proposed model for magnetite biomineralization in Magnetospirillum species. Fe(III) is actively taken up by the cell, possibly via a reductive step. Iron is then thought to be reoxidized and magnetite is produced within the magnetosome vesicle. The magnetosome membrane contains specific proteins, which are thought to have crucial functions in the accumulation of iron, nucleation of minerals and redox and pH control.

 

Production and characterization of bacterial magnetosome particles for their potential use in biotechnological applications

 

Suspensions of isolated bacterial magnetosomes can be considered as biogenic magnetic ferrofluids. The superior magnetic and crystalline properties of bacterial magnetosomes make them potentially useful as a highly orderd biomaterial in a number of applications, e. g. in the immobilization of bioactive compounds, in magnetic drug targeting, or as contrast agent for magnetic resonance imaging. In our lab, we seek to establish techniques for the mass production of bacterial magnetosomes. Isolated magnetosomes are characterized with respect to their biochemical, biophysical and magnetic properties. In addition, in collaboration with several partners we evaluate the use of bacterial magnetosomes in a number of applications.

 

                         

 

Pellet of isolated magnetosomes sticking

to a permanent magnet.

Electron micrograph of purified magnetosomes from Magnetospirillum gryphiswaldense. Individual magnetosome particles are enclosed by the magnetosome membrane, which prevents agglomeration.

 

Selected publications

 

1.      Flies, C., Jonkers, H., deBeer, D., Bosselmann, K., Bцttcher, M., Schuler, D. Diversity and vertical distribution of magnetotactic bacteria along chemical gradients in freshwater microcosms. FEMS Microbiol. Ecol. In press. 2005.  

2.      Flies, C., Peplies, J., Schuler, D. A combined approach for the characterization of uncultivated magnetotactic bacteria from various aquatic environments. Appl. Environ. Microbiol. In press. 2005.

3.      Schultheiss, D., Handrick, R., Jendrossek, D., Hanzlik, M., Schuler, D. The presumptive magnetosome protein Mms16 is a PHB-granule bound protein (phasin) in Magnetospirillum gryphiswaldense. J. Bacteriol. In press. 2005.

4.      Handrick, R., Reinhardt, S., Schultheiss, D., Reichart, T., Schuler, D., Jendrossek D. Unraveling the function of the Rhodospirillum rubrum activator of polyhydroxybutyrate (PHB) degradation: The activator is a PHB granule bound protein (phasin). J. Bacteriol. 186(8) (2004) 2466-75.

5.      Rehm, B., Schuler, D. Klein-Kleiner-Am Kleinsten: Nanobiotechnologie, eine Schlьsseltechnologie des 21. Jahrhunderts. In: Biotechnologie 2020. DECHEMA, Frankfurt. 2004.

6.      Hoell, A., Wiedenmann, U., Heyen, U., Schuler, D. Nanostructure and field-induced arrangement of magnetosomes studied by SANSPOL. Physica B 350 (2004)309-313.

7.      Schuler, D. Making magnets by bacteria: The biomineralization of magnetic nanoparticles. In: Nedkov, I., Tailhades, P. (eds.), Lectures on Nanoscale magnetic materials. Heron Press Ltd. 2004. 

8.      Amann, R., Rossello-Mora, R., Flies, C., Schuler, D. Phylogeny and in situ identification of magnetotactic bacteria. In: E. Baeuerlein (ed.), Biomineralization of Nano- and Microstructures. 2nd ed., Wiley-VCH, Weinheim. 2004.

9.      Schuler, D. Biochemical and genetic analysis of the magnetosome membrane in Magnetospirillum gryphiswaldense. In: E. Baeuerlein (ed.), Biomineralization of Nano- and Microstructures. 2nd ed., Wiley-VCH, Weinheim. 2004.

10.  Schultheiss, D., Kube, M., and Schuler, D. Inactivation of the flagellin gene flaA in Magnetospirillum gryphiswaldense results in nonmagnetotactic mutants lacking flagellar filaments. Appl. Environ. Microbiol. 70 (6) (2004) 3624-3631. pdf-file

11.  Grunberg, K., Muller, E.C., Otto, A., Reszka, R., Linder, D., Kube, M., Reinhardt, R., and Schuler, D. Biochemical and proteomic analysis of the magnetosome membrane in Magnetospirillum gryphiswaldense. Appl. Environ. Microbiol. 70 (2)(2004)1040-50. pdf-file

12.  Schuler, D. Molecular analysis of a subcellular compartment: The magnetosome membrane of Magnetospirillum gryphiswaldense Arch. Microbiol. 181 (2004) 1-7. pdf-file

13.  Schubbe, S., Kube, M., Scheffel, A., Wawer, C., Heyen, U., Meyerdierks, A., Madkour, M.H., Mayer, F., Reinhardt, R., and Schuler, D. Characterization of a spontaneous nonmagnetic mutant of Magnetospirillum gryphiswaldense reveals a large deletion comprising a putative magnetosome island. J. Bacteriol. 185 (2003) 5779-5790. pdf-file

14.  Heyen, U., and Schuler, D. Growth and magnetosome formation by microaerophilic Magnetospirillum strains in an oxygen-controlled fermentor. Appl. Microbiol. Biotechnol.  61 (2003) 536-544. pdf-file

15.  Schultheiss, D., and Schuler, D. Development of a genetic system for Magnetospirillum gryphiswaldense. Arch. Microbiol. 179 (2003) 89-94. pdf-file

16.  Schuler, D. The biomineralisation of magnetosomes in Magnetospirillum gryphiswaldense. Int. Microbiol. 5 (2002) 209-214. pdf-file

17.  Grunberg, K., Wawer, C., Tebo, B.M., and Schuler, D. A large gene cluster encoding several magnetosome proteins is conserved in different species of magnetotactic bacteria. Appl. Environ. Microbiol. 67(10) (2001) 4573-82. pdf-file

18.  Schuler, D. Die Biomineralisation von Nanokristallen in magnetotaktischen Bakterien. Biospektrum. 6 (2000) 445-449.

19.  Schuler, D. Formation of magnetosomes in magnetotactic bacteria. J. Mol. Microbiol. Biotechnol. 1 (1) (1999) 79-86. pdf-file

20.  Schuler, D., and Frankel, R.B. Bacterial magnetosomes: Microbiology, biomineralization and biotechnological applications. Appl. Microbiol. Biotechnol. 52 (4) (1999) 464-473. pdf-file

21.  Schuler, D., Spring, S., and Bazylinski, D. A. Improved technique for the isolation of magnetotactic spirilla from a freshwater sediment and their phylogenetic characterization. System. Appl. Microbiol. 22 (3) (1999) 466-471.

22.     Schuler, D., and Baeuerlein, E. Dynamics of iron uptake and Fe3O4 biomineralization during aerobic and microaerobic growth of Magnetospirillum gryphiswaldense. J. Bacteriol. 180 (1) (1998)159-162.

 

 

 

 

DIRK SCHULER, Doctor of Philosophy.

Head of the Junior Group "Magnetotactic Bacteria"

Address:

Max-Planck-Institute for Marine Microbiology

28359 Bremen, Germany

Tel. +49-421-2028746

Fax +49-421-2028580

dschuele@mpi-bremen.de

Research interests:

Microbiology and diversity of magnetotactic bacteria,

Biochemistry and molecular genetics of magnetosome formation, Microbial biomineralization processes

Bacteria-metal interactions.